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Abstract: As the popularity of social network service (SNS) messengers (such as Telegram, WeChat or
KakaoTalk) grows rapidly, cyberattackers and cybercriminals start targeting them, and from various media,
we can see numerous cyber incidents that have occurred in the SNS messenger platforms. Especially,
according to existing studies, a novel type of botnet, which is the so-called steganography-based botnet
(stego-botnet), can be constructed and implemented in SNS chat messengers. In the stego-botnet, by using
various steganography techniques, every botnet communication and control (C&C) messages are secretly
embedded into multimedia files (such as image or video files) frequently shared in the SNS messenger.
As a result, the stego-botnet can hide its malicious messages between a bot master and bots much better
than existing botnets by avoiding traditional botnet-detection methods without steganography-detection
functions. Meanwhile, existing studies have focused on devising and improving steganography-detection
algorithms but no studies conducted automated steganography image-detection system although there are
a large amount of SNS chatrooms on the Internet and thus may exist many potential steganography images
on those chatrooms which need to be inspected for security. Consequently, in this paper, we propose
an automated system that detects steganography image files by collecting and inspecting all image files
shared in an SNS chatroom based on open image steganography tools. In addition, we implement our
proposed system based on two open steganography tools (Stegano and Cryptosteganography) in the
KakaoTalk SNS messenger and show our experimental results that validate our proposed automated
detection system work successfully according to our design purposes.

Keywords: image steganography; steganography-based botnet; SNS security; KakaoTalk messenger
security; automated steganography image detection

1. Introduction

Recently, the usage of social network service (SNS) applications is growing rapidly owing to the
rapid advancement of mobile smartphones and 4G/5G wireless networks technologies. Meanwhile,
cyberattackers start targeting smartphones with SNS applications [1–3]. In particular, many recent
studies [4–7] report that cyberattackers can construct a stealthy botnet using steganography techniques
in SNS instant messengers (SNS IMs) such as WeChat or KakaoTalk, and such novel type of the botnet
is known as steganography-based botnet or stego-botnet [8,9].

According to our extensive survey, most stego-botnets use image steganography techniques [10–13].
In the image stego-botnet constructed in an SNS IM, a bot master sends its command and control
(C&C) messages to bots in a stealthy way as follows [14,15]. First, the bot master hides a secret message
containing its commands into a plain image file (cover image) by using an image steganography
method or tool such as Steghide or Openstego, and shares the image file (stego-image) in an SNS
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chatroom with many participants [16,17]. Next, when chatroom participants read and click the shared
image file, it gets downloaded to their smartphones. After that, the secret message hidden in the
image file is automatically extracted by a bot software (malware) and then cyberattacks are performed
according to the extracted secret message (bot command). Stego-botnets are serious, emerging cyber
threats in that they can hide their botnet command and control messages into image files and thus
can avoid existing botnet monitoring and detection systems since image files look normal to those
defense systems [18,19]. The 2018 Fortinet Threat Landscape Report reported that malwares using
image steganography to hide malicious payloads in memes were propagated over SNS IMs and that
an image stego-botnet (Vawtrak) is included in the list of explosive growth in botnets [20].

Meanwhile, according to our survey, existing studies have focused on devising and
improving steganography-detection algorithms but no studies conducted automated steganography
image-detection system although there are a large amount of SNS chatrooms on Internet and thus
may exist many potential steganography images on those chatrooms which need to be inspected for
security. By this motivation, in this study, we propose and devise an automated detection system of
steganography image shared in an SNS IM, which has two major components such as automated
collection component (ACC) and automated detection component (ADC). Thus, our proposed system
automatically collects the entire image files shared in an SNS IM, examines whether each image file
hides a secrete steganography message, and displays the examination results. To the best of our
knowledge, this is the first study according to the establishment of a steganography detection system in
IM. Thus, we hope this study will contribute to lowering security threats in the KakaoTalk environment
and further be expended in other IM platforms through advanced studies.

The main contributions of this study can be summarized as the following:

• We proposed an automated detection model that can automatically collect and detect
steganography image files shared in SNS IMs.

• We implemented and constructed our proposed model in the KakaoTalk SNS IM platform;
for automated detection, we used two open steganography tools (Stegano [21] and
Cryptosteganography [22]) to examine whether collected image files from a KakaoTalk Chatroom
contains secret hidden messages.

• We show experimental results that validate our proposed automated detection system work
successfully according to our design purpose.

The remainder of this paper is organized as follows. In Section 2, we overview traditional botnets,
steganography-based botnets, and existing related studies. In Section 3, we propose and design an
automated detection system of steganography images shared in the KakaoTalk chatroom. In Section 4,
we implement our proposed system in the KakaoTalk SNS messenger and conduct experiments to
show our proposed system work properly according to our design purpose. Finally, we conclude with
our future research directions in Section 5.

2. Background and Related Works

Before proceeding with the above research, it is necessary to have a good understanding of
existing botnets and steganography-based botnets. Therefore, this section overviews the existing
bonnets and the response system, then introduces the steganography-based botnets, and then the
steganography-based botnet in the KakaoTalk environment.

2.1. Overveiw of Traditional Botnets

Botnet refers to a large number of networked devices that are infected by malware and are
under the control of the bot master [23]. Botnet is one of the most serious network threats in which
the bot master with the authority to control the robots remotely controls infected hosts to carry out
various cyberattacks, including DDoS, Ad-ware, Spyware, spam transmission, and illegal information
gathering [23,24]. The existing botnet type is shown in Figure 1 [25]. The early botnets were mainly IRC
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botnets using the characteristics of the Internet Relay Chat (IRC) as shown in Figure 1a, whose structure
is flexible and widely used. However, the disadvantage of IRC botnets is that they are easy to detect,
which led to the appearance of HTTP-based botnets as shown in Figure 1b. Detecting botnets using
HTTP is even more difficult because botnet traffic is hidden in a large amount of normal HTTP
traffic [26,27]. However, since the traffic generated by botnets is different from normal HTTP traffic,
it is possible to detect them by using filters that distinguish them [26–28]. In addition, HTTP botnets
have a centralized structure in which C&C servers are responsible for both command and control,
such as IRC botnets. Thus, they have the disadvantage of being neutralized when blocking C&C
servers. To compensate for these shortcomings, P2P-evolved botnets have emerged, each of which
becomes a C&C server. The structure of the P2P botnet is shown in Figure 1c, and all bots act as C&C
servers [29,30]. This is a method of performing commands and controls in a distributed rather than
centralized way, so even if one P2P botnet server is discovered, a botnet can be operated with other
servers without being neutralized. However, for P2P botnets, the size of the supported groups (hosts)
is much smaller than the existing centralized botnets. Centralized has thousands of hosts, but only a
few dozen in the P2P model [29,30]. In addition, studies have suggested that P2P-based botnets can
be detected through action-based or machine-learning-based detection methods [30], leading to the
emergence of more advanced botnets to respond to this. Since then, among the more advanced botnets,
botnets using SNS have appeared, and studies have been reported that botnets can be built on SNS
messengers [31]. Some of these botnets use images to build botnets. When using images, there are
botnets that use steganography technology, which are called steganography base botnets [32].
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2.2. Steganography-Based Botnet (Stego-Botnet)

Unlike traditional botnets introduced in Section 2.1, a novel type of steganography-based
botnet was proposed to improve the confidentiality of botnet C&C communication by hiding C&C
communication messages to overcome the weaknesses of existing botnets. Steganography-based botnet
(or Stego-botnet) uses steganography technology to hide the communication itself between the bot
master and the bot so that it is not detected [31]. Figure 2 represents Stego-botnet, which uses IM/SNS
as a relay server. The existing botnet communicates directly with the C&C server, bot master, and bots.
However, Stego-botnet, which uses SNS, makes it more difficult to detect botnet by separating the bot
master and bots [33]. The Bot master initially builds a botnet by utilizing known vulnerabilities held
by PCs, smartphones, and IoT devices or by attacking them through social engineering. Subsequently,
the attack command message posts or shares the hidden image on SNS, accesses the image posted
by the bots, downloads it, and receives the attack order to perform it [34,35]. Because it hides
messages with steganography technology during C&C communication, it is no different from normal
messages, so it can further avoid detection. Because it hides malicious messages in images and
multimedia files that are distributed naturally on SNS, it is difficult to detect them with existing defense
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systems. Nagaraja et al. [32] studied image steganography-based hidden communication model in SNS
environment and Hiney et al. [36] focused on Facebook during the process of compressing image files
that occur during communication to identify conditions where hidden messages are not destroyed.
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(SNS) environment.

2.3. Existing Studies Related to Stego-Botnets

First, there are a couple of studies on steganography-based botnets or covert channels in SNS
services. Nagaraja et al. [32] first studied the possibility of establishing a steganography-based
botnet in 2011. In 2019, Jeon and Cho [37] constructed and evaluated the performance of an image
steganography-based botnet at the Kakaotalk SNS messenger which is the most popular in South Korea
and has around 50 million users worldwide. KakaoTalk offers three chat modes: one-on-one chat,
group chat, and open chat. In the case of open chat, up to 1500 users can participate anonymously
in one chatroom. Since the KakaoTalk messenger provides the original file upload option in which
a stego-image file can be shared safely without being damaged during the upload process [38],
authors showed a possibility of constructing a stego-botnet based on the KakaoTalk open chat. Recently,
Gasimove et al. [39] implemented covert channels to transfer hidden information over WhatsApp,
which is the most popular IM in the world. While some researches on IMs have been conducted
to point out the dangers of hacking IMs by using steganography, no corresponding studies have
been identified.

Next, there are a couple of studies on countermeasures against steganography-based secret
communication in SNS services as follows. Konstantinos et al. [40] extensively reviewed image
steganalysis techniques for digital forensics. Natarajan et al. [41] conducted a research on detecting
covert communication or botnets using steganography in SNS environments in 2012. In this study,
host-based detection methods were proposed for steganography-based botnet detection. Specifically,
assuming that stego images are uploaded to profiles on Facebook, the entropy of these images is trained
by using machine learning techniques and detected stego-images by using an ensemble classifier.
The same authors extended their work by adding the process of categorizing malicious profiles on SNS
(Flickr) prior to the detection of stego images [42].

According to our survey, we observed that there are no studies that conduct automated system or
techniques that detect steganography image files shared in SNS instant messengers. By this motivation,
we in this study, propose an automated detection model and system that can automatically collect and
detect steganography image files shared in SNS IMs.

3. Design of Automated Steganography Image-Detection System

In this section, we describe our automated steganography image-detection procedures in a
KakaoTalk chatroom and then design the structure of our proposed system.

3.1. Automated Detection Procedure of Steganography Images Shared in a KakaoTalk Chatroom

Before we describe our automated detection procedure, we assume that a stego-botnet is already
constructed in a KakaoTalk chatroom by an attacker (bot master) as shown in Figure 3. Thus, in this
situation, the bot master periodically uploads stego-image files containing bot commands at the
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chatroom and victims (bots) read and download those stego-image files from the chatroom because the
image files look normal and interesting to them.
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We now describe our automated detection procedure to capture steganography image files shared
by the bot master at the chatroom. The detection procedure consists of the following five steps S1–S5
(see Figure 3). We note that S4 is implemented semi-automatically in Section 4.

S1. Defender participates in a KakaoTalk chatroom that he/she wants to monitor by using his/her
device (smartphone or PC).

S2. Defender reads and clicks all shared image files in the chatroom.
S3. Then, image files are downloaded and saved at Defender’s device (local storage).
S4. Stored image copies are automatically and periodically transferred from Defender’s device

(local storage) to Defender’s inspection server (this stage is called automated collection).
S5. All collected image files are examined by our detection system and report if there are

steganography image files (this stage is called automated detection).

3.2. Design of Our Proposed System Model

To develop our proposed system that works as the steganography image-detection procedure as
described in Section 3.1, we design our system that consists of two major components such as automated
collection component (ACC) and automated detection component (ADC) as shown in Figure 4.

First, the automated collection component will automatically collect all image files shared at
KakaoTalk chatrooms. We design the automated collection component as follows. When Defender
reads and clicks image files shared at a chatroom, those files are stored in the local storage of the
Defender’s device (e.g., smartphone or PC). To move them from the Defender’s smartphone to the
inspection server, we used a smartphone-to-PC synchronization app (Foldersync [43]). The reason
to use such method is as follows. Initially, we tried to transfer image files from a smartphone to
a server by connecting them through a USB cable, but we failed because our testing smartphone
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(Samsung Galaxy S10 5G) uses media transfer protocol (MTP) method when it transfers data using
a USB cable but unfortunately, it was restricted for our inspection server (PC) to access the storage
of the smartphone. On the other hand, we confirmed that it is feasible to use a smartphone-to-PC
synchronization application for periodic file transfer from a smartphone to the inspection server.
Moreover, we can select a synchronization cycle through the scheduled synchronization option which
allows you to periodically transfer image files.
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and automated detection component).

Second, the automated detection component will automatically examine whether collected image
files contain hidden steganography messages. As shown in Figure 4 (the right part), we design our
automated detection component such that it can adopt more than one open steganography-detection
software that provides API so that we can develop our steganography detection program based
on it. There are numerous image steganography tools and methods which are available in the
Internet [44,45] and we do not know what kind of tools will be used by the attacker. Thus, no single
steganographic-detection method can detect steganography images perfectly. Consequently, this generic
and scalable architecture of our proposed system will overcome the limited detection scope of a
single steganography-detection tool, and thus it will extend the detection scope of our proposed
system by integrating multiple open steganography software or tools. There are many available
steganography tools that can be considered in our ADC such as Stegano, Cryptosteganography,
Stegstamp, Stegonography, Stego, Stegbrute, Steganographer, and so on [21,22,46].

4. Implementation and Experiments

In this section, we describe how we implement our proposed system based on the system
design explained in the previous section and then conduct experiments to show our proposed system
accurately detects test steganography image samples and displays detection results.

4.1. Implementation

4.1.1. Automated Collection Component (ACC)

To implement automated collection component (ACC), we used one smartphone (Defender’s device)
and one PC (inspection server). As we explained before, when Defender clicks an image file
shared at a KakaoTalk chatroom (see Figure 5a), that image file is downloaded and stored at the
Defender’s device (smartphone). To find the location of the image file, by using various digital forensic
methods in [47], we examined the local storage area of the smartphone and found the location as
“Internal storage/Android/data/com.kakao.talk/contents/Mg==” (see Figure 5b). When we examine the
folder, there exists a file whose name consists of 64 hexadecimals without any file extension. To analyze the
file, we used Hex Editor (see Figure 5c) [37]. By adding an image file extension (.jpg or .png) after the name
of the file, we could convert it to an image file (see Figure 5d).
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Next, after locating all image files, we moved them to the inspection server. As we explained in
Section 3.2, we used a synchronization app for android smartphones, which is a freeware Folder Sync
version 3.0.17 [43] (see Figure 6a). Folder Sync supports various synchronization methods for Cloud,
FTB, SMB, etc., and the collection period and schedule can be determined (see Figure 6b,c); we used
the SMB option to implement our proposed system. If a server (PC) and a smartphone are located at
the same Wi-Fi zone, all files in the specified folder of the smartphone are periodically moved to the
folder specified in the server (PC) according to the pre-determined time interval.

4.1.2. Automated Detection Component (ADC)

Once image files are collected by ACC, automatic detection component (ADC) examines
whether the collected image files contain hidden steganography messages. As we explained in
Section 3.2, we designed ADC which has a flexible architecture that can adopt multiple open
steganography-detection software libraries in order to extend its detection scope easily.

To this end, we implemented ADC by using Python Programming Language (version 3.8) [48]
according to its design as follows.



Computers 2020, 9, 103 8 of 14

Computers 2020, 9, x FOR PEER REVIEW 7 of 14 

 
(a) (b) 

 

(c) 

 

(d) 

Figure 5. Locating an image file downloaded from a KakaoTalk chatroom at the smartphone. (a) 
Defender clicks on the uploaded image. (b) Location of downloaded image files. (c) Hex view of 
Stegano image file. (d) An example of converting a file without an extension into an image file. 

Next, after locating all image files, we moved them to the inspection server. As we explained in 
Section 3.2, we used a synchronization app for android smartphones, which is a freeware Folder Sync 
version 3.0.17 [43] (see Figure 6a). Folder Sync supports various synchronization methods for Cloud, 
FTB, SMB, etc., and the collection period and schedule can be determined (see Figure 6b,c); we used 
the SMB option to implement our proposed system. If a server (PC) and a smartphone are located at 
the same Wi-Fi zone, all files in the specified folder of the smartphone are periodically moved to the 
folder specified in the server (PC) according to the pre-determined time interval. 

 
(a) Computers 2020, 9, x FOR PEER REVIEW 8 of 14 

  
(b) (c) 

Figure 6. Implementation of automated collection component. (a) Freeware sync applications 
FolderSync. (b) Synchronization method selection function. (c) Periodic file transfer function. 

4.1.2. Automated Detection Component (ADC) 

Once image files are collected by ACC, automatic detection component (ADC) examines 
whether the collected image files contain hidden steganography messages. As we explained in 
Section 3.2, we designed ADC which has a flexible architecture that can adopt multiple open 
steganography-detection software libraries in order to extend its detection scope easily. 

To this end, we implemented ADC by using Python Programming Language (version 3.8) [48] 
according to its design as follows. 

First, ADC finds steganography image files from the collected files. Next, for each image file, 
ADC checks whether a hidden message can be extracted from the image file. For this, as shown in 
Figure 7, we integrated the detection function of an open steganography tool (Stegano version 0.9.8, 
Cryptosteganography version 0.8.3) into our ADC [21,22]; these steganography tools provides a 
source library of its steganography detection so that it can be easily integrated into our ADC. We note 
that our ADC can easily extend its detection capability by employing an open source steganography 
tools by this manner. 

 

Figure 7. Steganography image detection of automated detection component (ADC). 

Second, our ADC periodically conducts the above detection procedure because image files are 
uploaded frequently at the chatroom. As shown in Figure 8, ADC can adjust its detection cycle by 

Figure 6. Implementation of automated collection component. (a) Freeware sync applications FolderSync.
(b) Synchronization method selection function. (c) Periodic file transfer function.

First, ADC finds steganography image files from the collected files. Next, for each image file,
ADC checks whether a hidden message can be extracted from the image file. For this, as shown in
Figure 7, we integrated the detection function of an open steganography tool (Stegano version 0.9.8,
Cryptosteganography version 0.8.3) into our ADC [21,22]; these steganography tools provides a source
library of its steganography detection so that it can be easily integrated into our ADC. We note that our
ADC can easily extend its detection capability by employing an open source steganography tools by
this manner.
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Second, our ADC periodically conducts the above detection procedure because image files are
uploaded frequently at the chatroom. As shown in Figure 8, ADC can adjust its detection cycle by
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setting the Thread timer to a certain value (e.g., every 300 s). This function enables ADC to periodically
check and examine recently shared image files.
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Last, ADC displays its examination results periodically. As shown in Figure 9b, the examination
results include inspection number, inspection results by two open steganography tools (Y (if detected)
or N (if not detected)), hidden message (if each tool can extract it), and inspected filename. In addition,
ADC displays inspection start time and we use this information to calculate inspection processing time
later in our experiments.
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4.2. Experiments

4.2.1. Experimental Purpose and Methods

In this experiment, we demonstrate that our implemented system can work properly according
to our design by automatically and periodically collecting image files from a KakaoTalk chatroom,
detecting sample steganography image files from the collected files, and displaying inspection results.

Table 1 shows our experimental environment. For the Defender’s smartphone and inspection
server, we used one Samsung Galaxy S10 smartphone and one laptop (Lenovo Ideapad), respectively.
For the SNS chatroom, we used the KakaoTalk IM mobile application. We implemented our ACC
and ADC by using the Python Programming Language ver. 3.8, Folder sync ver. 3.0.16, and two
open steganography modules (Stegano ver. 0.9.8. and Cryptosteganography ver. 0.8.3). In addition,
we prepared 40 sample images (BMP and PNG format), and we used 20% of sample images (8 images)
as stego-images by embedding a hidden message “Secret” by using Stegano and Cryptosteganography.
Figure 10 shows our sample images (32 normal images and 8 stego-images). All these images have the
same resolution (640 × 420 pixel).

Table 1. Experimental environment.

Element Value

Defender’s smartphone Samsung Galaxy S10 5G (Android 10 Q); ACC is installed
Inspection server Lenovo Ideapad L3 (Window 10); ADC is installed
Synchronize application Folder sync ver. 3.0.16 (Freeware) [43]
KakaoTalk version 8.9.6 (released on 24 July 2020) [9]

Steganography detection module Stegano ver. 0.9.8 (coded by Python) [21]
Cryptosteganography ver 0.8.3 (coded by Python) [22]

Sample cover images 40 (20 PNG, 20 BMP/Resolution: 640 × 420 pixel)
Stego-images 8 (4 PNG (by Stego), 4 BMP (by Cryptosteganography))

We conducted our experiment as follows. First, we created a KakaoTalk chatroom. Next, the Defender
(smartphone) with our proposed system (ACC) joined the chatroom. Then we uploaded 40 sample
images randomly for two hours (120 min) to the KakaoTalk chatroom; to ease our analysis, we uploaded
four stego-images by Stegano between 1st and 20th turn and four stego-images by Stegano between
21st and 40th turn. The ACC and ADC were set to collect and inspect sample images every 15 min,
respectively. Thus, ACC and ADC operate 8 times for two hours to collect and inspect uploaded images
in the chatroom, and we observed the upload turns of stego-images were 1st, 4th, 13rd, 18th, 23rd, 29th,
33rd, and 38th; the first four images were made by Stegano and the remaining four images were made by
Cryptosteganography. We will confirm these stego-images were correctly detected by our ADC.
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4.2.2. Experimental Results and Analysis

We now explain the results of our experiment. When 40 images were uploaded, ACC copied and
transferred them directly to the inspection server every 15 min as we set. Figure 11 shows the inspection
result by our ADC. For each inspected file, our ADC displayed the inspection result such that “N”
for normal image and “Y” for stego-image. Among the 40 sample images, 8 stego-images (1st, 4th, 13rd,
18th, 23rd, 29th, 33rd, and 38th) were correctly detected with the existence of a steganographic hidden
message in image files by both steganography modules, and the remaining normal images were not
detected. However, Cryptosteganography failed in extracting the hidden message from the first four
stego-images files. On the other hand, Stegano extracted a message which is incomprehensible from
the remaining four stego-images files.
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The summary of our experiment is shown in Table 2. For each collection interval (the total number
of intervals is 8), we can see the number of collected/inspected files and inspection result (time taken
to inspect, the number of normal images, and the number of stego-images). Specifically, during our
experiment (two hours), 40 sample image files were collected and inspected every fifteen minutes with
ACC and ADC. For example, for the first interval, four images are collected and inspected, and the
inspection result shows that two images (1st and 4th images) are detected as steganography images
correctly for 7 s (the average time per file is 1.75 s). For the second interval, six new images are
collected but 10 images including four images collected in the previous interval are inspected together.
Consequently, the time taken to inspect grows as the collection interval increases. When the all 40 files
are inspected after eight intervals, 8 stego-images were detected correctly, and the average inspection
time per file was 2.73 s. Therefore, we confirm that our system works properly according to our
design purposes.
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Table 2. The summary of experiment results.

Collection Interval
Num. of Collected/

Inspected Files

Inspection Result

Time Taken to Inspect
(Total/Avg. Per File)

Num. of Normal
Images

Num. of Stego-
Images

1st (10:45~11:00) 4/4 7”/1.75” 2 2
2nd (11:00~11:15) 6/10 29”/2.9” 8 2
3rd (11:15~11:30) 3/13 38”/2.92” 10 3
4th (11:30~11:45) 7/20 56”/2.8” 16 4
5th (11:45~12:00) 6/26 1′17”/2.96” 21 5
6th (12:00~12:15) 4/30 1′25”/2.83” 24 6
7th (12:15~12:30) 2/32 1′30”/2.81” 26 6
8th (12:30~12:45) 8/40 1′56”/2.9” 32 8

Total 2 h (00:30~02:30) 40 8′18”/2.73” 32 8

5. Conclusions and Future Works

In this paper, to defend against image steganography-based C&C communication in an SNS
chatroom, we proposed, designed, and implemented an automated steganography image-detection
system for the KakaoTalk instant messenger. Our proposed system automatically and periodically
collects shared image files in a KakaoTalk chatroom to the inspection server, and then examine whether
the collected image files contain hidden messages and display the inspection results.

In our future work, we plan to extend our research as follows. First, we will study a method
that can trace a bot master in an SNS chatroom, especially in a public chatroom where participants
can hide their identities by using nicknames. Tracing a bot master is a very important research issue,
but challenging because of the limitation that we can obtain information about the bot master hiding
its identity at the chatroom. Second, we will extend our study by considering other SNS IMs such
as WeChat or Telegram and other open steganography-detection tools to broaden and strengthen
our proposed system’s detection capability. Third, our ACC (automated collection component) has a
limitation such that it depends on a third party software (FolderSync). We will develop a Python
module that automatically locates folders in a smartphone and transfers image files in the folders
to our inspection server. Last, we will study a prevention method that can be combined with our
detection system to effectively prevent those files from being spread to other SNS chatrooms.
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published version of the manuscript.
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