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Abstract: We study the recursive core introduced in Huang and Sjöström [8]. In general
partition function form games, the recursive core coalition structure may be either coarser or
finer than the one that maximizes the social surplus. Moreover, the recursive core structure
is typically different from the one predicted by the α-core. We fully implement the recursive
core for general games, including non-superadditive games where the grand coalition does
not form in equilibrium. We do not put any restrictions, such as stationarity, on strategies.

Keywords: coalition formation; non-cooperative implementation; partition function; recur-
sive core

1. Introduction

Characteristic functions are used to study games without externalities across coalitions. If coalitions
have unhampered ability to sign binding agreements, then a natural solution concept for games in charac-
teristic function form is the core. However, in many applications there are externalities across coalitions,
and the characteristic function is replaced by a partition function. Several generalizations of the core
have been proposed for partition function form games. The well-known α-theory is based on incredible
threats: the members of any coalition S assume that if S forms, then the outsiders will try to hurt the
members of S as much as they can, without regard to their own payoffs. Huang and Sjöström [8] in-
troduced an alternative theory, called the r-theory, which rules out incredible threats. According to the
r-theory, the members of any coalition S assume that if S forms, then the outsiders in N\S behave in
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their own best interest. This yields a recursive solution concept called the recursive core or, more briefly,
r-core. According to this recursive solution concept, the reaction of the outsiders must be consistent with
the notion of the core itself, applied to the reduced society N\S.

In Huang and Sjöström [8], we studied the recursive core for partition function form games that are
derived from normal form games. In such games, the grand coalition consisting of all agents will maxi-
mize the total social surplus; no finer coalition structure can do better in the aggregate. For such games,
since binding agreements and side-payments are assumed to be possible, if the recursive core is non-
empty then it must predict that the grand coalition forms. In Huang and Sjöström [9], we implemented
the recursive core for partition function form games which are not necessarily derived from normal form
games. However, assumptions were made to again ensure that the recursive core (if non-empty) predicts
that the grand coalition will form. Moreover, this outcome was efficient, in the sense of maximizing the
social surplus. The α-core (if non-empty) also predicts the grand coalition forms in this case. Therefore,
in our previous work, Huang and Sjöström [8,9], equilibrium coalition formation was fairly trivial, and
the value of using the recursive core to make predictions about coalition formation was obscured.

The classical literature on cooperative games often took for granted that the grand coalition would be
efficient (i.e., maximize total social surplus). This was justified by the reasoning that the grand coalition
could always replicate what smaller coalitions could do separately - so a merger would not reduce the
available surplus. However, Aumann and Dreze [1] pointed out that this argument is not always valid:
“the very act of “acting together” may be difficult, costly, or illegal, or the players may, for various
“personal” reasons, not wish to do so” (Aumann and Dreze [1], p. 233). Forming a large coalition may
even be illegal (e.g., due to anti-trust laws). Aumann and Dreze [1] argued in favor of incorporating costs
of forming coalitions into the characteristic function; the value of an “illegal” coalition might even be
minus infinity. In many applications, it is indeed natural to allow for the possibility that forming a large
coalition is costly. In such cases, even computing an efficient coalition structure can be a difficult task
if the number of players is large. Computer scientists have developed algorithms for this (see Sandholm
et. al. [17]). We are however not interested in computational but conceptual issues. Specifically, we will
not take for granted that the coalition structure must be efficient. Indeed, we will find in Section 3 that
the recursive core structure often does not maximizes the total surplus.

In Section 3 we will discuss an example drawn from politics, where forming certain coalitions may
be costly. The players are three parties, left, middle and right; any two (or all three) can form a coalition
government. We would like a theory to predict which government forms. The political economy litera-
ture frequently assumes that a left-wing party may suffer a cost from cooperating with, or even talking
to, a right-wing party (see Bandyopadhyay et al. [2]). The cost may be a loss of support from its base, if
it is seen as “selling out” by compromising its ideological position. Moreover, it may not be possible to
completely specify in advance the policies a coalition government would implement; these will arise out
of some future bargaining process. But the implemented policies may be expected to differ greatly from
the “ideal outcome” of the left party, causing it to suffer large “compromise costs”. If times are tough,
any member of a governing coalition may have to share responsibility for austere economic policies;
even a left-middle coalition government may have to cut government spending. Thus, the left party may
suffer significant costs from joining a middle-left coalition, and even greater costs from cooperating with
the right-wing party. A grand coalition government involving all three parties may, due to compromise
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costs, generate significantly smaller surplus than a middle-right coalition would. We believe the best way
to formally model this kind of situation is by a partition function where forming a large coalition may be
costly, hence a large coalition may not be able to replicate what smaller coalitions can do. Formally, we
do not want to assume superadditivity.

In strictly superadditive games with non-empty recursive cores, the grand coalition must form. But
motivated by examples such as the one in Section 3 , we want to study more general partition functions.
Thus, in this article we will not assume superadditivity. In non-superadditive games the grand coalition
need not form, and the coalition structure predicted by the recursive core may be either coarser or finer
than the efficient coalition structure which maximizes social surplus. Moreover, the recursive core coali-
tion structure is typically different from the one predicted by the α-core. Indeed, we will argue that the
recursive core prediction is more intuitively appealing. This paper, therefore, has two motivations. First,
we want to argue that the recursive core predicts intuitively appealing equilibrium coalition structures for
non-superadditive games.1 Second, we want to find a non-cooperative implementation of the recursive
core for general partition function form game, including non-superadditive ones, which does not make
any restrictions on strategies. For example, we do not want to assume stationarity.

The characteristic function approach assumes there are no externalities across coalitions, so the
value of a coalition can be defined without specifying the behavior of outsiders. Accordingly, to non-
cooperatively implement the core for characteristic function form games, one need not worry too much
about how outsiders react to the formation of a coalition.2 However, when externalities exist, the reac-
tion of outsiders becomes crucial. As it happens, the literature on games without externalities contains
an extensive form game, Perry and Reny [15], which does allow outsiders to react to the formation of
a coalition in a reasonable way. Specifically, if a group of players signs a binding contract to form a
coalition, then the group becomes a “composite player” which cannot break apart, but can join other
players in a larger coalition. Except for that, the game continues with the same rules as before. In sub-
game perfect equilibrium, the reaction of outsiders will, by definition, be consistent with their own best
interests. This is precisely the idea behind the recursive core. In Huang and Sjöström [9], we showed
that a slightly modified version of Perry and Reny’s [15] game implements the recursive core for strictly
superadditive partition function form games.3 However, unlike in the current article, it was necessary to
restrict attention to stationary strategies.

It turns out that a game of the Perry-Reny type cannot implement the recursive core if superadditivity
is violated. In the Perry-Reny game, coalitions form sequentially. After a coalition S has formed, this
coalition will behave as a “composite player”. This causes two problems if the game is not superadditive.
The first problem is that if coalition S forms in order to block a proposed allocation, then there may

1Laboratory experiments could be used to test these predictions. For games without externalities, Yan and Friedman
[20] found that considerations of “fairness” frequently cause deviations from core outcomes. However, fairness issues are
orthogonal to the distinction between the α-core and the recursive core. We believe experiments will show that, after filtering
out fairness considerations which equally affect both concepts, the recursive core has more predictive power than the α-core.

2For implementation of the core correspondence for cooperative games without externalities, see Kalai, Postlewaite and
Roberts [10], Chatterjee et al. [4], Moldovanu and Winter [13,14], Serrano and Vohra [18] and Perry and Reny [15].

3The modification is required because with externalities, a proposal to form a coalition cannot specify a distribution of
payoffs (because the final payoffs cannot be determined until outsiders have reacted). Instead, a proposal must specify an
allocation of shares of the coalition’s final payoff, whatever it turns out to be.
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not exist any continuation equilibrium of the ensuing subgame (even if the recursive core of the original
game where S has not formed is non-empty). Therefore, implementation in subgame perfect equilibrium
fails. Intuitively, the formation of coalition S changes the incentives of the remaining players, and the
recursive core of the original game (without the “composite player”) cannot predict the outcome with
a composite player (see Example 1 in Huang and Sjöström [9]). The second problem is that without
superadditivity, the recursive core may predict that the grand coalition does not form. Instead, several
smaller coalitions must form in equilibrium. But again, after some coalition S has formed in the Perry-
Reny game (where coalitions form sequentially), the recursive core structure of the “derived” partition
function form game (where S cannot break apart) may not be consistent with the recursive core of the
original game. Therefore, even if the continuation equilibrium of the non-cooperative game implements
the recursive core of the “derived” game, this may not guarantee implementation of the recursive core of
the original game (see Example 2 in Huang and Sjöström [9]). Intuitively, if coalitions form sequentially
as in the Perry-Reny game, one must ensure that after some coalitions have formed, the remaining
coalitions form according to the recursive core prediction of the original game. In general, this cannot be
achieved, because each coalition which forms changes the incentives for subsequent coalitions to form.

The above discussion suggests that to fully implement the recursive core for non-superadditive games
with externalities, the non-cooperative game should have three properties. The first and most basic
property is “self-similarity”: if a blocking coalition forms, then the outsiders play a game which is a
scaled-down version of the original game. This gives the blocking coalition an expected payoff which
is consistent with the recursive core. Second, if a coalition forms in order to block an allocation, then
in order to avoid the first problem discussed in the previous paragraph, its members cannot be allowed
to join a subsequent, larger coalition. This ensures that the continuation equilibrium implements the
recursive core among the remaining players. Third, in equilibrium all coalitions should form simultane-
ously, in order to avoid the second problem discussed in the previous paragraph. In this paper, we will
show that a game satisfying these three properties fully implements the recursive core. Thus, we achieve
full non-cooperative implementation of the recursive core for general games, including games where the
grand coalition does not form in equilibrium.

Our starting point is Serrano and Vohra’s [18] non-cooperative game. Their game has two stages:
a coalition formation stage and a blocking stage. In the coalition formation stage, all players simul-
taneously propose an allocation and a permutation of the player set. If all players propose the same
allocation, then this allocation becomes the “status quo”, and the game proceeds to the blocking stage.
In the blocking stage, a proposer is selected according to the composition of the proposed permutations
by all players in the coalition formation stage. The proposer may name a blocking coalition (which must
include himself). If he does, all other members of the blocking coalition are asked to respond. If they all
say yes, then the blocking coalition forms. Serrano and Vohra [18] showed that their game fully imple-
ments the core correspondence. Indeed, if any player is not happy with the status quo, he can attain the
right to propose a blocking coalition by unilaterally changing his announced permutation in the coalition
formation stage. This elegant construction, due to Thomson [19], does not rely on any fixed protocol of
proposals and responses, but instead allows unrestricted coalitional blocking. Thus, it captures the spirit
of free and unhampered competition which underlies the core.
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For our purposes, we need to modify one aspect of the Serrano and Vohra [18] game. They assumed
outsiders cannot react at all to the formation of a coalition. This was not an important assumption for
them, since they did not allow externalities across coalitions. With externalities, the reactions of outsiders
become crucial. According to the recursive core, the outsiders will react in a way which is consistent
with the notion of the core itself. Therefore, we modify the Serrano-Vohra [18] game so that it satisfies
self-similarity: if a blocking coalition forms, the outsiders will play a scaled-down version of the original
game among themselves. A lack of superadditivity is not a problem for the self-similar Serrano-Vohra
[18] game. First, once a blocking coalition has formed, we will not allow its members to join a larger
coalition (only the remaining active players will play a scaled-down version of the game), which avoids
the first problem mentioned above. Second, the game starts with all players simultaneously proposing a
way to distribute payoffs and a coalition structure, which in the non-superadditive case may be a non-
trivial partitioning of N . Since all coalitions form simultaneously, the second problem mentioned above
is avoided.

The recursive core does not always exist. Koczy [11,12] proposed “optimistic” and “pessimistic”
recursive cores which mitigate the non-existence problem. We will discuss existence and Koczy’s work
further in Section 2. The spirit of Koczy’s work is the same as ours: extend the definition of the core to
allow for externalities across coalitions, and then find a non-cooperative game to implement this solution
concept. In particular, we follow the traditional theory of the core by assuming every coalition has
unhampered ability to sign a binding agreement to block the status quo. In a recent paper, Zheng [21]
takes a fresh new look at this issue. In his theory, if a coalition S signs a binding agreement to cooperate,
the outsiders inN\S will react according to the core defined on the reduced societyN\S; this part is just
as in our theory. What is new in his approach is that a coalition which tries to sign a binding agreement
does not necessarily succeed: with some probability the outsiders may coordinate a preemptive response.
Thus, attempting to form a coalition is a risky activity - it may be challenged and preempted. Zheng’s
version of the core allows interesting existence results. In an externality problem where each player can
either “pollute” or “not pollute”, Zheng’s core is always nonempty and the outcome is efficient.

A different strand of literature takes a different approach. It does not directly try to generalize the clas-
sic core notion to games with externalities. Instead, it incorporates natural coalition formation dynamics
into new solution concepts. The most well known such concept is Ray and Vohra’s [16] Equilibrium
Binding Agreement (EBA). Ray and Vohra [16] originally assumed coalitions break apart but do not
re-merge. Diamantoudi and Xue’s [5] extended EBA (EEBA) allows coalitions to do both. Funaki and
Yamato [7] develop a related solution concept called sequentially stable coalition structures. In their the-
ory, coalition structures form sequentially. If there is a sequence of step-by step changes, where in each
step the involved coalition members are better off with the final outcome if they proceed with the change,
then the starting coalition structure is dominated by the final coalition structure. A coalition structure
which dominates all other coalition structures is said to be sequentially stable. Like Diamantoudi and
Xue [5], Funaki and Yamato [7] allow coalitions to merge as well as break apart. In a common pool
game (previously studied in Funaki and Yamato [6]), the efficient grand coalition can be sequentially
stable.
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2. Definitions

Let N = {1, 2, ..., n} be the set of players. A coalition is a non-empty subset of N . A coalition
structure PN is a partition of N . A transferable utility game in partition function form is denoted
< N,P >, where P is the partition function. The partition function is the natural way to model ex-
ternalities across coalitions. For any coalition structure PN and any coalition S ∈ PN , let P (S | PN)

denote the value (or worth) of S when players partition themselves according to PN . Thus, the worth
of S can depend on the coalitional structure formed by the “outside” players in N\S (the set of players
who belong to N but not to S). To simplify the exposition, we assume

P (S | PN) > 0 (1)

for all PN and all S ∈ PN . For any payoff vector x ≡ (xi)i∈N and any coalition S ⊆ N , define the sum
of payoffs across players in S as

x(S) ≡
∑

i∈S
xi.

Given a coalition structure PN , a payoff vector x ∈ Rn is said to be efficient under the partition PN
if for every S ∈ PN , x(S) = P (S | PN).

If S ∈ PN , then we have PN = (S,A1, A2, ..., Ak) for some coalitions A1, A2, ..., Ak. Notice that
PN\S ≡ (A1, A2, ..., Ak) is a partition ofN\S. With a slight abuse of notation, we writePN = (S,PN\S)

and P (S | S,PN\S) ≡ P (S | PN). A partition PS of a coalition S is said to be non-trivial if PS 6= (S),

i.e., if it contains at least two non-empty subcoalitions.
The recursive core (r-core) is a solution concept for partition function form games (Huang and

Sjöström [8,9]). To calculate the value of coalition S in a partition function form game, we need to
predict how the outsiders (i.e., the players in N\S) will react if S forms. The recursive core theory
makes the following recursive prediction: the outsiders will behave in a way which is consistent with
the recursive core of the natural “reduced game”. In the reduced game, it is taken as given that S has
formed, because agreements to form a coalition are binding. But the outsiders still have to decide which
coalitions to form. Recursively applying the idea of the core, we assume each coalition of outsiders will
insist on getting “what it is worth”.

Before giving the formal definition, let us briefly discuss the notation. Suppose a partition PN is
given, and coalition S ∈ PN is part of this coalition structure. Thus, we can write PN =

(
S,PN\S

)
.

If the members of S think the “outsiders” will partition themselves according to PN\S, what would
the members of S themselves want to do? For S ∈ PN , we would like to make a prediction of payoff
vectors that, in some sense, would be acceptable to the members of S if the outsiders partition themselves
according to PN\S . We will let C (S | PN) denote the set of such “acceptable” payoff vectors.4 Notice
that we are not requiring that S itself sticks together. Instead, C (S | PN) = C

(
S | S,PN\S

)
denotes

the payoff vectors that would be acceptable to members of S ∈ PN , allowing for the possibility that S
itself may break apart, but assuming the outsiders stick to the partition PN\S. Thus, notation C (S | PN)

means S is singled out for special consideration, and treated differently than other coalitions in PN .
4Payoff vectors are points in Rn. Suppose S is a strict subset on N, and so has fewer than n members. The members

of S care only about their own payoffs, not the payoffs of outsiders. Thus, when asking whether a payoff vector x ∈ Rn is
acceptable to the members of S, the payoffs x assigns to “outsiders” is a matter of indifference to the members of S.
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We now give the formal definition. The recursive core for coalition S ⊆ N , given a partition PN\S of
the outsiders, is denoted C

(
S | S,PN\S

)
. It is defined as follows. For a single-player society S = {i},

we define C
(
{i} | {i},PN\{i}

)
to be the set of payoff vectors that are efficient under

(
{i},PN\{i}

)
.

Proceeding recursively, suppose the recursive core has been defined for all coalitions with at most s− 1

members, and all partitions on players other than these s − 1 members. Now suppose coalition S has s
members, and other players partition themselves according to PN\S . For any coalition T ⊆ S, define the
value (or worth) of T given PN\S as

V
(
T | S,PN\S

)
≡

{
P (S | S,PN\S) if T = S

min
{
x(T ) : x ∈ C

(
S\T | S\T, T,PN\S

)}
if T 6= S

. (2)

Note that when T 6= S, to calculate the value (or worth) of T we assume the outsiders in S\T will
play according to the recursive core of the reduced society given T, while the players in N\S have
arranged themselves according to PN\S . This is where we recursively apply the concept of the core.
Now, x ∈ C

(
S | S,PN\S

)
if and only if there exists some partition PS of S such that x is efficient under

the partition
(
PS,PN\S

)
, and x(T ) ≥ V

(
T | S,PN\S

)
for each coalition T ⊆ S. This completes the

definition.
Notice that according to the definition of the recursive core, to any x ∈ C(S | S,PN\S) there corre-

sponds a partition PS of S. Such PS is referred to as a recursive core partition of S given PN\S. This
partition may not be unique. Let P(S | S,PN\S) denote the set of all recursive core partitions of S given
PN\S . That is, PS ∈ P(S | S,PN\S) if and only if there is an x ∈ C(S | S,PN\S) which is efficient
under the partition (PS,PN\S). Thus, the recursive core predicts how S will partition itself given that
N\S is partitioned according to PN\S , but the prediction may not be unique. Notice that since we make
no assumption of superadditivity, the members of coalition S may well prefer to break apart by mutual
agreement, in which case (S) /∈ P(S | S,PN\S).

We have defined C(S | S,PN\S) for any S ⊆ N and any partition PN\S of N\S. However, we are
naturally interested in the case S = N . If S = N , then N\S = ∅ so we obtain

C(S | S,PN\S) = C(N | N)

In fact, it is useful to simplify the notation even further by writing C(N) instead of C(N | N). Similarly,
we write P(N) instead of P(N | N) and V (T ) instead of V (T | N). By a slight abuse of terminology,
C(N) is the recursive core of < N,P >, P(N) is the set of recursive core partitions, and V (T ) is the
worth of coalition T ⊆ N . Notice that x ∈ C(N) if and only if there is some partition PN of N such
that x is efficient under the partition PN , and x(T ) ≥ V (T ) for each coalition T ⊆ N .

We are interested in games where the recursive core exists and is non-empty, i.e., C(N) 6= ∅. We will
argue in Section 3 that when the recursive core is non-empty, it makes intuitively reasonable predictions.

For the recursive core of < N,P > to be non-empty, it must also be non-empty for every reduced
society. Otherwise, it is not possible to make consistent predictions about what will happen when coali-
tions break up. Formally, since we recursively apply the concept of the core from smaller societies up,
if C(N) 6= ∅ then C(S | S,PN\S) 6= ∅ for any nonempty S ⊆ N and any partition PN\S of N\S.
However, the requirement that the recursive core must be non-empty for all reduced societies is quite
strong, and may cause non-existence. Huang and Sjöström (pp. 202-203) [8] discussed the following
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example, suggested by D. Ray. Suppose N = {1, 2, 3, 4}, and consider coalition S = {2, 3, 4}. Suppose
the recursive method just described has been used to calculate the worth of coalition S, when player 1

stands alone, as well as the worth of all the subcoalitions of S. Suppose the calculated worths are as
follows: V (S | S, {1}) = 6, and V ({j, k} | S, {1}) = 5 for any two-player subcoalition {j, k} ⊂ S,

and V ({j} | S, {1}) = 0 for any singleton j ∈ S. In this example, if player 1 stands alone it is efficient
for S to form and share 6. There is no way for S to break up and get more than 6. But there is no way
to allocate 6 among players 2,3 and 4 so as to satisfy every two-player subcoalition of S, because each
two-player subcoalition {j, k} demands 5. This implies that the recursive core of the reduced society
N\{1} = S is empty, C(S | S, {1}) = ∅, so we cannot predict what the other players would do if player
1 refuses to cooperate with them. Therefore, we cannot use the recursive method to calculate the worth
V ({1}) of player 1. Therefore, the recursive core C(N) does not exist. However, suppose it happens
that P ({1} | {1},PS) = 5 for any partition PS of S. Even if we cannot predict what the other players
will do if player 1 stands alone, whatever the other players do player 1 will get 5. It seems reasonable
then that he should be worth 5; yet V ({1}) cannot be calculated by our recursive method.

Huang and Sjöström [8] left it as a topic for future research to develop solution concepts which would
not require non-empty cores of all reduced societies. Koczy [11,12] in fact develops several such solution
concepts. When a coalition cannot make any prediction about the behavior of the outsiders, they might
become pessimistic and expect the worst (as in the α-core); or they might be optimistic and expect the
best. Thus, Koczy [11,12] obtains a “pessimistic” and an “optimistic” recursive core. In the example of
the previous paragraph, both versions would assign the worth 5 to player 1. This is the major difference
between the recursive core in Huang and Sjöström [8,9] and the one in Koczy [11,12]. There is another
difference: in Koczy’s theory, a coalition S blocks by proposing a partition on S, while in our theory, S
blocks by signing a binding agreement to cooperate. This however seems to be a rather technical point,
and it is hard to argue that one assumption dominates the other.

In this article, we will maintain the original definition of Huang and Sjöström [8,9]. Thus, the core
must be non-empty for every reduced society. Huang and Sjöström [8] noted that for a non-cooperative
implementation, the requirement of non-empty cores of reduced societies corresponds to the requirement
that an equilibrium exists in every subgame. In the particular game we develop below, if the recursive
core is empty for some subgame, there would be no continuation equilibrium for that subgame. Thus, al-
though the requirement seems strong, it does seem to have a natural interpretation in the non-cooperative
setting. Koczy [12] (Theorem 8) implements the “pessimistic” recursive core in stationary, order inde-
pendent equilibria of a modified version of Bloch’s [3] game. He does not assume superadditivity, but
he needs an extra assumption: the core is non-empty for all reduced societies. Our new implementation
result will not require any assumptions about stationarity or order independence. In addition, our notion
of “recursive core” is somewhat different from Koczy’s [12], as explained in the previous paragraph.

We want to emphasize that C(N) 6= ∅ does not mean, in general, that the grand coalition must form.
The recursive core may predict that the grand coalition breaks apart, leading to some finer partition. For
example, suppose N = {1, 2}, V (N) ≡ P (N | N) = 1, and V ({i}) = P ({i} | {1}, {2}) = 2 for each
i ∈ {1, 2}. In this example, the grand coalition {1, 2} cannot be expected to form; it would produce a
total surplus of only 1, but if it breaks apart then the players each get 2. Obviously, the recursive core
partition structure for N is P(N) = ({1}, {2}). That is, singleton coalitions form. The payoffs are also



Games 2010, 1 74

uniquely determined, since obviously neither player can get anything else than 2. Indeed, the recursive
core is C(N) = (2, 2). Huang and Sjöström [9] ruled out this kind of example by focusing on totally
r-balanced games, where (by definition) the recursive core prediction is that no coalition ever breaks up.
By definition, the game < N,P > is totally r-balanced if for any nonempty S ⊆ N and any partition
PN\S of the players not in S, it holds that P(S | S,PN\S) = (S).

In the current paper, we will consider equilibrium coalition formation in games which are not totally
r-balanced. Since total r-balancedness is an unfamiliar concept, we will clarify its connection to a more
familiar idea, the concept of superadditivity. By definition, the game< N,P > is strictly superadditive if
for any two disjoint nonempty coalitions S and T and any coalitional structurePN\(S∪T ) on the remaining
players,

P (S | S, T,PN\(S∪T )) + P (T | S, T,PN\(S∪T )) < P (S ∪ T | S ∪ T,PN\(S∪T )). (3)

The connection between total r-balancedness and superadditivity is shown in the following proposition.

Proposition 1 If the game < N,P > is strictly superadditive and the recursive core is non-empty, then
< N,P > is totally r-balanced.

Proof. The proof is by induction on the number of agents in S, denoted |S|. The induction hypothesis
is the following.

Hypothesis H(s). For any coalition S such that 1 ≤ |S| ≤ s, the following two conditions both hold:
(C1) For any partition PN\S of the complement of S,

P(S | S,PN\S) = (S). (C1)

(C2) For any partition PN\S of the complement of S, and any non-trivial partition PS of S,∑
Ti∈PS

P (Ti | PS,PN\S) < P (S | S,PN\S). (C2)

Condition C1 states that, according to the recursive core, coalition S will not break apart. Condition
C2 states that if S did break apart, and the ex-members partitioned themselves according to PS, their
total payoff would be strictly less than what they get by sticking together in S. Thus, by sticking together,
the members of S maximize their total surplus.

A singleton coalition cannot possibly break apart, so H(1) holds trivially. For the inductive step, we
need to show that for any s ≥ 2, if H(s− 1) holds then H(s) holds as well.

Assume the induction hypothesis H(s − 1), and consider S such that |S| = s. We need to verify
conditions C1 and C2.

By hypothesis C(N) 6= ∅, so C(S | S,PN\S) 6= ∅ for any S and any PN\S. Consider any nontrivial
partition PS of S. We claim PS /∈ P(S | S,PN\S). That is, we claim it is not a recursive core structure
for S to break apart and partition themselves according to PS. There are two cases, which we consider
separately: either there are at least three non-empty coalitions in PS or there are only two.
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Case 1: Suppose there are at least three nonempty coalitions in PS . Then we can write PS =

(T1, T2, ..., Tk), where k ≥ 3. If S breaks apart by formation of a subcoalition Tj ⊂ S, then we can
apply the induction hypothesis to S\Tj. By C1,

P(S\Tj | S\Tj, Tj,PN\S) = (S\Tj).

That is, if Tj leaves, the remaining players in S\Tj will stick together. By C2,∑
Ti∈PS\{Tj}

P (Ti | PS\{Tj}, Tj,PN\S) =

∑
Ti∈PS\{Tj}

P (Ti | PS,PN\S) < P (S\Tj | S\Tj, Tj,PN\S). (4)

Suppose y ∈ C(S | S,PN\S). By definition, this means the players in S can partition themselves in
such a way that y is an efficient payoff vector, and y gives each subcoalition of S at least its “worth”. By
the induction hypothesis, if S breaks apart by formation of subcoalition S\Tj ⊂ S, then the remaining
players in Tj will stick together, and the resulting coalition structure will be (S\Tj, Tj,PN\S). Since
y ∈ C(S | S,PN\S), it must hold that

y(S\Tj) ≥ V (S\Tj | S,PN\S) = P (S\Tj | S\Tj, Tj,PN\S). (5)

Combining (4) and (5) and summing over all Tj in PS , we get

y(S) >
∑
Ti∈PS

P (Ti | PS,PN\S). (6)

Since y is an efficient payoff vector for S, the inequality (6) means PS is not a recursive core structure:
PS /∈ P(S | S,PN\S).

Case 2: Suppose there are only two nonempty coalitions in PS . Then we can write PS = (T1, T2).
By strict superadditivity,

P (T1 | PS,PN\S) + P (T2 | PS,PN\S) < P (S | S,PN\S). (7)

Again, this implies that {T1, T2} is not a recursive core structure: (T1, T2) /∈ P(S | S,PN\S), because S
can do better.

Thus, for any nontrivial partition PS of S, we have established our claim that PS /∈ P(S | S,PN\S).

But P(S | S,PN\S) 6= ∅ since C(S | S,PN\S) 6= ∅. The only possibility is that S sticks together, that
is, P(S | S,PN\S) = (S). So condition C1 holds.

It remains to verify C2, for any nontrivial partition PS of S. Since P(S | S,PN\S) = (S), it holds
that

y(S) = P (S | S,PN\S).

Hence in case 1, the inequality (6) implies

P (S | S,PN\S) = y(S) >
∑
Ti∈PS

P (Ti | PS,PN\S).

Hence, C2 is verified. In case 2, C2 follows from (7).
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Thus, we have verified that for any S such that |S| = s, conditions C1 and C2 hold. This means H(s)

holds, and the induction can be continued until we reach S = N. Condition C1 therefore holds for any
S of any size, and for any PN\S . This proves the proposition. �

The recursive argument in the proof of Proposition 1 guarantees that the grand coalition cannot in-
crease its surplus by breaking apart. In this case, as in Huang and Sjöström [9], there is a strong incentive
for the grand coalition to form. Now, however, we want to study coalition formation in non-superadditive
games, where coalitions might prefer to break up by mutual agreement. Recall that C(N) 6= ∅ does not
require the grand coalition to form; the recursive core partition structure may be finer. An example
was discussed above (namely, V ({1, 2}) = 1, V ({i}) = 2 for each i ∈ {1, 2}). Indeed, the recursive
core is frequently non-empty for games which are not superadditive. We claim the recursive core gives
interesting insights into equilibrium coalition formation in such situations.

3. Examples

In this section, we will argue that the recursive core makes intuitively appealing predictions for games
that are not superadditive. Consider an example with three players, L, M and R, interpreted as three
political parties, Left, Middle and Right. No party has a majority of the seats in parliament. Any
combination of two or more parties can form a coalition government. If no coalition of size two or more
forms, then a caretaker government takes over, and each player’s payoff is normalized to zero:

P ({i} | {i}, {j}, {k}) ≡ 0, for i ∈ {L,M,R}.

The value of a two-party coalition government containing players i and j is

V ({i, j}) ≡ P ({i, j} | {i, j}, {k})

and the “outsider” gets O(k) ≡ P ({k} | {i, j}, {k}). The value of a singleton, by (2), is

V ({i}) ≡


0 if P ({j, k} | {j, k}, {i}) < 0 , j, k 6= i

min{0, O(i)} if P ({j, k} | {j, k}, {i}) = 0 , j, k 6= i

O(i) if P ({j, k} | {j, k}, {i}) > 0 , j, k 6= i

The value of a grand coalition government containing all three parties is

V ({L,M,R}) ≡ P ({L,M,R} | {L,M,R})

The following is easy to check.

Claim 2 (i) ({i, j}, {k}) is a recursive core structure if and only if

V ({i, j}) ≥ max{V ({i}), V ({i, k})−O(k)}+ max{V ({j}), V ({j, k})−O(k)} (8)

and
O(k) ≥ V ({k}) (9)

and
V ({L,M,R}) ≤ V ({i, j}) +O(k). (10)

(ii) ({L}, {M}, {R}) is a recursive core structure if and only if V (S) ≤ 0 for all S ⊆ {L,M,R}.
(iii) ({L,M,R}) is a recursive core structure if and only if V is balanced.
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To interpret part (i) intuitively, consider coalition structure ({i, j}, {k}), where two coalition partners
i and j share V ({i, j}), and the outside party k gets O(k). Player i will stay with player j as long
as his payoff satisfies xi ≥ max{V ({i}), V ({i, k}) − O(k)}. Indeed, party i’s options are to either
leave the government, or to entice party k to form a two-party government. In the former case, party
i expects to get V ({i}), in the latter case V ({i, k}) − O(k) (since party k must get at least O(k) to
be willing to join the government). Similarly, player j will not defect from the coalition as long as
xj ≥ max{V ({j}), V ({j, k}) − O(k)}. The inequality (8) says that coalition {i, j} generates enough
surplus to simultaneously prevent both coalition partners from defecting. Next, the inequality (9) ensures
that the outside player k gets at least his worth. Finally, (10) says that there is no gain from forming a
grand coalition government. Part (ii) is obvious: the caretaker government is a reasonable outcome if
and only if no coalition can generate a positive value. Part (iii) is standard.

The grand coalition uniquely maximizes the total social surplus if and only if

V ({L,M,R}) > max{0, V ({M,R}) +O(L), V ({L,M}) +O(R), V ({L,R}) +O(M)}

In this case, the claim implies that only the grand coalition can be a recursive core structure. Outside
of this case, however, the recursive core structure can be different from the social surplus maximizing
structure. To be specific, suppose the {L,M} coalition uniquely maximizes the social surplus:

V ({L,M}) +O(R) > max {0, V ({M,R}) +O(L), V ({L,R}) +O(M), V ({L,M,R})} . (11)

Now suppose the government has to deal with a financial crisis. The right wingers would prefer
if a left-middle government deals with it, but the left-middle coalition would suffer disutility from it.
In this case, it is unreasonable to expect a left-middle coalition to form, even if it is social surplus
maximizing. (The inequality (11) holds because the social surplus on the left hand side includes O(R),

the large benefit the right-wingers enjoy from shifting responsibility to the left-middle government).
Which coalition would actually form depends on the parameters.

Example 1: Suppose

V ({L,M,R}) = V ({M,R}) = −10, V ({L,M}) = −20, V ({L,R}) = 10,

O(R) = 40, O(L) = 7, O(M) = −14.

In this case, the only coalition government which can create a positive surplus for itself is {L,R},
so V (M) = −14, V (R) = V (L) = 0. Part (i) of the claim can be verified for two-party coalitions
{M,R} and {L,R}, but not for {L,M}, and neither (ii) nor (iii) holds. Thus, in example 1, there
are two recursive core structures: ({M,R}, {L}) and ({L,R}, {M}). Any two-party coalition except
the surplus maximizing one can form. It is intuitively plausible that the {L,R} coalition can be an
equilibrium outcome, given these payoffs (the outside party M would suffer but this is of no concern to
L and R). It is more interesting that the {M,R} coalition can form, even though it generates a negative
surplus for itself. Why doesn’t the middle-right coalition fall apart and trigger the caretaker government?
Neither party wants to take the first step. Player M thinks that if he breaks up with R, the result is not
the caretaker government, instead party R would join a left-right (surplus producing) government. This
would give M a large negative payoff, O(M) = −14. Player M’s fear of this outcome makes him
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unwilling to defect from the middle-right government. Specifically, M is willing to stay with R as long
as M’s payoff is at least−14. So R can get V ({M,R))− (−14) = 4, and in this case, he is happy to stay
with M. (R’s best outside option is to govern with L, but L requires at least 7 to be made no worse off,
and that leaves only V ({L,R)} − 7 = 3 for R.) Party M cannot compete for party L’s favors, since the
middle-left government is only worth −20. The right wing party has a strong outside option, namely to
join with the left-wingers, but this allows it to extract a large surplus from the middle party, which holds
the middle-right coalition together.

Notice that if our theory had allowed only the splitting up of coalitions, with no “re-merging”, the
middle-right coalition could not be stable in example 1. If re-merging were not allowed, then M could
freely break-up with R, knowing that R could never re-merge with L. The fact that re-merging is allowed
contributes to the appeal of the recursive core. After some reflection, it seems intuitively plausible that
the right wing party could form an equilibrium coalition with either one of the other two parties.

Example 2: Suppose

V ({L,M,R}) = 40, V ({M,R}) = 0, V ({L,M}) = −50, V ({L,R}) = 0,

O(R) = 100, O(L) = 0, O(M) = 0.

In this case, the only coalition government that can generate a positive surplus for itself is the grand
coalition. This implies V ({M}) = V ({R}) = V ({L}) = 0. We can check that only part (iii) of the
claim holds. Thus, in this example, the unique recursive core structure is for the grand coalition to form,
and this is also the only intuitively plausible outcome. The coalition structure ({L,M}, {R}) maximizes
the social surplus but is implausible. The right wing party benefits greatly from the formation of a left-
middle government, and the criterion of social surplus maximization takes this into account. However,
one cannot expect that the left-middle government will form simply to benefit the right wingers.

Example 3: Suppose

V ({L,M,R}) = −5, V ({M,R}) = −1, V ({L,M}) = −50, V ({L,R}) = −50,

O(R) = 100, O(L) = −1, O(M) = −1.

In this case, the ”financial crisis” is so severe that no coalition government can create positive surplus for
itself. This implies V ({M}) = V ({R}) = V ({L}) = 0. We can check that only part (ii) of the claim
holds. Thus, in this example, the unique recursive core structure is ({L}, {M}, {R}). Since no coalition
has anything to gain by forming a government, the caretaker government is the only intuitively plausible
outcome.

In all three examples, the coalition structures that are predicted by the recursive core seem intuitively
plausible. It is, therefore, worth mentioning that the recursive core can be quite different from the
α-core. In example 3, according to the α-theory, V α({M}) = −1, V α({R}) = 0, and V α({L}) =

−1. Therefore, the α-core admits the middle-right government. Consider the structure ({M,R}, {L}).
According to the α-theory, M pessimistically expects that if the middle-right government breaks up, then
a left-right government will form instead. So M is satisfied with the payoff of −1, and this holds the
middle-right coalition together. However, player M should expect that if he refuses to participate in any
coalition government, then the other two parties will definitely not form a government: L and R have no
reason to form a coalition of worth −50 just to “punish” M. Therefore, the α-core does not make much
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sense. (The caretaker government is also consistent with the α-core in example 3, but the left-middle
coalition is not, so it is not that the α-core is biased toward surplus maximization).

4. The self-similar Serrano-Vohra game

In this section, we define a non-cooperative game Γ which fully implements the recursive core of
< N,P > in subgame perfect equilibria. We make no assumptions about superadditivity, so the equi-
librium coalition structure might be a non-trivial partition of N . The game Γ is a self-similar version
of Serrano and Vohra’s [18] two-stage game, which they used to implement the core correspondence in
economic environments without externalities. “Fines” are imposed if the players cannot agree with each
other, which is naturally possible in economic environments. More generally, we consider a transferable
utility game. Utility can be freely transferred across agents using some commodity (Shubik’s u-money)
which can be freely disposed of. A more complicated game could be constructed which does not rely on
free disposal, but for the sake of transparency, we mimic the Serrano-Vohra [18] construction.

We assume externalities exist, so the key issue is how outsiders react when a coalition is formed.
In Serrano and Vohra’s [18] original game, outsiders have no chance to react. We need to make the
Serrano-Vohra [18] game self-similar: after a coalition has formed, the outsiders go on to play a scaled-
down version of the original game. Subgame perfection rules out the kind of incredible threats that define
the α- and β-cores.

Since the game may continue after a coalition has formed, we need to distinguish between inactive
players, who have joined a coalition and cannot make any more moves, and active players. Let A denote
the set of active players and let I = N\A denote the set of inactive players. The inactive players in I
must have formed some coalition structure PI , a partition of I . The members of each coalition S ∈ PI
must also have agreed on how to divide their coalition’s payoff. Specifically, they have agreed to share
their coalition’s final payoff according to some weights wS = (wSi )i∈S, where∑

i∈S

wSi = 1.

Let wI = (wS)S∈PI
be the list of weights for all the coalitions in PI . In game Γ, coalitions may block

outcomes, and several blocking coalitions may form in sequence. As will become clear below, it is
useful to keep track of the last blocking coalition that has formed so far, say L ∈ PI . We will refer to
(PI , wI , L) as the state. The state summarizes the history of the inactive players, and is an expositional
device only. There are typically several ways to reach the same state. In particular, the sequence in
which coalitions have formed is not completely specified by the state: only the last blocking coalition is
specified. We keep track of the “state” (PI , wI , L) only to simplify the exposition. Nothing prevents the
players from conditioning their actions on the full history of the game. We make no a priori restriction
to stationary or Markov strategies.

For the sake of exposition, all subgames of Γ that start at the same state will be considered simulta-
neously. The set of all subgames that start at state (PI , wI , L) will be denoted by Γ(PI , wI , L). If no
coalition has formed, then no player is inactive, and this state is denoted (∅, ∅, ∅). The game Γ itself starts
at (∅, ∅, ∅).

Consider any state (PI , wI , L) such that I 6= N . Each subgame in Γ(PI , wI , L) has two stages, the
coalition formation stage and the blocking stage.
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A. Coalition formation stage. The subgame starts with the coalition formation stage. Each active
player i ∈ A simultaneously proposes a triplet (PA, wA, πA).5 Here PA is the coalition structure that the
active players will form (a partition of A), and wA = (wSi )i∈S,S∈PA

is the list of weights according to
which each coalition in PA should distribute its joint payoffs. The weights must satisfy, for each S ∈
PA, ∑

i∈S

wSi = 1.

Thus, according to the proposal, wSi is player i’s share of the payoff of coalition S which he belongs to.
Finally, πA is a permutation of the player set A. We compose the permutations proposed by all players
in A according to some pre-specified order and denote it by π∗A. The key point is that by unilaterally
changing the permutation he proposes, each player i ∈ A can become the first player according to the
composition π∗A.

If in the coalition formation stage all active players propose the same PA and wA, then their common
proposal (PA, wA) is designated the status quo and the game proceeds to the blocking stage. If it is
not the case that all active players propose the same PA and wA, then the game ends, the last player
according to π∗A gets −ε and all other players get zero. The coalition structure can be arbitrary in this
case. Feasibility is guaranteed by “free disposal of u-money” (since all coalitional values are positive by
(1)).

B. Blocking stage. The first player according to π∗A is the proposer. The proposer can either (i)
say Pass, or (ii) propose a blocking coalition S ⊆ A of which he is a member, along with weights
wS = (wSi )i∈S for sharing its payoffs, where∑

i∈S
wSi = 1.

There are two possibilities.
(i) If the proposer says Pass, then the game ends. The status quo (PA, wA) is implemented. This

makes sense because the active players all announced (PA, wA) in the coalition formation stage, and the
proposer has passed on his right to name a blocking coalition. Moreover, the state records that inactive
players partition themselves according to PI . So the final coalition structure on N is (PI ,PA). Each
coalition distributes its payoffs according to the agreed-upon weights (wI , wA).

(ii) If the proposer proposes a blocking coalition S, then all members of S (except the proposer
himself) must respond by saying Yes or No sequentially (according to some pre-specified order). If any
member says No, then the coalition S is not formed, and just as in (i) the game ends with the status
quo implemented. But if all members say Yes, then the blocking coalition S has formed (this always
happens if S consists of only the proposer, since then there is nobody who can say No). When S forms,
all members of S become inactive, so the state changes from (PI , wI , L) to (PI′ , wI

′
, L′). The new set

of inactive players is I ′ = I ∪ S, the new set of active players is A′ = N\I ′ = A\S, and the most
recently formed blocking coalition is L′ = S. The players in I cannot rearrange themselves, but the
new coalition S has formed, so the coalition structure on I ′ is PI′ = (PI , S). The new set of weights
wI
′ is the concatenation of wI and wS , denoted wI′ = (wI , wS). Now there are two possible cases. If

there are no active players left, A′ = A\S = ∅, then the game ends. The final coalition structure on

5Strictly speaking, player i’s proposal should be indexed by i, but this index is omitted to simplify notation.
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N is (PI , S). The players distribute their payoffs according to the agreed-upon weights (wI , wS). If
A′ = A\S 6= ∅, then the game continues to a subgame in Γ(PI′ , wI

′
, L′) = Γ((PI , S), (wI , wS), S).

This subgame is played out with a coalition formation stage and a blocking stage, according to the rules
we have described. Notice that only the active players in A′ = A\S can participate in this subgame. The
inactive players in I ′ = I ∪ S are on the sidelines looking on, having already formed their coalitions.

5. Results

We prove two results in this section. First we show that every payoff vector in C(N) is a subgame
perfect Nash equilibrium (SPNE) outcome of the game Γ. Later, we will prove the converse: every
SPNE outcome in the game Γ is a payoff vector in C(N).

To implement x ∈ C(N), with the corresponding recursive core coalition structure PN , we want all
players to propose (PN , wN) at the very first coalition formation stage of Γ, where wN are weights that
give us the payoff vector x. The blocking stage gives each coalition a chance to block the allocation,
reflecting the spirit behind the core, if it does not get at least what it is worth. Thus if a coalition T ⊆ N

forms in the blocking stage, then we want it to get exactly its value V (T ). The definition of V (T ) implies
that the players in N\T should behave in such a way that the outcome is a point in the recursive core
C(N\T | N\T, T ) which is worst for T . This can be done, because the subgame played out among the
players in N\T is simply a smaller version of Γ. In the subgame, any subcoalition S ⊂ N\T will have
a chance to block. If blocking coalition S forms, then we want it to get exactly its value V (S | N\T, T ).
Hence, we want the remaining players in N\(T ∪S) to behave in such a way that the outcome is a point
in the recursive core C(N\(T ∪ S) | N\(T ∪ S), S, T ) which is worst for S, the most recent blocking
coalition. And so on, recursively. Notice that behavior will depend on the last blocking coalition which
has formed at any stage. This last blocking coalition L is part of the “state” (PI , wI , L).

In the proof of Proposition 3, strategies will be constructed where history matters only through the
state (PI , wI , L). For any (PI , wI , L),whenever the players find themselves in this state, they will behave
the same way. Indeed, we may abuse terminology by referring to Γ(PI , wI , L) as a subgame, although
it is understood to be the set of all subgames starting at the state (PI , wI , L). This is harmless because
behavior will, by construction, be the same in any subgame in Γ(PI , wI , L). Similarly, we will talk about
the equilibrium continuation payoff vector x(PI , wI , L) at the state (PI , wI , L). Because behavior will
be the same in any two subgames in Γ(PI , wI , L), the continuation payoff will also be the same.

Proposition 3 Every payoff vector in C(N) is an SPNE payoff vector in the game Γ.

Proof. Suppose x ∈ C(N), and let PN be the corresponding recursive core coalition structure. We
need to show that x is an equilibrium payoff vector for Γ. Recall that C(N) 6= ∅ implies
C(S | S,PN\S) 6= ∅ for any S ⊆ N and any PN\S .

Let
wN = (wSi )i∈S,S∈PN

be the list of weights according to which each coalition in PN should distribute its joint payoffs in order
to reach the payoff vector x. That is, if i ∈ S ∈ PN then

xi = wSi P (S | PN).
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Before constructing the equilibrium strategy to support x as an equilibrium outcome, we first specify
what the equilibrium outcome will be in any proper subgame Γ(PI , wI , L) where (PI , wI , L) 6= (∅, ∅, ∅),
A = N\I is the set of active players and the inactive players in I have formed coalition structure PI .
We want the continuation equilibrium payoff vector to be a point in C(A | A,PI). Specifically, we will
select a payoff vector x(PI , wI , L) in C(A | A,PI) which is the worst possible for the last blocking
coalition that has formed so far, denoted L ∈ PI . Thus, let x(PI , wI , L) be a payoff vector which has
the following three properties: (i)

x(PI , wI , L) ∈ C(A | A,PI), (12)

with the corresponding recursive core structure P(PI , wI , L) ∈ P(A | A,PI);
(ii) ∑

i∈L

xi(PI , wI , L) = min

{∑
i∈L

yi : y ∈ C(A | A,PI)

}
= V (L | (A ∪ L),PI) (13)

(iii) if i ∈ S ∈ PI then
xi(PI , wI , L) = wSi P (S | P(PI , wI , L),PI) (14)

where wSi is the weight for i which was agreed upon when coalition S formed.
Notice that (13) implies that the last blocking coalition L is punished as much as possible without

violating the constraints of the recursive core. That is,
∑

i∈L yi is minimized in C(A | A,PI), and
this minimized sum is independent of wI . Intuitively, the second equality in (13) holds because the
minimized sum that L can get occurs when the remaining players A play out the worst recursive core
for L. This is exactly the value of L, when L is contemplating whether to deviate in the reduced society
A ∪ L.

Let
wA(PI , wI , L) = (wSi (PI , wI , L))i∈S,S∈P(PI ,wI ,L)

be the list of weights according to which each coalition in P(PI , wI , L) should distribute its joint payoffs
in order to reach the payoff vector x(PI , wI , L). That is, if i ∈ S ∈ P(PI , wI , L) then

wSi (PI , wI , L) =
xi(PI , wI , L)

P (S | P(PI , wI , L),PI)
(15)

This implies that
xi(PI , wI , L) = wSi (PI , wI , L)P (S | P(PI , wI , L),PI) (16)

Equation (15) is well-defined because P (S | P(PI , wI , L),PI) > 0.
We can now construct the equilibrium strategy to support x as an equilibrium outcome.
(E1) At the coalition formation stage, if the state is (∅, ∅, ∅), all players start by proposing

(PN , wN , πN) where πN is an arbitrary permutation of N . If the state is (PI , wI , L) 6= (∅, ∅, ∅) and A =

N\I is the set of active players, then all players start by proposing (P(PI , wI , L), wA(PI , wI , L), πA),

where πA is an arbitrary permutation of A.
(E2) At the blocking stage when the state is (PI , wI , L), by the game rules, active players A = N\I

must have agreed on some common proposal (PA, wA, πA). According the common proposal (which
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becomes the status quo), the final coalition structure will be (PI ,PA), and each active player i ∈ A will
get payoff

yi ≡ wSi P (S | PA,PI),

where wSi is his share of payoffs of the coalition S ∈ PA to which he belongs.
Without loss of generality, call the first player according to the composition of the permutations

proposed by A player 1. Suppose player 1 proposes to form a blocking coalition S ⊆ A of which he is a
member, along with weights wS = (wSi )i∈S for sharing its payoffs. If S forms in the blocking stage, the
remaining playersA\S play out the recursive core which is the worst for S. The continuation equilibrium
payoff will be a point

x((PI , S), (wI , wS), S) ∈ C(A\S | A\S, S,PI).

By (13), the total surplus for coalition S ⊆ A will be∑
i∈S

xi((PI , S), (wI , wS), S) = V (S | A,PI).

After paying every other member in S his status quo payoff, the surplus available to player 1 is

V (S | A,PI)−
∑

i∈S,i6=1

yi.

Pick any S∗ such that

S∗ ∈ arg max
S⊆A,1∈S

(
V (S | A,PI)−

∑
i∈S,i6=1

yi

)
.

If
V (S∗ | A,PI)−

∑
i∈S∗,i 6=1

yi ≤ y1,

then let player 1 say Pass when he proposes. Otherwise, let player 1 propose to form S∗ and share the
payoffs according to the weights

wS
∗

i =
yi

V (S∗ | A,PI)
for each i ∈ S∗, i 6= 1. Each such player i’s payoff will be exactly yi, since the total surplus for S∗ is
V (S∗ | A,PI). Finally, we need to specify the behavior of the responding players. When any player i is
called to respond to a proposal from player 1, let him say Yes if he is given weakly more than his status
quo payoff yi and No otherwise. In other words, if S is proposed by player 1, together with the weights
wS = (wSj )j∈S , and player i is asked to respond (where 1 6= i ∈ S), then player i says Yes if and only if
wSi V (S | A,PI) ≥ yi.

Note that every subgame in Γ(PI , wI , L) has a coalition formation stage and a blocking stage. In
the coalition formation stage, the equilibrium strategies specify that each active player i ∈ A = N\I
proposes (P(PI , wI , L), wA(PI , wI , L), πA), where πA is an arbitrary permutation of A. This implies
that (P(PI , wI , L), wA(PI , wI , L)) becomes the status quo in the subsequent blocking stage. The equi-
librium strategies also specify that the proposer says Pass in this case (we will show this in the next
paragraph). Therefore, if Γ(PI , wI , L) is reached, then the continuation equilibrium payoff vector will
be x(PI , wI , L). In particular, in Γ(∅, ∅, ∅), every player i ∈ N proposes (PN , wN , πN) and the proposer
says Pass in the blocking stage. Hence x is the equilibrium outcome in Γ(∅, ∅, ∅).
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To see why the proposer says Pass on the equilibrium path, suppose all players follow their equilib-
rium strategies in the coalition formation stage of Γ(PI , wI , L). In the blocking stage, the status quo
gives payoff xi(PI , wI , L) to each player i ∈ A = N\I . Some player, say player 1 ∈ A, is the proposer
(as determined by the composition of the permutations in πA). Player 1 can either say Pass, or propose a
blocking coalition S such that 1 ∈ S ⊆ A, with weights wS . If player 1 says Pass (or if he proposes a
coalition which is rejected by some member), then the status quo is implemented. If player 1 proposes a
blocking coalition S which is accepted by all members, then S forms. The players in S become inactive,
so the new set of inactive players is I∪S and the new set of active players isA\S. The coalition structure
of the new set of inactive players is (PI , S). Play then moves to a subgame in Γ((PI , S), (wI , wS), S),
because S is the last coalition to have formed. As argued above, the continuation equilibrium payoff will
be

x((PI , S), (wI , wS), S) ∈ C(A\S | A\S,PI , S).

For player i ∈ S, i 6= 1, the equilibrium strategy specifies that he accepts player 1’s proposal if and only
if he is offered at least his status quo payoff (every responder, by saying No, can induce the status quo).
Therefore, when player 1 ∈ A makes a proposal to form blocking coalition S in the blocking stage of
Γ(PI , wI , L), the most he can hope to get for himself is∑

i∈S

xi((PI , S), (wI , wS), S)−
∑
i∈S
i 6=1

xi(PI , wI , L) (17)

But we claim that this expression is no bigger than player 1’s status quo payoff x1(PI , wI , L), so propos-
ing a blocking coalition S doesn’t pay for player 1. To prove this claim, we need to show that∑

i∈S

xi(PI , wI , L) ≥
∑
i∈S

xi((PI , S), (wI , wS), S) (18)

for all S such that 1 ∈ S ⊆ A. However, x(PI , wI , L) ∈ C(A | A,PI). Using the definition of the
recursive core and (13) we get∑

i∈S

xi(PI , wI , L) ≥ V (S | A,PI) =
∑
i∈S

xi((PI , S), (wI , wS), S) (19)

Therefore, (18) holds for all S such that 1 ∈ S ⊆ A, so there is no opportunity for profitable blocking.
The equilibrium strategy specifies that player 1 says Pass, which maximizes his expected payoff.

In particular, consider the blocking stage of Γ(∅, ∅, ∅) with status quo payoff vector x ∈ C(N). If
player 1 proposes a blocking coalition S with weights wS which is accepted by all members, then S
forms. The set of inactive players becomes S and the set of active players becomes N\S. The coalition
structure of the new set of inactive players is (S). Play then moves to a subgame in Γ((S), wS, S). As
argued above, the continuation equilibrium payoff will be

x((S), wS, S) ∈ C(N\S | N\S, S).

Equation (13) implies that this outcome is worse for S than any other payoff vector inC(N\S | N\S, S).
By definition of the recursive core,∑

i∈S

xi ≥ V (S) =
∑
i∈S

xi((S), wS, S)
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That is, (18) holds for status quo payoff vector x. So player 1 maximizes his payoff by saying Pass at
the blocking stage of Γ(∅, ∅, ∅).

We can now verify that the strategies in (E1) and (E2) constitute a subgame perfect Nash equilibrium.
First, suppose we have reached a subgame Γ(PI , wI , L) such that A = N\I contains only one active
player, say A = {1}. In this situation, player 1’s strategy specifies that he forms the singleton coalition
{1}, takes a share w1 = 1 of the payoff of his coalition, and passes in the blocking stage. This is
obviously a continuation equilibrium.

Next, we make an induction hypothesis: suppose for any A such that |A| ≤ a − 1, whenever we
reach a subgame Γ(PI , wI , L) where A = N\I is the set of active players, then the strategies we have
described constitute a continuation equilibrium for Γ(PI , wI , L). Now suppose we reach a subgame
Γ(PI , wI , L) where the set of active players is A = N\I and A has |A| = a members, a ≥ 2. We need
to show that the strategies we have described constitute a continuation equilibrium for Γ(PI , wI , L). By
construction, in the blocking stage each responder is using a best response (he says Yes if and only if
the continuation equilibrium payoff would be no less than his status quo payoff). Each proposer is also
using a best response: say Pass if no profitable blocking is possible, and propose the most profitable
blocking coalition otherwise. Now consider the coalition formation stage of Γ(PI , wI , L). Since |A| ≥
2, deviating by proposing anything other than (P(PI , wI , L), wA) results in either the payoff of 0 or
−ε. The equilibrium payoff for any active player i ∈ A is xi(PI , wI , L), which is strictly positive
because x(PI , wI , L) ∈ C(A | A,PI) and (1) holds. Hence, all active players prefer to announce
(P(PI , wI , L), wA). Given these announcements, since (19) holds for any blocking coalition S ⊆ A,.
in the blocking stage the proposer will say Pass (as argued above). This implies that every active player
i will get xi(PI , wI , L) if the blocking stage is reached, no matter who is the proposer. So it does not
matter to any active player which permutation he proposes. Therefore, at the coalition formation stage,
there is nothing to gain from deviating on the announced permutation, either. �

We can now prove the converse of Proposition 3. Notice that we will not restrict attention to stationary
or Markov strategies that only depend on history via the “state”. Any kind of history dependence is
allowed.

Proposition 4 Every SPNE payoff vector in the game Γ is a payoff vector in C(N).

Proof. Let f denote any SPNE strategy profile in the game Γ. The proof is by induction. The
induction hypothesis is the following.

Hypothesis H(k). For any coalition A ⊆ N such that 1 ≤ |A| ≤ k, any partition PI on I = N\A,
and any L ∈ PI , the following two conditions both hold:
(C1) For any subgame in Γ(PI , wI , L), if x is the payoff vector induced by f in this subgame, then x ∈
C(A | A,PI).
(C2) For any subgame in Γ(PI , wI , L), if (PA,PI) is the coalitional structure induced by f in this
subgame, then PA ∈ P(A | A,PI).

First, consider the case k = 1. If 1 ≤ |A| ≤ k = 1 then A = {i} for some i ∈ N . Let I = N\{i}.
For any PI , C({i} | {i},PI) contains every payoff vector where i gets P ({i} | {i},PN\{i}) and every
coalition S ∈ PI gets P (S | {i},PI). Since player i is the only active player, his only option is to
propose coalition {i} and take the share wi = 1. This becomes the status quo. In the blocking stage, the
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rules do not allow player i to propose anything else than the status quo (another alternative is that i can
say Pass), so the game must end with the status quo. Hence, player i must get xi = P ({i} | {i},PI) and
every coalition S ∈ PI gets P (S | {i},PI). So x ∈ C({i} | {i},PI) and the coalition structure induced
on A = {i} is, trivially, PA = {{i}}. This proves H(k) for k = 1.

To continue the induction, fix k such that 2 ≤ k ≤ n and suppose the induction hypothesis H(k − 1)

holds. We need to prove H(k).
Consider any coalition A ⊆ N such that|A| = k, any partition PI on I = N\A, any L ∈ PI , and any

subgame in Γ(PI , wI , L). Let x denote the payoff vector, and (PA,PI) the coalitional structure, induced
by f in this subgame. We need to verify (C1) and (C2).

We first observe that V (T | A,PI) is well defined for all T ⊆ A. Indeed, by definition

V (A | A,PI) = P (A | A,PI).

And V (T | A,PI) is also well defined for T ⊆ A, T 6= A because C(A\T | A\T, T,PI) 6= ∅ by the
induction hypothesis (because |A\T | ≤ k − 1).

At the coalition formation stage of any subgame in Γ(PI , wI , L), every active player must propose the
same coalition structure and the same weights. For otherwise, since there are at least two active players,
the last player according to the composition of permutations proposed by all active players would get−ε.
Changing the permutation he proposes would make his payoff 0. Hence there would exist a profitable
deviation.

Suppose x /∈ C(A | A,PI). We will derive a contradiction. By definition of C(A | A,PI) there must
exist a coalition S ⊆ A such that ∑

i∈S

xi < V (S | A,PI).

Without loss of generality, suppose S = {1, 2, ..., s}. In the coalition formation stage, given the per-
mutations announced by the other active players, there is for each active player a permutation he can
announce that will make him the proposer. Specifically, player 1 can make sure that he is the proposer
by announcing an appropriate permutation. At the blocking stage, player 1 can propose to form S and
give each member i ∈ S an amount yi so that

yi = xi + s−1

[
V (S | A,PI)−

∑
i∈S

xi

]
> xi.

Accordingly, for all i ∈ S, define
wi =

yi
V (S | A,PI)

.

When player 1 makes this proposal, without loss of generality, suppose players 2, 3, ..., s will be called
to respond in this order. We want to show that they will all say Yes. There are two cases.

Case I: S = A. In this case, the game ends immediately when blocking coalition S forms, by the
rules of the game. When player s is called to respond, if all other responders have said Yes, then if player
s also says Yes, S successfully forms. Player s gets

wsP (A | A,PI) = ys > xs,
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because P (A | A,PI) = V (A | A,PI). Hence, player s must say Yes (saying No would only result in
the status quo payoff xs). When player s − 1 is called to respond, if all previous responders have said
Yes, then if player s− 1 also says Yes, he expects player s to say Yes after him. By the same logic as for
player s, player s− 1 will say Yes. Inductively, all responders will say Yes. So, after player 1 makes his
proposal, the blocking coalition S = A forms and the game ends. Player 1 gets

w1P (A | A,PI) = y1 > x1.

So player 1 has a profitable deviation, contradicting the assumption that f is an SPNE.
Case II: S ⊆ A and S 6= A. In this case, if the blocking coalition S forms, the set of active players

become A′ = A\S. When player s is called to respond, if all other responders have said Yes, then
if player s says Yes, S successfully forms. By the induction hypothesis, the continuation equilibrium
payoff vector z will satisfy

z ∈ C(A\S | A\S, S,PI). (20)

Player s will get wsz(S). Since V (S | A,PI) is the worst possible joint payoff for S in
C(A\S | A\S, S,PI), it must be the case that z(S) ≥ V (S | A,PI). Therefore,

wsz(S) ≥ wsV (S | A,PI) = ys > xs.

So s will say Yes. When player s− 1 is called to respond, if all previous responders have said Yes, then
if he says Yes, he expects player s to say Yes after him. By the same logic as for player s, player s − 1

will say Yes. Inductively, all responders will say Yes. So, after player 1 makes his proposal, the blocking
coalition S forms. Player 1 will get

w1z(S) ≥ w1V (S | A,PI) = y1 > x1,

so player 1 has a profitable deviation, contradicting the assumption that f is an SPNE.
Since both case I and case II lead to a contradiction, we conclude that x ∈ C(A | A,PI). Thus, (C1)

holds. Clearly, the coalitional structure (PA,PI) induced by f in the subgame Γ(PI , wI , L) must satisfy
PA ∈ P(A | A,PI), so (C2) holds as well. Therefore, we have proven H(k).

The induction proves that H(n) holds. From (C1), any SPNE payoff vector x induced by f in the
game itself must satisfy x ∈ C(N). �
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11. Kóczy, L.Á. A Recursive Core for Partition Function Form Games. Theory Decis. 2007, 63, 41-51.
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