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Abstract: We study 4 × 4 games for which the best response dynamics contain a cycle.
We give examples in which multiple Shapley polygons occur for these kinds of games. We
derive conditions under which Shapley polygons exist and conditions for the stability of
these polygons. It turns out that there is a very strong connection between the stability of
heteroclinic cycles for the replicator equation and Shapley polygons for the best response
dynamics. It is also shown that chaotic behaviour can not occur in this kind of game.
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1. Introduction

Identifying cycles in games is easy, but it is not easy to analyse the qualitative behaviour of these
cycling structures. It is a priori not clear, if these systems lead to convergence to an interior fixed point,
to an periodic attractor or to chaotic behaviour. For example even the structure of the simple RSP
game can either lead to convergence to a Nash equilibrium or to convergence to a periodic orbit for
the best response dynamics. In [1] the RSP game was analysed—besides some other low dimensional
games—for the best response dynamics and the results were compared to results for the replicator
equation. A strong connection was found between the limit set of time averages of the orbits for the
replicator equation and the ω− limits of the best response dynamics. A later paper [2] shows that this
connection was not specific for these games but is true in a more general sense. It is shown in this paper
that the limit set of the time averages (of orbits starting in the interior) for the replicator equation is a
subset of the maximal invariant set for the best response dynamics. Cycles for low dimensional games
for the replicator equation are for example thoroughly analysed in [3,4]. In these papers conditions are
given under which so called heteroclinic cycles are attracting or repelling. Permanence is an important
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property in evolutionary game theory and the existence of an attracting heteroclinic always excludes the
possibility that a system is permanent. Permanent means—biologically speaking—that all species are
safe from going extinct. We will show equivalence between permanence for the replicator equation and
the non existence of Shapley polygons for the best response for so called monocyclic payoff matrices.

We will also analyse games with embedded RSP cycles for the best response dynamics and give
a classification as complete as possible for them. A comparison of the results for the best response
dynamics to those for the replicator dynamics is made with respect to [2] where the strong connection
between the time average for the replicator equation and the invariant sets for the best response dynamics
is shown. For the analysis of the best response dynamics we construct a two dimensional return map.
Surprisingly this return map is very similar to the return map for the analysis of the replicator equation
in [3], to be more precise the transition matrices are identical. These transition matrices play an important
role in the analysis and as they are identical we get the equivalence of the existence of Shapley polygons
for the best response dynamics and the existence of a relatively asymptotically stable heteroclinic cycle1.
In this paper some counterexamples are given for some conjectures that might be drawn from the analysis
of RSP game for the best response dynamics. It is shown that the invariant set V0 for the RSP does not
have to be invariant in 4×4 games. It is also shown that V (x(t)) is not always a good Ljapunov function.
As a ‘side product’we get that for this class of games no chaotic behaviour can occur.

The paper is structured as follows: It starts with some general assumptions on the payoff matrix. The
main results of this paper and their discussion with respect to earlier results for the replicator equation
can be found in Section 3. In Section 4 examples are provided for different asymptotical behaviour for
these kinds of games. The remaining sections contain the construction and analysis of the return map.

2. Preliminaries and Assumptions on the Payoff Matrix A

In this work we will deal with finite, symmetric 2 person normal form games. The player’s payoffs
are summarised in the (n× n) matrix A where aij describes the payoff of strategy i against strategy j.

A = (aij), i, j = 1, ..., n

The expression A|I always describes the payoff matrix for a game restricted to the strategies contained
in the index set I . (If there is no risk of confusion the index set I will not be written down explicitly.)
We use the following notation in this work

∆n := {x ∈ Rn : xi ≥ 0 and
n∑
i=1

xi = 1}

which represents the (n − 1)-dimensional simplex. Vectors are written in bold letters e.g x. The i-th
vertex of the simplex is denoted with ei. The standard scalar product of two vectors u and v is written in
the following way

1See [3] for a precise definition of relatively asymptotically stable. In this context it means that the heteroclinic cycle Γ
attracts an open set U and possibly Γ is not contained in U but Γ is contained in the closure of U .
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u·v :=
n∑
i=1

uivi

Lastly we define the set Rn
0 by

Rn
0 := {x ∈ Rn :

n∑
i=1

xi = 0}

If there is no risk of confusion, we will call the vertex ei sloppily i. In this paper we will analyse
games for the best response (or best reply—used equivalently) dynamics (see [5]), which is of the
following form

ẋ ∈ BR(x)− x (1)

where BR(x) stands for the set of best responses to a given state x. As mentioned we will compare the
results of the qualitative behaviour to the behaviour of the replicator equation [6].

ẋi = xi((Ax)i − x·Ax) (2)

We define the set Bi, which is the set of all x ∈ ∆n for which i is the unique best reply against x.
More generally, we define BK with K ⊆ {1, ..., n}, K 6= ∅, the set of all x ∈ ∆n for which all pure
strategies in K are a best response against x and there are no other pure best responses,

BK := {x ∈ ∆n : k ∈ BR(x) ∀k ∈ K and j 6∈ BR(x) for j 6∈ K} (3)

Definition 1 In this paper we call a game generic, if

(i)BK = ∅ or dim BK = n− card(K) for all nonempty K ⊆ {1, ..., n} and (4)

(ii)
n⋃
i=1

Bi = ∆n (5)

hold.

Following [6] and [7] we state the following lemma

Lemma 1 Let

V : ∆n → R, V (x) := max
i

(Ax)i (6)

and let the payoff matrix A = (aij) be normalised in the way that aii = 0 holds for all i = 1, ..., n then
V satisfies V̇ (x) = −V (x) for all x ∈ Bj and hence |V (x(t))| is strictly decreasing along the piecewise
linear solutions to (1) inside each Bj .
Moreover, if x(t) is in

⋃
j B

j for almost all t > 0 we get V (x(t)) → 0 as t → ∞. In other words the
orbits converge to the set V0, which is defined as

V0 := {x ∈ ∆n : V (x) = 0} (7)
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Definition 2 A periodic orbit Γ under the best response dynamic is called a Shapley polygon.

Let us now introduce better and best reply cycles.

Definition 3 If aji > aki for all k 6= j and ajj > aij hold, we call this a best response arc2 from ei to ej
and write symbolically ei � ej .

This simply means that j is the unique best reply to i and j is a better reply against itself than i. This

gives rise to a directed graph
�
G for all best response arcs.

Definition 4 We call a cycle in this directed graph
�
G a best response cycle.

For example if the graph is e1 � e2 � e3 � e4 � e2, then the best response cycle connects e2, e3 and
e4. Clearly, a game can have more than one best response cycle, but these cycles are disjoint. Note that
neither a best response cycle nor a best response arc have to exist.
In analogy we define a better reply arc from ei to ej , if aji > aii and ajj > aij hold and write

symbolically ei → ej . Again we get a directed graph
→
G and cycles in this graph

→
G are called better

reply cycles. Note that better reply cycles do not have to be disjoint and every best reply cycle is also
a better reply cycle. If there is no risk of confusion we will write only the best response (or reply)
cycle 1234 instead of e1 � e2 � e3 � e4 � e1. We also write the better reply cycle 1234 instead of
e1 → e2 → e3 → e4 → e1.

In this paper we are especially interested in games with a full better reply cycle, which means a cycle
exists using all pure strategies. This also means that no pure strategy can become a Nash equilibrium.
Despite this cycling behaviour, there is no need for a periodic orbit to exist for example because Nash
equilibria can attract all orbits (see for example Section 7). On the one hand it will turn out that the
number of Nash equilibria is very hard to predict (see Section 4); on the other hand it will turn out that
for certain classes of payoff matrices only solutions for a set of measure 0 of starting values converge to
a Nash equilibrium.

Throughout this paper we consider the following payoff matrix A

A = (aij) =


0 −c2 t3 e4

e1 0 −c3 t4

t1 e2 0 −c4
−c1 t2 e3 0

 (8)

and assume the following for all i for the payoff matrix A, unless stated otherwise

(i) ei > 0, (9)

(ii) ci > 0, (10)

(iii) if ti > 0 then ti+2 < 0 and (11)

(iv) the game is generic as in Definition 1 (12)

2We follow here the terminology from graph theory, see for example [8].
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This notation is from [3], in which the stability of so called heteroclinic cycles for the replicator
dynamics was analysed. A heteroclinic cycle corresponds to a better reply cycle. The eis stand for
the expanding eigenvalues in direction of the heteroclinic cycle, the cis correspond to the contracting
eigenvalues along the heteroclinic cycle and the tis are the eigenvalues transverse to the heteroclinic
cycle. Note that we can only speak of eigenvalues with respect to the replicator equation3.

Remark The assumptions (9) and (10) guarantee the existence of a heteroclinic cycle for the replicator
equation. A heteroclinic cycle is a union of orbits

⋃n
j=1 xj(t) (together with their α and ω limits, which

are fixed points for the system), for which the ω-limit of xi(t) is the α-limit of xi+1(t) (with i + 1 taken
modulo n). The stability of such heteroclinic cycles has thoroughly been studied in [3,4].

Remark (9) and (10) assure that a better reply cycle e1 → e2 → e3 → e4 → e1 exists for A.
Whereas (11) assures that no restricted two strategy game has a stable interior Nash equilibrium. This is
easy to see: If both ti and ti+2 are greater than zero, we get the following structure in the corresponding
matrix of the restricted game

Pi,i+2 =

(
0 +

+ 0

)
which means that the interior Nash equilibrium of this restricted game is attracting. This is the only way
to get a stable interior equilibrium. If we have two opposite signs, there is no interior equilibrium and if
there are two minus then the interior equilibrium is repelling.

The assumption in (11) seems to be somehow arbitrary, but we want to exclude a kind of forced
movement 4 as example 1 should explain.

Example 1 We take the following payoff matrix A

A =


0 − 9

64
15
64

47
60

9
32

0 − 3
16

5
16

3
32

3
8

0 −1
4

− 5
32

1
8

1
2

0


Note that our assumptions (9)-(10) hold for this matrix, but (11) is violated, because all the ti are
positive. This example also shows that V (x(t)) is not always a good Ljapunov function. This matrix has
a unique Nash equilibrium

N1234 =

(
860

1899
,

361

1899
,

181

633
,

15

211

)
But the minimum of V (x) = maxi(Ax)i is not attained at the equilibrium N1234, but at the point m =(

5
9
, 1

9
, 1

3
, 0
)
. Its value there is

V (m) =
3

32
= 0.09375

3These eigenvalues are calculated with the help of the Jacobian at the rest point. It turns out that aij−aii is the eigenvalue
at ei in direction ej , see [6]

4Forced movement occurs quite often in the field of differential inclusions, but we do not want to deal with it for this class
of payoff matrices, see for example [9]. An example for forced movement also occurs in example 1 where the orbit is forced
to continue in a certain direction. This direction is the result of two adjacent vector fields.
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whereas its value at the Nash equilibrium is

V (N1234) =
81

844
= 0.09597

Along the line segment s, which connects m and N1234 the pure strategies 2, 3 and 4 are best responses.

Figure 1. Sufficiently close to the line segment s, the dynamics is similar to the dynamics
for the restricted game A|234. Every orbit hits the set B24, shown by the arrow in the
figure. Inside this set there is a forced movement towards the unique Nash equilibrium of the
restricted game.

E2 E3

E4

Therefore if we start in this segment the solution x(t) heads towards the unique Nash equilibrium
N234 =

(
0, 7

13
, 1

13
, 5

13

)
of the restricted game A|234 and N1234 is reached in finite time (Along such

an orbit V (x(t)) does not decrease!). Moreover there is a two dimensional manifold, in which 2
and 4 are the best responses, hence every orbit inside this set tends towards the Nash equilibrium
N24 =

(
0, 5

7
, 0, 2

7

)
of the restricted game. After finite time s is reached and N1234 is reached in finite

time again. The movement inside B24 is forced in the way that orbits close by want to cross B24 from
both sides. Thus the resulting movement is towards N24. We can describe the dynamics for the game
as follows. Some orbits that head for pure strategies cycle towards N1234 and reach it in finite time. All
other orbits (especially those x, with V (x) < V (N1234)) converge via s to N1234 in finite time.

3. Main Results

In this section the main results of this paper are summarised. The following lemma is a central part
for the analysis. It shows the form the return map which plays a crucial role in the analysis of the best
response dynamics. One big advantage is that this map is of lower dimension than the game. Due to the
lower dimension the map is easier to analyse, but no information on the global dynamics is lost. This is
in contrast to the analysis of the replicator equation in [3] where the cross sections for the return map are
placed near fixed points (the vertices) via a linearisation. These fixed points cannot be Nash equilibria of
the game and hence no information on the behaviour close to Nash equilibria can be achieved directly by
this method. This is especially true with respect to the interior Nash equilibrium. Whereas for the best
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response dynamics these cross-sections for the return map are given more naturally and no linearisation
is needed. Almost all orbits for the best response dynamics cross a transition face and so this allows
us for the best response dynamics to give results for almost all orbits. Moreover for some cases we are
also able to give some general results about the existence and stability of Nash equilibria. Especially
for the interior Nash equilibrium N1234, if it exists, we can give very precise results about its stability.
Clearly if we can state a result on the existence of a Nash equilibrium for the best response dynamics it
automatically applies for the replicator equation. The focus in [3,4] was on the study of the heteroclinic
cycle and hence no results on the Nash equilibria were given.

Lemma 2 If there is an orbit from Bi−1,i to Bi,i+1 the map from Bi−1,i to Bi,i+1 can be written in the
form (after an appropriate parametrisation):

Ti(u) :=
Piu

1 + di ·u
, Ti : R2

+ → R2
+

where Pi is a 2× 2 matrix. This is a central projection and the center of the projection (see Section 6.3)
is the best response vertex.
If there is an orbit from Bi−1,i to Bi−1,i following the full cycle the map from Bi−1,i to Bi−1,i can be
written in the form (after an appropriate parametrisation):

Π(u) :=
Pu

1 + d·u
, Π : R2

+ → R2
+ (13)

where P is a 2× 2 matrix.

Surprisingly the transition matrices for the stability analysis of the replicator equation in [3] are
identical to the transition matrices found for the best response dynamics (after a careful choice of
variables). Some technical difficulties arise in the analysis of the best response dynamics. This results
from the placement of the cross-sections and the fact that the return map Π is a fractional linear map
and hence a priori the map is not defined for all x ∈ R2. For the replicator equation there must exist an
orbit from one cross-section to the next, if only the neighbourhood is chosen small enough. This follows
directly from the form of the differential equation: ẋi = xifi(x). (In fact there are some other technical
difficulties for the replicator equation, regarding the mapping from one cross-section to the next. These
problems concern the shape of the image of the domain, which plays an important role in the analysis.)
For the best response dynamics it is not clear if there is always an orbit from one cross-section to the
next. Preliminarily this can only be guaranteed if an interior Nash equilibrium exists (because in that
case no strategy is dominated and so each pure strategy is used for some x), but as the examples in
Section 4 below show it is not always true that an interior Nash equilibrium N1234 exists. Thus we have
to show that no strategy is dominated to prove that there is in fact always an orbit from one cross-section
to the next. The problem with the denominator of the map can be solved by using a compactification of
R2 by introducing the real projective plane RP2 (in short notation P2). This is a detour, which was not
necessary for the analysis of the replicator equation. But the gain for the best response is that we get
more global results. To be more precise in [3,4] all results are local results. In contrast all statements
found in this work apply at least to all orbits following a specific cycle. This means in a lot cases a result
about almost all orbits.
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Let us now turn to the concrete results on the best response dynamics. We start with a result on so
called monocyclic matrices. The terminology follows [7] and it describes a payoff matrix for which all
tis are negative and hence the matrix only contains one better reply cycle.

A =


0 −c2 t3 e4

e1 0 −c3 t4

t1 e2 0 −c4
−c1 t2 e3 0

 (14)

where ci > 0, ei > 0 and ti < 0 for i = 1, ..., 4. In [10] is shown that for games with monocyclic
payoff matrix and an interior Nash equilibrium x∗ all orbits converge to the interior Shapley polygon if
x∗ ·Ax∗ < 0 holds. We used a different approach for the return map as in [10] and get more information
on the global dynamics. Proposition 16 below gives a complete classification of the attractors for
monocyclic matrices and hence a more precise result on the existence of a Shapley polygon. Additionally
we get conditions for the stability of the interior Nash equilibrium. In [6] a list of equivalences for
monocyclic games is given. With the help of the return map and some considerations on the index of
the Nash equilibria we can completely classify 4 × 4 monocyclic games see Section 7 below. The only
parameters needed for the classification are det(A), Πei and Πci.

A behaviour can be observed similar to a supercritical Hopf bifurcation for monocyclic payoff
matrices. In caseN1234·AN1234 is smaller than 0 there exists a Shapley polygon. In caseN1234·AN1234 = 0

holds this polygon shrank to the point N1234. We will call this a degenerated Shapley polygon. In case
N1234 ·AN1234 > 0 no Shapley polygon exists.

Theorem 3 Let A be a monocyclic payoff matrix. Then the following statements are equivalent

(i) There is no (possibly degenerated) Shapley polygon for the best response dynamics.

(ii) All orbits converge in finite time to the interior Nash equilibrium N1234.

(iii) The system is permanent for the replicator equation.

This result shows the strong connection between the replicator equation and the best response
dynamics and it follows immediately from [2] that at least the time average of every interior orbit
for the replicator equation converges to the interior Nash equilibrium. So by giving a classification
for the best response dynamics for monocyclic games we automatically improve some results for the
replicator equation.

The next two theorems give some results on payoff matrices with one additionally embedded
RSP cycle.

Remark There are some recurring terms in the following results and throughout the analysis in the
sections below (mainly in Lemma 11). To enhance readability we summarise these terms here.

Σ1 = −(c1e2t3 + c2e3t1 + t1t2t3)

Σ2 = −(c2e3t4 + c3e4t2 + t2t3t4)

e = Πei, c = Πci and q =
(√

e−
√
c
)2
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Σ1 and Σ2 can be interpreted as the stability criteria for the Shapley triangle to exist in the full game.
If the restricted game A|{1,2,3} has a Shapley triangle then Σ1 < 0 assures that it still exists in the full
game. The same holds for Σ2 and the 234 restricted game. The expression det(A) > −q is equivalent to
the requirement that the return matrix (13) has a real eigenvalue.

Theorem 4 Let A be a payoff matrix as in (8) with t1,2,4 < 0 and t3 > 0. Then the game has an
interior Shapley polygon, which is locally attracting if detA > 0 or e < c and one of the following
conditions hold.

(i) Σ1 > 0

(ii) Σ1 < 0,Σ2 > 0 and detA > max
{
e− c+ 2t4A

(24) − 2e4A
(14),−q

}
For (ii) there are two interior Shapley polygons. One is locally attracting and one is a saddle. To be more
precise every orbit following the 1234 is either attracted by the attracting Shapley polygon or repelled
(except a two dimensional manifold) by the saddle-type Shapley polygon to follow a different cycle after
some time.

This is exactly the same result as in [3] for the existence of relatively asymptotically stable heteroclinic
cycle following the cycle 1234. Again note that that this result is not simply local. It is a result for all
orbits following the 1234 cycle at least once. The next theorem shows that the return map for the best
response dynamics is again more ‘powerful’than for the replicator equation and gives a result on the
existence of the interior Nash equilibrium and its stability.

Theorem 5 Let A be a matrix as in (8) and let t1,2,4 < 0 and t3 > 0 hold. If e1e2t3 < |t1|c2c3 holds and

(a) Σ1 < 0 holds, then an attracting Shapley polygon following the 123 cycle exists.

(b) Σ1 > 0 holds and no interior Shapley polygon exists (see theorem 4) then an asymptotically stable
interior Nash equilibrium N1234 exists.

Theorem 4 together with Theorem 5 also give conditions under which an attracting Shapley triangle,
an attracting Shapley polygon in the interior and a second interior Shapley polygon, which is a saddle,
exist. The theorem above also provides a connection between the existence of an attracting Shapley
polygon and the stability of the interior Nash equilibrium. And hence it draws a connection to the
existence of heteroclinic cycles and the interior Nash equilibrium, which was not done in [3] and [4].

The next theorem presents some statements on games with two embedded RSP cycles.

Theorem 6 Let A be a matrix as in (8) and let t1 < 0, t2 < 0 and t3 > 0, t4 > 0 and let Σ1 > 0 and
Σ2 > 0 hold. Then if

(i) det(A) > 0 or e < c hold then an interior Shapley polygon exists, which attracts almost all orbits.

(ii) −q < det(A) < 0 and e > c hold then an interior Nash equilibriumN1234 exists, which is globally
asymptotically stable.
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Note that the results from Theorem 5 can be also applied so with two embedded RSP cycles it also
possible to construct examples with two Shapley polygons on the boundary. One following the 123
cycle and one following the 234 cycle. It is important to note that the return map per se only allows
a statement that the interior Nash equilibrium N1234 is relatively asymptotically stable (for a definition
see [3]) with respect to the set of orbits that follow the 1234 cycle. But on one hand we know for the
best response dynamics (especially when no orbit can follow a cycle different to 1234 infinitely many
times) that only a set of measure 0 does not converge to the interior Nash equilibrium and on the other
hand in cases mentioned above we were able with some additional considerations to show that no other
Nash equilibrium can exist and hence the interior equilibrium is globally asymptotically stable.

4. Examples

In this section some examples for the different cases in the sections above are presented. These
examples show that there is no connection between the support of the Shapley polygon and the support
of the Nash equilibria. There is also no connection between the global dynamics and the Nash equilibria.
The examples will also show that the support of the best reply cycle and the support of the cycle the
Shapley polygon follows, do not have to be identical. There is also an example, where the support of
the unique Nash equilibrium is not contained in the best reply cycle. Under this assumption the Shapley
polygon can be seen as another solution concept for games which only have unstable Nash equilibria.

Example 2 This example has a unique Shapley polygon. It lies on the 123 face and the game has
no interior Nash equilibrium. Note that the best response cycle connects the strategies 234, while the
attracting Shapley polygon follows the 123 cycle (Theorem 4). So the support of the best response cycle
does not have to be contained in the support of the attracting Shapley polygon and vice versa.

A =


0 −1 3

20
1

1 0 −1
5

2

−1 1 0 −4

−1 −15 1 0


The unique Nash equilibrium is given by

N123 =
(

11
81

10
81

20
27

0
)

Example 3 The second example has a unique Shapley polygon on the 123 face (Theorem 4) and a
unique Nash equilibrium on the 124 face. This example stresses the non-correlation of Nash equilibria
and Shapley polygons as neither the support of the Nash equilibrium is contained in the support
of the Shapley polygon nor is the support of the Shapley polygon contained in the support of the
Nash equilibrium.

A =


0 −3 3

2
1

1 0 −3 −15

−15 1 0 −1

−1 −39
20

1 0
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The unique Nash equilibrium is given by

N124 =
(

276
697

20
41

0 81
697

)
Example 4 The following example has one Nash equilibrium but no interior. The consequence is that
it is not necessary to have an interior Nash equilibrium, if there is a Shapley polygon with full support.
The Shapley polygon on the boundary lies on the 123 face, whereas the best response cycle connects 234
(Theorem 5).

A =


0 −1 1

3
1

1 0 −2 2

−1 1 0 −85

−2 −2 1 0


The unique Nash equilibrium is given by

N123 =
(

13
30

4
15

3
10

0
)

Example 5 The last example has two Shapley polygons on the boundary and one in the interior. The
two Shapley polygons on the boundary lie in the 123 and the 234 face (Theorem 6).

A =


0 −2 12623

20000
1

1 0 − 11
100

31
10

−3 1 0 −10

−1 −3 1 0


The unique Nash equilibrium is given by

N123 =
(

19223
256315

57092
256315

36000
51263

0
)

We get two attractors (Shapley polygons) on the boundary and an interior unstable Shapley polygon.
Additionally there is one orbit from the 234 face that moves towards N123.

5. General Properties of the Dynamics

The following lemma gives more insight in the solutions of the game with payoff matrix A and the
assumptions made in the beginning.

Lemma 7 Let A be a payoff matrix of the form (8) with the assumptions (9)–(12). Let x ∈ Bi with
i = 1, ..., 4 then there exists a T ∈ (0,∞] such that the solution x(t) is unique for t ∈ [0, T ] and
x(t) ∈

⋃4
i=1B

i holds for almost all 0 ≤ t ≤ T . For t > T the solution x(t) is no longer unique or there
is an interval I = [t′, t′′] such that the orbit x(t) 6∈

⋃4
i=1B

i for t ∈ I .
If T < ∞ holds, then either an interior Nash equilibrium is reached in finite time or x(t) converges for
t→∞ to a Nash equilibrium on the boundary. If T =∞ holds, then x(t)→ V0 as t→∞.

Remark Note that assumption (11) is needed for this lemma, which excludes forced movement. In
general we cannot predict the behaviour of the orbit after the interior Nash equilibrium N1234 is reached
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via a forced movement. If N1234 is the unique equilibrium the orbit cannot leave N1234, but if the game
has several Nash equilibria, then uniqueness is lost and it is possible to continue the path towards each
equilibrium at any time. If, for example, N13 exists the orbit can move towards N13 and then can move
towards strategy 1 or 3 at any time. In this case the orbit reenters the set

⋃4
i=1B

i.

Proof x ∈ Bi means that

(Ax)i > (Ax)j ∀j 6= i

which means that the orbit has to move towards ei and hence can be written as

x(t) = e−tx + (1− e−t)ei

for t small enough. If we look at (after a change of time t 7→ 1− e−t)

Ax(t) = Ax + tA(ei − x)

= (1− t)Ax + tAei

we can calculate, which strategy becomes the next best response. Aei is simply the i-th column of the
matrix A = (aij). We know by (9) and (10) that aii = 0, ai+1,i > 0 and ai−1,i < 0. Now there are two
possibilities for ai+2,i, which corresponds to ti. It can be greater or smaller than zero.

• ai+2,i < 0:
In this case it is obvious that only the payoff of the (i+ 1)-st strategy is increasing and for some t̃

(Ax(t̃))i = (Ax(t̃))i+1 > (Ax(t̃))i+2,i+3

which means that x(t̃) ∈ Bi,i+1 or in other words the best response is not unique at this moment. To
find out the possible solutions we have to look at the restricted game in which only these strategies
are used, which are best replies at the moment. The orbit can move in the direction of any Nash
equilibrium of this restricted game A|lm = (alm), l,m = i, i+ 1.
This restricted game A|lm has only one Nash equilibrium Ei+1 (because of (9) and (10)). Thus the
path can only be continued in one way, so x(t) enters Bi+1, which means that the solution stays
unique.

• ai+2,i > 0:
By (11) we know that in this case ai,i+2 < 0 must hold. Now three strategies can become best
replies which means that we have three possibilities

– x(t̃) ∈ Bi,i+1

as before x(t) ∈ Bi+1 for t > t̃.

– x(t̃) ∈ Bi,i+2

as before x(t) enters Bi+2 for t > t̃.



Games 2010, 1 201

– x(t̃) ∈ Bi,i+1,i+2

We have to look at the restricted 3×3 game and check for all possible Nash equilibria. The
matrix has the following sign pattern.

Ai,i+1,i+2 =

 aii = 0 ai,i+1 < 0 ai,i+2 < 0

ai+1,i > 0 ai+1,i+1 = 0 ai+1,i+2 < 0

ai+2,i > 0 ai+2,i+1 > 0 ai+2,i+2 = 0


so it is easy to see that this game has also only one Nash equilibrium (the pure strategy i + 2).
Hence the solution x(t) remains unique and enters Bi+2.

To show the second part of the lemma we first assume that T = ∞ then we know from Lemma 1
that x(t) converges to the set V0. Now assume that T < ∞. Using Lemma 8 (see below) we know
that the orbit x(t) ultimately follows only one better reply cycle. We distinguish between the following
two cases.

• The orbit follows the cycle 1234 for t < T .
We show that in this case the interior Nash equilibrium is reached in finite time. Take the sequence
x(tk) of turning points (note that at these points at least two strategies have the same payoff), then
the sequence tk converges to T . The map t 7→ (Ax(t))i is continuous for i = 1, ..., 4. As the
orbit follows the cycle 1234 along one cycle of the orbit the payoff of each strategy is equal to its
successor, so because of continuity as the difference between tk and tk+1 can be chosen arbitrarily
small, the difference between the different payoffs gets also arbitrarily small. Thus for t = T

all payoffs must be equal. This means that all strategies have the same payoff after finite time.
It is not possible to reach the boundary (from int ∆n) so the orbit must reach an interior Nash
equilibrium in finite time. To make this verbal argument more precise take a sequence of t1k such
that (Ax)1 = (Ax)2 holds and t2k such that (Ax)2 = (Ax)3 and so on. Each of these sequences
tik, i = 1, 2, 3, 4 converges to T and hence at T the payoffs for all strategies must be equal.

• The orbit follows the cycle 123 (which we can choose without loss of generality). Note that this
can only happen if the 123 better reply cycle exists, e.g. t1 < 0 and t3 > 0. We can use the same
argument as for the cycle 1234 that for x(T ) at least strategies 123 must have the same payoff.
This means that at x(T ) the following holds

e1 ·Ax = e2 ·Ax = e3 ·Ax ≥ e4 ·Ax

If all strategies have the same payoff a Nash equilibrium is reached, so we assume now that we
reach a point x(T ), where only 123 are the best replies. To continue the orbit, we have to look at
the restricted game A|123. It follows from assumptions (9)-(11) that this is an RSP game. Thus if
supp (x(T )) = 123, then the orbit has reached a Nash equilibrium. This can only happen if the
starting point of the orbit was already in the 123 face.
If supp (x(T )) 6= 123 then the orbit moves towards the unique Nash equilibrium of the RSP game.
Along this movement the payoff of strategies 123 change at the same rate, only the payoff of
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strategy 4 changes differently. Therefore the orbit either hits an interior Nash equilibrium (if
it exists) or converges to the unique Nash equilibrium of the RSP game (which is also a Nash
equilibrium of the full game). This means we either get x(T ) = N1234 or x moves towards N123.

Remark We can formulate the last statement in the proof above a bit stronger. Suppose T is finite and
the orbit x(t) follows the 123 cycle and reaches at time T a point p with payoff Ap = (a, a, a, b) with
a > b, then the orbit reaches an interior Nash equilibrium N1234 if and only if the Nash equilibrium N123

of the restricted RSP game A|123 is no Nash equilibrium of the full game. This follows directly from the
fact that the payoff of the fourth strategy changes differently to the payoff of the strategies 123.

Lemma 8 An orbit x(t) can switch between better reply cycles at most once.

Proof We show this without loss of generality for the 123 and 1234 cycles. First note that for the
possibility to switch between these two better reply cycles, there must be some orbits, which follow
the 123 cycle and some orbits which follow the 1234 cycle. Now let x be an orbit, which follows
the 123 (at least once). Hence this orbit must cross the sets B12, B23 and B31. Now let y be an orbit
which follows 1234. This orbit must cross the sets B12, B23, B34 and B14. If we start in B23 then
31 and 34 can become best replies. Thus there is a subset of B23 which is mapped to B134, which is
a one dimensional set by our assumption that A is generic. Hence the preimage of B134 on B23 is a
line segment s. The orbits starting in s and moving to B134 span a plane P in B3, which separates the
orbits that follow the 123 cycle and the orbits that follow 1234. Because of the uniqueness of solutions
in each Bi this plane P can only be crossed in one way and hence switching between cycles is only
possible once.

An immediate consequence of this lemma is

Corollary 9 For a matrix fulfilling (8) no chaotic behaviour can occur.

The results for the RSP game with respect to V0 possibly gives rise to the idea that the behaviour is
identical for a 4 × 4 payoff matrix in the sense that if V0 is not empty it is already an attractor. The
following example 6 shows that the set V0 in general neither has to be attracting nor invariant. It is
possible to enter or leave this set in finite time.

Example 6 We take the following payoff matrix

A =


0 −1 1 1

16

1 0 −8 1
4

−1 3 0 − 1
10

−1
7
−2 5 0

 (15)

This payoff matrix has a unique Nash equilibrium N1234 =
(

21
631
, 162

3155
, 88

3155
, 560

631

)
with

V (N1234) = N1234 ·AN1234 =
101

3155
> 0
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but the minimum of V (x) is attained at x̂ =
(

77
111
, 118

555
, 52

555
, 0
)

with V (x̂) = − 31
555

. The results from
Theorem 6 above show that almost all orbits converge to the interior Nash equilibrium.

Figure 2. The set V0 is shown by the green pyramid. The red orbit connects x̂, the top of the
pyramid, the Nash equilibrium N1234 and the target point N234 for the line segment spanned
s by x̂ and N1234.

But besides the result from this theorem we can give a complete description of this game. The set V0

is a pyramid with top p = (43/157, 121/1099, 57/1099, 620/1099). At this point the payoff vector Ap
is of the form (−w, 0, 0, 0) where w > 0. This means the trajectory starting at p continues towards the
unique Nash equilibrium N234 of the restricted 234 game N234 = (0, 51/1180, 29/1180, 55/59). (Note
that N234 is not a Nash equilibrium of the full game!) Inside the pyramid V (x) < 0 holds and outside
the pyramid V (x) > 0 holds. So every orbit that starts inside the pyramid reaches the line segment s
(spanned by x̂ and N1234) in finite time, where 234 are the best replies. (This means the orbit reaches
a point, where its payoff vector is of the form (−b, −a, −a, −a), with b > a). In s the orbit moves
towards N234, passes p and reaches N1234 in finite time. Close to s the dynamics is the same as for an
RSP game with attracting Nash equilibrium.
Every orbit that starts in V0 spirals (following the cycle 234) towards p and reaches it in finite time,
but after an infinite number of turning points! Then again the orbit reaches N1234 in finite time. Orbits
outside the pyramid behave similar to the orbits inside, they spiral towards s reach it in finite time and
thus reach the Nash equilibrium N1234 in finite time. In this example every orbit reaches N1234 in finite
time. Therefore N1234 is globally asymptotically stable.

6. Construction and Properties of the Return Map

The previous example showed that the analysis of the set V0 is not sufficient to analyse 4× 4 games.
So another tool is needed. We will introduce the concept of Poincaré or –also called– return maps in
this section. We just give a rough concept, which should be made intuitively clear by figure 3 below.
For more detailed information and all the technical assumptions needed see for example [6]. To create
a return map we simply take a cross-section and a starting point p in this cross-section. We now follow
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the orbit p(t) until it returns to the cross section for the first time. We denote this new point in the cross
section by p′. The map p 7→ p′ is called the return map. This map can be used to find periodic orbits,
fixed points and to check their stability.

Figure 3. A simplified drawing of the kind of return map we will use below.

p

p'

cross!section

transition face 1 transition face 2

We will use a set Bi−1,i as the cross-section and hence this set is the domain for our return map
(which will be defined later). Since solutions are piecewise linear it is not possible to calculate the return
map at once. Instead of doing so we have to calculate four transitions maps and glue them together to
obtain a return map. First we have to find a proper parametrisation of our four cross-sections. (These
cross-sections are simply given by B12, B23, B34 and B41 which correspond to the cycle given by the
structure of the matrix.) It turns out that the following parametrisation of the set Bi−1,i is very useful

m = (mj) = ((Ax)i − (Ax)j) for x ∈ Bi−1,i (16)

We get m ≥ 0. Without loss of generality we assume that m 6= 0 (if m = 0 then x is an interior
Nash equilibrium as all payoffs are equal there. This parametrisation can be interpreted as an incentive
function, since it measures the relative success of strategy i compared to all others.) Hence the domain
for our special parametrisation is a convex subset of R4

+ or is empty, which means that no orbit follows
the full cycle.

We calculate the transition from Bi−1,i → Bi,i+1. We do this by calculating the time it takes a point
from the inset Bi−1,i to reach the outset Bi,i+1.

Remark The terminology in- and outset is chosen since the set Bi can be entered through Bi−1,i and
can be left through Bi,i+1. Note that these need not be the only ways to enter or leave the set Bi.
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6.1. Proof of Lemma 2

Proof To improve the readability of the proof we prove this exemplarily for an orbit from B41 to B12.
So we start with a point x ∈ B41 and parametrise it as in 16. Since 4 and 1 are the best replies the orbit
moves towards 1. For t ≥ 0 small enough the following holds:

Ax(t) = e−tAx + (1− e−t)Ae1 (17)

We assume now that 2 becomes the next best reply. We have to solve

(Ax(t))1 = (Ax(t))2 (18)

for (17). The solution can be easily calculated and is given by

e−t
∗

=
e1

e1 + (Ax)1 − (Ax)2

(19)

where t∗ represents the transition time from B41 to B12. So we get the following mapping for m:

m =


0

(Ax)1 − (Ax)2

(Ax)1 − (Ax)3

0

 7→ λ


0

0

e1 ((Ax)1 − (Ax)3)− t1((Ax)1 − (Ax)2)

c1 ((Ax)1 − (Ax)2))

 = m′

with λ = e1
e1+(Ax)1−(Ax)2

. Clearly we get m′ ≥ 0. As there are two zeros in this map it is possible to
interpret this map as a two dimensional map, if we set u/e1 = (Ax)1− (Ax)2 and v/e1 = (Ax)1− (Ax)3

and u = (u, v) we obtain the following:

f :

(
u

v

)
7→ 1

1 + u
e21

(
v − t1

e1
u

c1
e1
u

)
(20)

This map (20) is of the form:

T1(u) :=
P1u

1 + d1 ·u
, T1 : B41 → B12

It is easy to see that for a arbitrary map Ti from Bi−1,1 to Bi,i+1 we get

Pi =

(
−ti/ei 1

ci/ei 0

)
, di =

(
1/e2i

0

)
(21)

where Pi is called the transition matrix. This map is projective map and properties of such maps can
be found in Section 6.3 including that the composition of two projective maps is again a projective map
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(this follows directly from (31)). Glueing (via a composition) four transition maps together gives us the
return map Π(u) from B41 to itself by

Π(u) =
Pu

1 + d·u
(22)

where P = P4P3P2P1 and d are given by

P =
1

e

(
c1c3e2e4 + c3e4t1t2 − t4Σ1 e1Σ2

c4Σ1 Σ3

)
(23)

d =

(
d1

d2

)
=

(
1
e21

+ c1
e1e23
− t1

e1e22
− c2t1

e1e2e24
+ t1t2

e1e2e23
− c1t3

e1e3e24
− t1t2t3

e1e2e3e24
1
e22

+ c2
e2e24
− t2

e2e23
+ t2t3

e2e3e24

)
(24)

6.2. A Necessary Condition for Shapley Polygons

The important property of the return map Π is that its fixed points either correspond to an interior
fixed point (Nash equilibrium) or to a periodic orbit (Shapley polygon) for the best response dynamics.
More precisely, the origin 0 ∈ R2

+ corresponds to an interior Nash equilibrium and every other fixed
point in B41 to a Shapley polygon. To find a fixed point of Π we have to solve the equation

u =
Pu

1 + d·u
(25)

which is simply an eigenvalue problem

(1 + d·u)u = Pu

Note that the vector m in (16) is nonnegative. Hence for a full cycle a nonnegative vector must be
mapped onto a nonnegative vector under the return map Π. If this is not possible no orbit follows the full
cycle. The following corollary follows directly

Corollary 10 A Shapley polygon following the full cycle can only exist if the return matrix P in (13) has
a nonnegative eigenvector.

Proof A Shapley polygon corresponds to a fixed point for the return map Π in (13). This fixed point is
an eigenvector of P by (25) and only nonnegative vectors can correspond to the setB41, where the return
map initially started.

We state some general results for a certain class of two by two matrices T from [3]. In [3] these are
conditions that the replicator equation has a relatively asymptotically stable heteroclinic cycle following
the full better reply cycle, whereas for the best response dynamics they are necessary conditions for an
attracting interior Nash equilibrium or the existence of an interior Shapley polygon.

Lemma 11 Let Σ1 = −(c1e2t3 + c2e3t1 + t1t2t3), Σ2 = −(c2e3t4 + c3e4t2 + t2t3t4), e = Πei, c = Πci

and q = (
√
e−
√
c)

2 and let P as in (13) and assume that pij 6= 0 for all i, j = 1, 2 and that p11 6= p22.
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Then P has a positive eigenvalue λ+ with a corresponding positive eigenvector u+ if and only if one of
the following statements hold

(i)Σ1 > 0, Σ2 > 0 and det(A) ≥ −q (26)

(ii)Σ2 < 0, Σ1 > 0 and det(A) > max{e− c− 2e1A
(21),−q} (27)

(iii)Σ2 > 0, Σ1 < 0 and det(A) > max{e− c+ 2t4A
(24) − 2e4A

(14),−q} (28)

where A(ij) is the determinant of the matrix we obtain by omitting the ith row and the jth column in A.
Additionally for the eigenvalue λ+ holds λ+ > 1 iff

(a) det(A) > 0 or (b) e < c (29)

6.3. Projective Geometry and Fractional Linear Maps

The next step is to analyse the behaviour if the iteration of the return map. This can lead to technical
difficulties because (22) cannot be defined for all x ∈ R2. So before we start with the analysis of the
concrete return map as described in Section 2 we give some general results on fractional linear maps of
the form

Π(x) :=
Px

1 + d·x
, Π(x) : R2\

{
x ∈ R2 : d·u = −1

}
→ R2 (30)

where P =

(
a b

c d

)
, d =

(
d1

d2

)
with det(P ) 6= 0. (We also implicitly assume that the matrix P

has no entry equal to zero. The results would not differ, but else the proofs would contain a lot of cases.)
Maps of this form are also called central projections or projective maps. We have already mentioned in
Section 6.2 that a nonnegative vector has to mapped onto a nonnegative vector. Consequently we have to
find conditions under which an invariant set in R2

+ exists. If there is no such set no orbit can follow the
full cycle infinitely many often hence no Shapley polygon in the interior can exist. We also know from
Section 6.2 the fixed points of (22) to study their stability we have to analyse Πn(x) = Π ◦Π ◦ ... ◦Π(x).

To do so we use projective geometry, for more details about projective geometry see [11]. We use
homogenous coordinates and get the following: If x0 6= 0 then (x0, x1, x2) ∼

(
1, x1

x0
, x2

x0

)
. These points

are called regular and this method creates a bijective mapping from the regular points in P2 to R2. Points
with x0 = 0 are called points at infinity and the set of all (0, x1, x2) is called the line at infinity. With
this concept we can write the two dimensional fractional linear map Π from (30) in the following form

T : P2 7→ P2, T (x) = T x =

 1 d1 d2

0 a b

0 c d


 x0

x1

x2

 (31)

In this map T the real points which satisfy 1 + d1x
′
1 + d2x

′
2 = 0 (with x′1 = x1/x0 and x′2 = x2/x0)

are mapped to the line at infinity. We denote with T both the matrix and the map, but as the map is
only a matrix times a vector, there is no problem in doing so. This map is a block triangular matrix and
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hence the product of two such matrices is again a block triangular matrix. This gives any easy proof that
the composition of two central projections is again a central projection. Any line l̂ with starting point
(x1, x2) and direction (l1, l2)

l̂ : X =

(
x1

x2

)
+ µ

(
l1

l2

)
in R2 can be embedded in P2 in the following form

l : X =

 1

x1

x2

+ µ

 0

l1

l2

 (32)

Here l from (32) contains only regular points which exactly correspond to the points defined by l̂. A map
through the origin in R2 is mapped under T to

T l =

 d1l1µ+ d2l2µ+ 1

µ(al1 + bl2)

µ(cl1 + dl2)


To calculate which lines in R2 embedded in P2 are invariant, we simply have to calculate the eigenvectors
of P (not of T ! But note that if we project the eigenvectors of T onto their second and third component,
we get the eigenvectors of P and the origin in R2.). These eigenvectors u+,− are given by (note that
we assumed in the beginning of this section that the matrix has no zero entry and its determinant is also
not zero!)

u+,− =

(
a− d±

√
tr(P )2 − 4 det(P )

2c
, 1

)
= k

(
1,

a− d∓
√

tr(P )2 − 4 det(P )

2b

)
(33)

with k ∈ R and their corresponding eigenvalues

λ+,− =
1

2

(
tr(P )±

√
tr(P )2 − 4 det(P )

)
(34)

chosen such that |λ+| ≥ |λ−|. We are only interested in real eigenvalues and hence we assume for all
following considerations

tr(P )2 − 4 det(P ) > 0 (35)

which means that one (and hence both) eigenvalue is real. Note that due to the block form of the matrix
T its eigenvalues are given by 1 and the eigenvalues of P . We also get from (35) that P is similar to a
diagonal matrix and as a consequence we get that T is similar to (a matrix we will also call T )

T =

 1 d1 d2

0 λ+ 0

0 0 λ−

 (36)
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It is easy to see (by induction) that

T nx =

 x1 + d1

∑n−1
j=0 λ

j
+x2 + d2

∑n−1
j=0 λ

j
−x3

λn+x2

λn−x3

 ∼
 1

λn
+x2

N
λn
−x3

N

 (37)

whereN = x1 +d1

∑n−1
j=0 λ

j
+x2 +d2

∑n−1
j=0 λ

j
−x3 and hence T nx→ (1, 0, 0) for n→∞, if |λ+,−| ≤ 1.

This means if the absolute value of both eigenvalues of P is smaller than or equal to 1, the iteration of
the map Π in (30) leads to convergence to the origin. If we use that

lim
n→∞

λ−n+ T nx = ku∗+ (38)

where u∗+ is the equivalent (or the regular point corresponding to u+) of u+ in P2 and k ∈ R and x is
an arbitrary vector, but not in span{(1, 0, 0) , u∗−} (this set corresponds to the eigenspace E(λ−) in R2)
and |λ+| > max {1, |λ−|} holds, we get that all vectors x, which are not eigenvectors, converge to the
eigenspace of the eigenvalue with greatest absolute value. (This can be seen easily by using the fact that
T is diagonalizable.) It follows from (35) that T has 3 different eigenvalues and hence three different
eigenvectors. These eigenvectors are regular points in P2 and therefore corresponding to points in R2

and hence the map Π has three fixed points if λ+,− > 0 holds and each line connecting two of these
fixed points is invariant under the map Π. More precisely, one eigenvector of T corresponds to the origin
in R2 and hence two of these three invariant lines correspond to the eigenspaces E(λ+) and E(λ−) of
P . The third invariant line connects the fixed points inside these eigenspaces and is generically disjoint
from the origin. This third line corresponds to the set V0 for the best response dynamics.

Proposition 12 Let det(P ) > 0 and λ+ > 1 then all x ∈ P2 (except the two different eigenvectors of
T ) converge to the fixed point in E(λ+) in a monotone way. If 0 < λ+ ≤ 1 all x ∈ P2 converge to
the origin.

Proof Convergence properties follow from (38) and from det(P ) > 0 (both eigenvalues are positive)
follows det(T ) > 0 and hence T is orientation preserving and convergence is monotone.

Corollary 13 It is impossible for an attracting interior Nash equilibrium N1234 and an interior Shapley
polygon to exist simultaneously.

Proof An interior Shapley polygon only exists if the dominating eigenvalue λ+ is greater than 1.
Conversely N1234 is only attracting (with respect to the orbits that follow the 1234 cycle) if λ+ is smaller
or equal 1.

6.4. The Domain of the Return Map

Definition 5 A strategy y is called dominated if there exists p ∈ ∆n such that

n∑
i=1

piaij ≥
n∑
i=1

yiaij
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for all j = 1, ..., n and inequality is strict for one j. If inequality is strict for all j then y is called
strictly dominated.

Finally we define the domain of the return map in the following way

Π(u) =
Pu

1 + d·u
, D → B14 (39)

where

D =

{
u ∈ B14 :

Pu
1 + d·u

∈ B14

}
(40)

A crucial point is to show that D is not empty. To do this we use the proof of a theorem from [6]
(page 90, Theorem 8.3.2). We directly get the following

Lemma 14 Let x ∈ int ∆n if ek is contained in the ω-limit (x(t)) for (2) then k cannot be a dominated
strategy.

The lemma above shows that if the replicator equation has a heteroclinic cycle following the
cycle 1234,which attracts an interior orbit, then no strategy can be dominated. Hence, whenever P
has a positive eigenvector thenD is not empty! This follows directly by Lemma 11. In [3] the conditions
from Lemma 11 guarantee the existence of a relatively asymptotically heteroclinic cycle following the
cycle 1234. Hence at least one interior orbit is attracted by this heteroclinic cycle.

6.5. Shapley Triangles in 4×4 Games

This section does not apply the methods of the return maps. We constructed the return map to analyse
orbits that follow the full cycle. But as we are interested in games with embedded RSP cycle we have
to find conditions under which these RSP cycles form have a Shapley triangle. It turns out that a direct
approach is easier than an approach via return maps to find this conditions.

Definition 6 If the payoffs of all unused strategies along a Shapley polygon are negative, the Shapley
polygon is called regular.

Proposition 15 Given a payoff matrix A as in (8) then

• The 123 cycle has an asymptotically stable regular Shapley polygon, iff all of the following
conditions are satisfied

(i) t3 > 0, t1 < 0,

(ii) e1e2t3 < |t1|c2c3 and

(iii) Σ1 = −(c1e2t3 + c2e3t1 + t1t2t3) < 0.

• The 234 cycle has an asymptotically stable regular Shapley polygon, iff all of the following
conditions are satisfied

(i) t4 > 0, t2 < 0,
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(ii) e2e3t4 < |t2|c3c4 and

(iii) Σ2 = −(c2e3t4 + c3e4t2 + t2t3t4) < 0.

Proof We take the following payoff matrix

Ã =


0 −b2 a3 d1

a1 0 −b3 d2

−b1 a2 0 d3

s1 s2 s3 0

 (41)

This is a rock-scissors-paper game, if we take Ã|{123}. So we simply added a fourth arbitrary strategy to
a typical RSP game. It is well known [6] that a Shapley polygon exists for the RSP game iff

a1a2a3 < b1b2b3 (42)

holds. We will call the sis the transversal incentives since they are the positive or negative incentives to
leave the 123 surface.

We denote the vertices of the Shapley polygon by S1, S2 and S3. We need that (ÃSi)4 < 0 holds
for i = 1, 2, 3. Because 4 must not be the best reply to a vertex of the Shapley polygon as in this case
the dynamics would leave the 123 surface and enter the interior of ∆4. This leads to the following
inequalities:

b2b3s1 + a1a3s2 + b2a1s3 < 0 (43)

b3a2s1 + b1b3s2 + a1a2s3 < 0 and (44)

a2a3s1 + b1a3s2 + b1b2s3 < 0 (45)

Clearly one of the si must be negative to fulfil these inequalities. We assume without loss of generality
s1 < 0 holds. Note that these inequalities are trivially fulfilled if si < 0 holds for all i = 1, 2, 3.

• Firstly assume that s3 > 0 holds:

Now suppose (44) holds. We get

−a2s1 >
b1a3s2 + b1b2s3

a3

and hence we obtain

−a2b3s1 > b3 ·
b1a3s2 + b1b2s3

a3

= b1b3s2 + b1b2b3 ·
s3

a3

> b1b3s2 + a1a2s3

Hence (45) also holds.
We also have (together with (42))

b2b3 >
a1a2a3

b1
and − s1 >

b1a3s2 + b1b2s3

a2a3
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so we get

−b2b3s1 >
a1a2a3

b1
· b1a3s2 + b1b2s3

a2a3

= a1a3s2 + a1b2s3

and (43) also holds.

• Secondly assume that s2 > 0 and s1,3 < 0 hold.

Suppose (44) holds. We have

−s2 >
b3a2s1 + a1a2s3

b1b3

We get

−b1a3s2 > b1a3 ·
b3a2s1 + a1a2s3

b1b3
= a2a3s1 +

a1a2a3s3

b3

Since s3 < 0 is satisfied we have (see (42))

a1a2a3

b3
< b1b2 and

a1a2a3s3

b3
> b1b2s3

and (44) holds.
We also have

−a1a3 > −
b1b2b3
a2

−s2 >
b3a2s1 + a1a2s3

b1b3

so we get

−a1a3s2 >
b1b2b3
a2

· b3a2s1 + a1a2s3

b1b3
= b2b3s1 + b2a1s3

and (43) holds. A simple relabelling of the payoffs proves the proposition.

7. A Complete Classification of the Attractors of Monocyclic 4×4 Matrix

This section splits up in two parts. The first part gives a complete classification of monocyclic payoff
matrices and provides a connection of the global stability of the interior Nash equilibrium N1234 for the
best response dynamics and permanence for the replicator equation. The second part provides the very
technical but necessary part on the properties of the payoff matrix.

7.1. Classification of the Asymptotical Behaviour

As shown in 6 the return map Π is of the following form

Π(u) =
Pu

1 + d·u
, B14 → B14
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In the case of a monocyclic matrix we get D = B14, as the transition matrices are nonnegative
and as a consequence we get that P > 0 (as a product of four nonnegative matrices) and d > 0

(because of (24)) hold. Hence for the map R2
+ is invariant and as we have shown every x ∈ B14 returns

to this set after one cycle in case our matrix is monocyclic (see Lemma 7). The remaining question is if
there are any fixed points in R2

+ besides the origin 0.
To calculate the fixed points of Π we need to find the eigenvectors of the return matrix P . The

Perron-Frobenius theorem states that P has a dominating eigenvalue λ+ to a positive eigenvector u+ and
that any other eigenvector v which is not in the eigenspace of λ+, symbolically v 6∈ E(λ+) is not positive.
The remaining question is under which conditions λ+ is greater or smaller than 1. The following theorem
answers this question and provides a complete classification for monocyclic payoff matrices:

Proposition 16 For a monocyclic matrix (14) one of the following statements holds for the best response
dynamics (1):

(i) λ+ < 1 ⇔ det(A) < 0 and e ≥ c: All orbits converge in finite time to the unique interior Nash
equilibrium N1234.

(ii) λ+ = 1 ⇔ det(A) = 0 and e > c: All orbits converge (no longer in finite time) to the interior
Nash equilibrium N1234, which we will call a degenerated Shapley polygon.

(iii) λ+ > 1⇔ det(A) > 0 or e < c: Almost all orbits converge to the interior Shapley polygon.

Proof First note that the classification is complete because detA = 0 and e = c cannot hold
simultaneously as shown in Lemma 19 below. The statements about λ+ follow directly from
Lemma 11, because for a monocyclic matrix Σ1,2 > 0 is automatically fulfilled. Convergence to N1234

or an interior Shapley polygon follows from Proposition 12. The equivalence in (ii) follows from some
easy calculations. In case of convergence to the interior Nash equilibrium N1234 it remains to show that
all orbits converge to it (not only those following the 1234 cycle). This follows from the uniqueness of
the equilibrium by Lemma 18 below. Convergence in finite time in (i) is an application of Lemma 1. If
convergence would not occur in finite time V (x(t)) would go to zero, but V (N1234) > 0 holds.

In [6] (p. 178) it is shown that a system is permanent under the replicator equation (2) iff we obtain
an M -matrix from A by moving the top row of A to the bottom. The following corollary contains the
statements from Theorem 3 and provides a connection betweenM -matrices, permanence and the interior
Nash equilibrium N1234. It is a collection of statements in [6], Proposition 16 and Lemma 20 below.

Corollary 17 For a monocyclic matrix (14) the following statements are equivalent:
(i) For the best response dynamics (1) there exists no (degenerated) Shapley polygon.
(ii) For the best response dynamics all orbits converge in finite time to the interior Nash
equilibrium N1234.

(iii) There is an interior Nash equilibrium N1234 and N1234 ·AN1234 > 0.
(iv) For the replicator equation (2) the system is permanent.
(v) det(A) < 0 and e ≥ c hold.
(vi) The matrix C obtained by moving the top row of A to the bottom is an M -matrix.
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Remark As the examples in Section 4 show in the other cases the existence and stability of Nash
equilibria is not so easy to predict. There are games, for which det(A) > 0 holds, but they do not have
an interior Nash equilibrium. These examples also show that in case of e > c neither the existence of
Nash equilibria on the boundary is guaranteed nor is the uniqueness of a Nash equilibrium guaranteed.

7.2. General Remarks on the Payoff Matrix

We start with a result on the interior Nash equilibrium.

Lemma 18 Let A be a generic monocyclic payoff matrix as in (14). Suppose N1234 exists and
det(A) ≤ 0 and e > c hold then N1234 is the unique Nash equilibrium of the game.

Proof First we show that no Nash equilibrium on the 13 or 24 face can exist. We show this only for the
24 face as the proof for the 13 face is the same (modulo some permutations of the indices).
We start with

F24 =

(
0,

t4
t2 + t4

, 0,
t2

t2 + t4

)
and calculate the payoffs there. We have to check, if (AF24)1 < (AF24)2 and (AF24)3 < (AF24)2 can
hold simultaneously. Therefore we have to check if this system of inequalities has a solution.

(i) e1e2e3e4 − c1c2c3c4 > 0 (46)

(ii) det(A) ≤ 0 (47)

(iii) e4t2 − c2t4 ≥ t2t4 and (48)

(iv) e2t4 − c4t2 ≥ t2t4 (49)

First note that if (47) holds then also

−c1c2c3c4 + c2c4e1e3 + c1c3e2e4 − e1e2e3e4 < 0 (50)

holds as we only omit positive terms. Similarly if (48) and (49) hold then

e4t2 ≥ c2t4 and (51)

e2t4 ≥ c4t2 (52)

also hold. Combining these inequalities leads to the following system

(i) c2c4e1e3 + c1c3e2e4 < e1e2e3e4 + c1c2c3c4 (53)

(ii) c2c4 ≥ e4e2 and (54)

(iii) e1e3 ≥ c1c3 (55)

Now (53) can be transformed into

e2(c1c3e4 − e1e3e4) < c1c2c3c4 − c2c4e1e3 (56)
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using (55) for (56) we get

e2 >
c2c4
e4

(57)

which is a contradiction to (54). Hence F24 cannot be a Nash equilibrium for the game. (Similarly it is
impossible for F13 to be a Nash equilibrium.)

The next step is to check all possible Nash equilibria p with card(supp(p)) = 3. To do so we look at
the restricted game 123. (The proof is the same for any other face). We assume that this restricted game
has an interior equilibrium N123. Now we use the index theorem (see for example [6] page 159). Clearly
the pure strategy 3 is a Nash equilibrium of the restricted game, if there is also an interior equilibrium
N123 there must be a third equilibrium N13. We now check the indices. We get

i(e3) = 1 (58)

i(N13) = −1 (59)

and hence i(N123) = 1 (as the indices must sum up to 1). Every Nash equilibrium with
card(supp(p)) = 3 has index 1. As a consequence only three Nash equilibria can exist in the full
game and the index of the interior Nash equilibrium must be −1. We will show that this leads to a
contradiction. To do so we use that for a unique interior Nash equilibrium N1234 the following holds
(see [6] page 165)

i(N1234) = (−1)n−1sgn
det(A)

N1234 ·AN1234

= (−1)n−1sgn det(An) (60)

where An is the matrix we obtain if we replace the last column in A with the vector which entries are all
1. It turns out (see below) in case of e > c thatAn has the same sign asA and hence we get i(N1234) = 1,
which is a contradiction.

det(An) = c1c2c3 − c2e1e3 − e1t2t3 + c1c3e2 − e1e2e3 + c3t1t2 + c2e3t1+

+t1t2t3 + c1e2t3 + e1e2t3 + c2c3t1

Suppose now det(An) is greater than zero then clearly also the following holds as we have only omitted
negative terms

c1c2c3 − c2e1e3 + c1c3e2 − e1e2e3 + c3t1t2 > 0 (61)

Again we get a system of inequalities

(i) − c1c2c3c4 + c1c3e2e4 − e1e2e3e4 + c3e4t1t2 + c2c4e1e3 < 0

(ii) c1c2c3 − c2e1e3 + c1c3e2 − e1e2e3 + c3t1t2 > 0 and

(iii) e1e2e3e4 > c1c2c3c4
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We have to show that this system has no solution. We can transform this system into

(i) c2c4(e1e3 − c1c3) < e4(−c1c3e2 + e1e2e3 − c3t1t2)
(ii) c2e4(c1c3 − e1e3) > e4(−c1c3e2 + e1e2e3 − c3t1t2) and

(iii) e1e2e3e4 > c1c2c3c4

This system can be written as

(i) c2c4(e1e3 − c1c3) < e4(−c1c3e2 + e1e2e3 − c3t1t2) < c2e4(c1c3 − e1e3) and (62)

(ii) e1e2e3e4 > c1c2c3c4 (63)

From (62) follows that

(e1e3 − c1c3) < 0 (64)

If (62) and (63) hold then also

e2e4(c1c3 − e1e3) < c2c4(c1c3 − e1e3) (65)

holds. We get

e2e4 < c2c4 (66)

but this is together with (64) a contradiction to e > c. Therefore det(A) and det(An) cannot be of
opposite sign.

Lemma 19 For a monocyclic payoff matrix A as in (14) det(A) = 0 and e = c cannot hold
simultaneously.

Proof We have to solve this system of equations:

−c1c2c3c4 + c2c4e1e3 + c1c3e2e4 + c3e4t1t2 + c4e1t2t3+

+c2e3t1t4 + c1e2t3t4 + t1t2t3t4 = e1e2e3e4 (67)

e1e2e3e4 = c1c2c3c4 (68)

Obviously each term in (67) that contains a ti is positive, so it suffices to show that a system

−c1c2c3c4 + c2c4e1e3 + c1c3e2e4 − e1e2e3e4 + p = 0 (69)

e1e2e3e4 = c1c2c3c4 (70)
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with p > 0 has no solution. First note that from (69) follows that e1e3 6= c1c3 must hold. We assume
now (without loss of generality) that e1e3 > c1c3 holds, hence also c2c4 > e2e4 must hold. If we write
(69) in the following form

c2c4(e1e3 − c1c3) + e2e4(c1c3 − e1e3) + p = 0

it is easy to see that the left side is always greater than zero and hence the system has no solution,
therefore det(A) = 0 and e = c cannot hold simultaneously.

Proposition 20 For (14) the following statements are equivalent:

(i) det(A) < 0 and e ≥ c holds.

(ii) The matrix C obtained by moving the top row of A (see (14)) to the bottom is an M -matrix.

Proof To prove this we will show that all leading principal minors are positive. Clearly

e1 > 0, e1e2 > 0 and

det(C) > 0 (71)

hold. Thus we have only to check if

−c1c3e2 + e1e2e3 − c3t1t2 > 0

also holds. We assume that the converse is true. We will show that the resulting system of inequalities
will lead to a contradiction. We have

−c1c3e2 + e1e2e3 − c3t1t2 < 0 (72)

e1e2e3e4 − c1c2c3c4 ≥ 0 (73)

c1c2c3c4 + e1e2e3e4 > c3e4t1t2 + c1c3e2e4 + c2c4e1e3 (74)

where (74) comes from (71) after omitting some negative terms on the left side. Multiplying (72) with
e4 and putting these inequalities together we get

c1c2c3c4 ≤ e1e2e3e4 < e4c3(c1e2 + t1t2) < e1e2e3e4 + c1c2c3c4 − c2c4e1e3

and hence

0 ≤ e1e2e3e4 − c1c2c3c4 < c1c3(e2e4 − c2c4) + c3e4t1t2 < e1e3(e2e4 − c2c4)

From this follows that e1e3 > c1c3 and e2e4 > c2c4 hold and hence we can write

0 ≤ e1e2e3e4 − e1c2e3c4 < c1c3(e2e4 − c2c4) + c3e4t1t2 < e1e3(e2e4 − c2c4)



Games 2010, 1 218

which is a contradiction. This proof also works in the other direction, clearly if det(C) > 0 holds
then also det(A) < 0 holds, if additionally all leading principal minors are positive then e > c holds.

8. Proofs

8.1. Proof of Theorem 4

We split the proof in two parts. The first part is on a certain property of the return map.

Lemma 21 With the assumptions from Theorem 4 we get

Π

(
0

v

)
∈ R2

+

for v > 0.

Proof It holds that

Π

(
0

v

)
= (1 + d2v)

(
p12v

p22v

)
and hence we have to show that under the assumptions made d2, p12 and p22 are greater than 0. That
p22 > 0 holds can be seen by using the fact that tr(P ) > 2

√
detP > 0 holds. From

p22 =
c2c4e3 + c4t2t3

e2e3e4
> 0⇒ c2c4e3 + c4t2t3 > 0⇒ c2e3 + t2t3 > 0

now follows that

d2 =
1

e22
+

c2
e2e24

− t2
e2e23

+
t2t3
e2e3e24

> 0⇔ e23e
2
4 + c2e2e

2
3 − e2e24t2 > −e2e3t2t3

holds. Lastly note that p21 = e1Σ2 and as Σ2 > 0 holds under the assumptions made (use Mathematica
to prevent some lengthy calculations to show this. The Mathematica file is added as a supplementary file
called additionalmaterial.nb), which proves the lemma.

Proof of Theorem 4 It follows from Lemma 11 that the conditions guarantee the existence of a positive
eigenvalue λ+ and a corresponding positive eigenvector. It follows from Lemma 14 that no strategy is
dominated. Hence each strategy is used and the domain of the return map is not empty. It follows from
Lemma 21 that an invariant set in R2

+ exists, which is at least given by the set that lies between u+

and (0, v).

8.2. Proof of Theorem 5 and 6

Proof of Theorem 5 The first part is from Lemma 15 and assures the existence of an attracting Shapley
polygon on the 123 face. For the asymptotic stability of the Nash equilibrium it only remains to show
that there are no other Nash equilibria in the game. This can be seen by using the index theorem [6]. If
there are only regular Nash equilibria there must be a Nash equilibrium with index −1 to be able to get
more than one Nash equilibrium. With the help of Mathematica we get that N24 (which has index −1)
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does never exist, if Σ1 > 0, Σ2 > 0 and e1e2t3 < |t1|c2c3 hold. Again we use Mathematica to show
that the index of the interior Nash equilibrium N1234 is +1 (with the formula from (60)), so it must be
the unique Nash equilibrium and hence it is asymptotically stable. Note that no other Shapley polygon
can exist. The Mathematica file is added as a supplementary file called additionalmaterial.nb.

Proof of Theorem 6 This follows directly from the proofs of Theorem 5 and Theorem 4.

9. Conclusions

In this paper we presented some results on the existence and stability of Shapley polygons. It turns out
that it is possible to give a complete classification of the attractors for monocyclic matrices, whereas—as
the examples in Section 4 show—it is rather impossible to give a classification for general matrices. It
should be also mentioned that the support of Nash equilibria, Shapley polygons and best response cycles
may be disjoint making it even harder to predict the asymptotical behaviour. As shown in [2] there is a
strong connection between the replicator equation and the best response dynamics. This connection is
especially stressed by the fact that we were able to construct a a return map which had an identical return
matrix as found in the analysis of the replicator equation. The return map found in this work turned
out to be able to deliver also results on the interior Nash equilibrium. From this point of view it might
be interesting to have a closer look at the replicator equation and check the orbits, whose time averages
converge to the saddle-type Shapley polygon.
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