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Abstract: We study the stability of social and economic networks when players are
farsighted. We first provide an algorithm that characterizes the unique pairwise and
groupwise farsightedly stable set of networks under the componentwise egalitarian allocation
rule. We then show that this set coincides with the unique groupwise myopically stable set of
networks but not with the unique pairwise myopically stable set of networks. We conclude
that, if groupwise deviations are allowed then whether players are farsighted or myopic does
not matter; if players are farsighted then whether players are allowed to deviate in pairs only
or in groups does not matter.
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1. Introduction

The organization of agents into networks and groups or coalitions plays an important role in the
determination of the outcome of many social and economic interactions.1 A simple way to analyze the
networks that one might expect to emerge in the long run is to examine the requirement that players do

1See Jackson [1–3], or Goyal [4] for a comprehensive introduction to the theory of social and economic networks.
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not benefit from altering the structure of the network. An example of such a condition is the pairwise
stability notion defined by Jackson and Wolinsky [5]. A network is pairwise stable if no player benefits
from severing one of her links and no two players benefit from adding a link between them. Pairwise
stability is a myopic definition. Players are not farsighted in the sense that they do not forecast how others
might react to their actions. For instance, the adding or severing of one link might lead to subsequent
addition or severing of another link. If players have very good information about how others might react
to changes in the network, then these are things one wants to allow for in the definition of the stability
concept. For instance, a network could be stable because players might not add a link that appears
valuable to them given the current network, as that might in turn lead to the formation of other links and
ultimately lower the payoffs of the original players.

In this paper we address the question of which networks one might expect to emerge in the long
run when players are either farsighted or myopic. Herings, Mauleon and Vannetelbosch [6] have first
extended the Jackson and Wolinsky pairwise stability notion to a new set-valued solution concept, called
the pairwise myopically stable set. A set of networks G is pairwise myopically stable (i) if all possible
myopic pairwise deviations from any network g ∈ G to a network outside the set are deterred by
the threat of ending worse off or equally well off, (ii) if there exists a myopic improving path from
any network outside the set leading to some network in the set, and (iii) if there is no proper subset
of G satisfying Conditions (i) and (ii). The pairwise myopically stable set is non-empty, unique and
contains all pairwise stable networks. They have then introduced the pairwise farsightedly stable set,
to predict which networks may be formed among farsighted players.2 The definition corresponds to the
one of a pairwise myopically stable set with myopic deviations and myopic improving paths replaced
by farsighted deviations and farsighted improving paths. A farsighted improving path is a sequence of
networks that can emerge when players form or sever links based on the improvement the end network
offers relative to the current network. Each network in the sequence differs by one link from the previous
one. If a link is added, then the two players involved must both prefer the end network to the current
network. If a link is deleted, then it must be that at least one of the two players involved in the link prefers
the end network. Similarly, it is straightforward to define the notions of groupwise myopically stable sets
and of groupwise farsightedly stable sets for situations in which players can deviate in group. Herings,
Mauleon and Vannetelbosch [6] have shown that a non-empty pairwise (groupwise) farsightedly stable
set always exists. In addition, they have provided necessary and sufficient conditions for a set to be a
unique pairwise (groupwise) farsightedly stable set of networks.

We first provide an algorithm that characterizes the unique pairwise and groupwise farsightedly stable
set of networks under the componentwise egalitarian allocation rule. We then show that this set coincides
with the unique groupwise myopically stable set of networks but not with the unique pairwise myopically
stable set of networks. We conclude that, if groupwise deviations are allowed then whether players are
farsighted or myopic does not matter; if players are farsighted then whether players are allowed to deviate
in pairs only or in groups does not matter. In addition, we show that alternative notions of farsighted
stability also single out the same set as the unique farsighted stable set.

2Other approaches to farsightedness in network formation are suggested by the work of Chwe [7], Xue [8], Herings,
Mauleon and Vannetelbosch [9], Mauleon and Vannetelbosch [10], Dutta, Ghosal and Ray [11], Page, Wooders and Kamat
[12], and Page and Wooders [13].
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The paper is organized as follows. In Section 2 we introduce some notations and basic properties. In
Section 3 we define the notions of myopically stable sets and of farsightedly stable sets. In Section 4
we characterize the unique farsightedly stable set of networks under the componentwise egalitarian
allocation rule. In Section 5 we consider other concepts of farsighted stability. In Section 6 we conclude.

2. Networks

Let N = {1, . . . , n} be the finite set of players who are connected in some network relationship. The
network relationships are reciprocal and the network is thus modeled as a non-directed graph. Individuals
are the nodes in the graph and links indicate bilateral relationships between individuals. Thus, a network
g is simply a list of which pairs of individuals are linked to each other. We write ij ∈ g to indicate that
i and j are linked under the network g. Let gS be the set of all subsets of S ⊆ N of size 2.3 So, gN is
the complete network. The set of all possible networks or graphs on N is denoted by G and consists of
all subsets of gN . The network obtained by adding link ij to an existing network g is denoted g + ij and
the network that results from deleting link ij from an existing network g is denoted g − ij. Let

g|S = {ij | ij ∈ g and i ∈ S, j ∈ S}

Thus, g|S is the network found deleting all links except those that are between players in S. For any
network g, let N(g) = {i | ∃ j such that ij ∈ g} be the set of players who have at least one link in the
network g. A path in a network g ∈ G between i and j is a sequence of players i1, . . . , iK such that
ikik+1 ∈ g for each k ∈ {1, . . . , K − 1} with i1 = i and iK = j. A network g is connected if for each
pair of agents i and j such that i 6= j there exists a path in g between i and j. A non-empty network
h ⊆ g is a component of g, if for all i ∈ N(h) and j ∈ N(h) \ {i}, there exists a path in h connecting i

and j, and for any i ∈ N(h) and j ∈ N(g), ij ∈ g implies ij ∈ h. The set of components of g is denoted
by C(g). Knowing the components of a network, we can partition the players into groups within which
players are connected. Let Π(g) denote the partition of N induced by the network g.

A value function is a function v : G → R that keeps track of how the total societal value varies
across different networks. The set of all possible value functions is denoted by V . An allocation rule is
a function Y : G× V → RN that keeps track of how the value is allocated among the players forming a
network. It satisfies

∑
i∈N Yi(g, v) = v(g) for all v and g.

Jackson and Wolinsky [5] have proposed a number of basic properties of value functions and
allocation rules. A value function is component additive if v(g) =

∑
h∈C(g) v(h) for all g ∈ G.

Component additive value functions are the ones for which the value of a network is the sum of the
value of its components. For a component additive v and network g, the componentwise egalitarian
allocation rule Y ce is such that for any h ∈ C(g) and each i ∈ N(h), Y ce

i (g, v) = v(h)/#N(h). For
a v that is not component additive, Y ce(g, v) = v(g)/n for all g; thus, Y ce splits the value v(g) equally
among all players if v is not component additive.

Which networks are likely to emerge in the long run? The game-theoretic approach to network
formation uses two different notions of a deviation by a coalition. Pairwise deviations (Jackson and

3Throughout the paper we use the notation ⊆ for weak inclusion and  for strict inclusion. Finally, # will refer to the
notion of cardinality.
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Wolinsky [5]) are deviations involving a single link at a time. That is, link addition is bilateral (two
players that would be involved in the link must agree to adding the link), link deletion is unilateral (at
least one player involved in the link must agree to deleting the link), and network changes take place one
link at a time. Groupwise deviations (Jackson and van den Nouweland [14]) are deviations involving
several links within some group of players at a time. Link addition is bilateral, link deletion is unilateral,
and multiple link changes can take place at a time. Whether a pairwise deviation or a groupwise deviation
makes more sense will depend on the setting within which network formation takes place. The definitions
of stability we consider allow for a deviation by a coalition to be valid only if all members of the coalition
are strictly better off, and in doing so we deviate from the original definitions by Herings, Mauleon and
Vannetelbosch [6] where it is sufficient that at least one coalition member is strictly better off while all
other members are at least as well off.

3. Definitions of Stable Sets of Networks

3.1. Myopic Definitions

We first introduce the notion of pairwise myopically stable sets of networks due to Herings, Mauleon
and Vannetelbosch [6] which is a generalization of Jackson and Wolinsky [5] pairwise stability notion.4

Pairwise stable networks do not always exist. A pairwise myopically stable set of networks is a set
such that from any network outside this set, there is a myopic improving path leading to some network
in the set, and each deviation outside the set is deterred because the deviating players do not prefer the
resulting network. The notion of a myopic improving path was first introduced in Jackson and Watts [15].
A myopic improving path is a sequence of networks that can emerge when players form or sever links
based on the improvement the resulting network offers relative to the current network. Each network in
the sequence differs by one link from the previous one. If a link is added, then the two players involved
must both prefer the resulting network to the current network. If a link is deleted, then it must be that at
least one of the two players involved in the link prefers the resulting network.

Formally, a pairwise myopic improving path from a network g to a network g′ 6= g is a finite sequence
of networks g1, . . . , gK with g1 = g and gK = g′ such that for any k ∈ {1, . . . , K − 1} either: (i) gk+1 =

gk− ij for some ij such that Yi(gk+1, v) > Yi(gk, v) or Yj(gk+1, v) > Yj(gk, v), or (ii) gk+1 = gk + ij for
some ij such that Yi(gk+1, v) > Yi(gk, v) and Yj(gk+1, v) > Yj(gk, v). For a given network g, let m(g)

be the set of networks that can be reached by a pairwise myopic improving path from g.

Definition 1. A set of networks G ⊆ G is pairwise myopically stable with respect v and Y if

(i) ∀ g ∈ G,

(ia) ∀ ij /∈ g such that g + ij /∈ G, Yi(g + ij, v) ≤ Yi(g, v) or Yj(g + ij, v) ≤ Yj(g, v),

(ib) ∀ ij ∈ g such that g − ij /∈ G, Yi(g − ij, v) ≤ Yi(g, v) and Yj(g − ij, v) ≤ Yj(g, v),

(ii) ∀g′ ∈ G \G, m(g′) ∩G 6= ∅,
4A network g ∈ G is pairwise stable with respect v and Y if no player benefits from severing one of their links and no two

players benefit from adding a link between them. The original definition of Jackson and Wolinsky [5] allows for a pairwise
deviation to be valid if one deviating player is better off and the other one is at least as well off.
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(iii) @ G′  G such that G′ satisfies Conditions (ia), (ib), and (ii).

Conditions (ia) and (ib) in Definition 1 capture deterrence of external deviations. In Condition (ia)
the addition of a link ij to a network g ∈ G that leads to a network outside G is deterred because
the two players involved do not prefer the resulting network to network g. Condition (ib) is a similar
requirement, but then for the case where a link is severed. Condition (ii) requires external stability.
External stability asks for the existence of a pairwise myopic improving path from any network outside
G leading to some network in G. Condition (ii) implies that if a set of networks is pairwise myopically
stable, it is non-empty. Condition (iii) is the minimality condition.

Jackson and Watts [15] have defined the notion of a closed cycle. A set of networks C is a cycle if
for any g ∈ C and g′ ∈ C \ {g}, there exists a pairwise myopic improving path connecting g to g′.

A cycle C is a maximal cycle if it is not a proper subset of a cycle. A cycle C is a closed cycle if no
network in C lies on a pairwise myopic improving path leading to a network that is not in C. A closed
cycle is necessarily a maximal cycle. Herings, Mauleon and Vannetelbosch [6] have shown that the set
of networks consisting of all networks that belong to a closed cycle is the unique pairwise myopically
stable set.

The notion of pairwise myopically stable set only considers deviations by at most a pair of players
at a time. It might be that some group of players could all be made better off by some complicated
reorganization of their links, which is not accounted for under pairwise myopic stability. A network
g′ ∈ G is obtainable from g ∈ G via deviations by group S ⊆ N if (i) ij ∈ g′ and ij /∈ g implies
{i, j} ⊆ S, and (ii) ij ∈ g and ij /∈ g′ implies {i, j} ∩ S 6= ∅.

A groupwise myopic improving path from a network g to a network g′ 6= g is a finite sequence of
networks g1, . . . , gK with g1 = g and gK = g′ such that for any k ∈ {1, . . . , K − 1} : gk+1 is obtainable
from gk via deviations by Sk ⊆ N and Yi(gk+1, v) > Yi(gk, v) for all i ∈ Sk. For a given network g, let
M(g) be the set of networks that can be reached by a groupwise myopic improving path from g.

Definition 2. A set of networks G ⊆ G is groupwise myopically stable with respect v and Y if

(i) ∀ g ∈ G, S ⊆ N , g′ /∈ G that is obtainable from g via deviations by S, there exists i ∈ S such that
Yi(g

′, v) ≤ Yi(g, v),

(ii) ∀g′ ∈ G \G, M(g′) ∩G 6= ∅,

(iii) @ G′  G such that G′ satisfies Conditions (ia), (ib), and (ii).

Replacing the notion of pairwise improving path by the notion of groupwise improving path in
the definition of a closed cycle, we have that the set of networks consisting of all networks that
belong to a closed cycle is the unique groupwise myopically stable set. The notion of groupwise
myopically stable set is a generalization of Dutta and Mutuswami [16] strong stability notion.5 In
Figure 1 we have depicted an example where the unique pairwise myopically stable set is {g0, g7}

5A set g is strongly stable with respect v and Y if ∀ S ⊆ N , g′ that is obtainable from g via deviations by S, there exists
i ∈ S such that Yi(g′, v) ≤ Yi(g, v). Jackson and van den Nouweland [14] have introduced a slightly stronger definition
where a deviation is valid if some members are better off and others are at least as well off. For many value functions and
allocation rules these definitions coincide.
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while the unique groupwise myopically stable set is {g7}. The networks g0 and g7 are pairwise stable
but only g7 is strongly stable, and there are no closed cycles of networks consisting of more than one
network when players can modify their links either in pairs or in groups. There is no network such
that there is a pairwise myopic improving path from any other network leading to it: m(g0) = ∅,
m(g1) = {g0, g4, g5, g7}, m(g2) = {g0, g4, g6, g7}, m(g3) = {g0, g5, g6, g7}, m(g4) = {g7},
m(g5) = {g7}, m(g6) = {g7}, and m(g7) = ∅. Hence, a set formed by the empty network g0 and
the complete network g7 is a pairwise myopically stable set. However, the groupwise myopically
stable set consists only of the complete network since g7 ∈ M(g) ∀g 6= g7 and M(g7) = ∅.
Indeed, we have M(g0) = {g4, g5, g6, g7}, M(g1) = {g0, g4, g5, g6, g7}, M(g2) = {g0, g4, g5, g6, g7},
M(g3) = {g0, g4, g5, g6, g7}, M(g4) = {g7}, M(g5) = {g7}, M(g6) = {g7}, and M(g7) = ∅.

Figure 1. An example with three players.
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In Figure 2 we have depicted Jackson and Wolinsky co-author model with three players. It
is easy to verify that the complete network g7 is the unique pairwise stable network and that the
pairwise myopically stable set is {g7}. However, there is no strongly stable network. The groupwise
myopically stable set is {g1, g2, g3, g4, g5, g6, g7} and consists only of networks that belong to a
cycle. Indeed, we have M(g0) = {g1, g2, g3, g4, g5, g6, g7}, M(g1) = {g1, g2, g3, g4, g5, g6, g7},
M(g2) = {g1, g2, g3, g4, g5, g6, g7}, M(g3) = {g1, g2, g3, g4, g5, g6, g7}, M(g4) = {g1, g2,

g3, g4, g5, g6, g7}, M(g5) = {g1, g2, g3, g4, g5, g6, g7}, M(g6) = {g1, g2, g3, g4, g5, g6, g7}, and
M(g7) = {g1, g2, g3, g4, g5, g6, g7}.



Games 2010, 1 232

Figure 2. The co-author model with three players.
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3.2. Farsighted Definitions

A pairwise farsighted improving path is a sequence of networks that can emerge when players form
or sever links based on the improvement the end network offers relative to the current network. Each
network in the sequence differs by one link from the previous one. If a link is added, then the two
players involved must both strictly prefer the end network to the current network. If a link is deleted,
then it must be that at least one of the two players involved in the link prefers the end network. Formally, a
pairwise farsighted improving path from a network g to a network g′ 6= g is a finite sequence of networks
g1, . . . , gK with g1 = g and gK = g′ such that for any k ∈ {1, . . . , K − 1} either: (i) gk+1 = gk − ij

for some ij such that Yi(gK , v) > Yi(gk, v) or Yj(gK , v) > Yj(gk, v), or (ii) gk+1 = gk + ij for some ij

such that Yi(gK , v) > Yi(gk, v) and Yj(gK , v) > Yj(gk, v). For a given network g, let f(g) be the set of
networks that can be reached by a pairwise farsighted improving path from g.

We now give the definition of a pairwise farsightedly stable set due to Herings, Mauleon and
Vannetelbosch [6].6

Definition 3. A set of networks G ⊆ G is a pairwise farsightedly stable set with respect v and Y if

(i) ∀ g ∈ G,

(ia) ∀ ij /∈ g such that g + ij /∈ G, ∃ g′ ∈ f(g + ij) ∩ G such that Yi(g
′, v) ≤ Yi(g, v) or

Yj(g
′, v) ≤ Yj(g, v),

(ib) ∀ ij ∈ g such that g − ij /∈ G, ∃ g′, g′′ ∈ f(g − ij) ∩ G such that Yi(g
′, v) ≤ Yi(g, v) and

Yj(g
′′, v) ≤ Yj(g, v),

(ii) ∀g′ ∈ G \G, f(g′) ∩G 6= ∅.

(iii) @ G′  G such that G′ satisfies Conditions (ia), (ib), and (ii).

6In the original definition of Herings, Mauleon and Vannetelbosch [6], pairwise deviations are valid if one player is strictly
better off and the other is at least as well off in the end network.
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Condition (i) in Definition 3 requires the deterrence of external deviations. Condition (ia) captures
that adding a link ij to a network g ∈ G that leads to a network outside of G, is deterred by the threat
of ending in g′. Here g′ is such that there is a pairwise farsighted improving path from g + ij to g′.

Moreover, g′ belongs to G, which makes g′ a credible threat. Condition (ib) is a similar requirement,
but then for the case where a link is severed. Condition (ii) in Definition 3 requires external stability
and implies that the networks within the set are robust to perturbations. From any network outside of G

there is a farsighted improving path leading to some network in G. Condition (ii) implies that if a set
of networks is pairwise farsightedly stable, it is non-empty. Condition (iii) is the minimality condition.
Herings, Mauleon and Vannetelbosch [6] have shown that a pairwise farsightedly stable set of networks
always exists.

Figure 3. Another example with three players.
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In Figure 3 we have depicted another example with three players. We have that
f(g0) = {g1, g2, g3, g4, g5, g6, g7}, f(g1) = {g2, g4, g5, g6, g7}, f(g2) = {g3, g4, g5, g6, g7},
f(g3) = {g1, g4, g5, g6, g7}, f(g4) = {g5, g6,g7}, f(g5) = {g4, g6, g7}, f(g6) = {g4, g5, g7}, and
f(g7) = {g4, g5, g6}. Theorem 4 in Herings, Mauleon and Vannetelbosch [6] states that a set {g} is
a pairwise farsightedly stable set if and only if for every g′ ∈ G \ {g} we have g ∈ f(g′). It follows that
{g4}, {g5}, {g6} and {g7} are pairwise farsightedly stable sets. The network g4 is not pairwise stable but
it is farsightedly stable because the profitable deviation to g7 is deterred by the threat of ending back to
g4. Indeed, g4 ∈ f(g7). For instance, (g7, g6, g3, g0, g1, g4) is a farsighted improving path starting in g7

and ending in g4.
A groupwise farsighted improving path from a network g to a network g′ 6= g is a finite sequence of

networks g1, . . . , gK with g1 = g and gK = g′ such that for any k ∈ {1, . . . , K − 1} : gk+1 is obtainable
from gk via deviations by Sk ⊆ N and Yi(gK , v) > Yi(gk, v) for all i ∈ Sk. For a given network g, let
F (g) be the set of networks that can be reached by a groupwise farsighted improving path from g.

Definition 4. A set of networks G ⊆ G is groupwise farsightedly stable with respect v and Y if

(i) ∀ g ∈ G, S ⊆ N , g′ /∈ G that is obtainable from g via deviations by S, there exists g′′ ∈ F (g′)∩G

such that Yi(g
′′, v) ≤ Yi(g, v) for some i ∈ S,
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(ii) ∀g′ ∈ G \G, F (g′) ∩G 6= ∅,

(iii) @ G′  G such that G′ satisfies Conditions (ia), (ib), and (ii).

Let us reconsider the co-author model with three players depicted in Figure 2. No singleton set is
pairwise farsightedly stable. Indeed, there is no network such that there is a farsighted improving path
from any other network leading to it. More precisely, f(g0) = {g1, g2, g3, g4, g5, g6}, f(g1) = {g4, g5},
f(g2) = {g4, g6}, f(g3) = {g5, g6}, f(g4) = {g7}, f(g5) = {g7}, f(g6) = {g7}, and f(g7) = ∅.
Theorem 3 in Herings, Mauleon and Vannetelbosch [6] states that if for every g′ ∈ G \ G we have
f(g′) ∩G 6= ∅ and for every g ∈ G, f(g) ∩G = ∅, then G is a pairwise farsightedly stable set. Hence,
{g1, g2, g3, g7} is a pairwise farsightedly stable set. However, a set formed by the complete and two star
networks is also a pairwise farsightedly stable set of networks. Indeed, {g4, g5, g7}, {g4, g6, g7}, and
{g5, g6, g7} are pairwise farsightedly stable sets in the co-author model with three players. Suppose
that we allow now for groupwise deviations. Then, we have F (g0) = {g1, g2, g3, g4, g5, g6, g7},
F (g1) = {g4, g5}, F (g2) = {g4, g6}, F (g3) = {g5, g6}, F (g4) = {g3, g7}, F (g5) = {g2, g7},
F (g6) = {g1, g7}, and F (g7) = {g1, g2, g3}. Hence, {g1, g2, g3} becomes a groupwise farsightedly
stable set. But, this is not the unique groupwise farsightedly stable set. The others are {g1, g2, g4, g5, g6},
{g1, g3, g4, g5, g6}, {g2, g3, g4, g5, g6}, {g4, g5, g6, g7}.

4. Farsighted Stability under the Componentwise Egalitarian Allocation Rule

We now investigate whether the pairwise or groupwise farsighted stability coincide with the pairwise
or groupwise myopically stability under the componentwise egalitarian allocation. Let

g(v, S) =

{
g ⊆ gS

∣∣∣∣ v(g)

#N(g)
≥ v(g′)

#N(g′)
∀g′ ⊆ gS, g′ 6= ∅

}
be the set of networks with the highest per capita value out of those that can be formed by players in
S ⊆ N . Given a component additive value function v, find a network gv through the following algorithm
due to Banerjee [17]. Pick some h1 ∈ g(v, N). Next, pick some h2 ∈ g(v, N \ N(h1)). At stage k

pick some hk ∈ g(v, N \ ∪i≤k−1N(hi)). Since N is finite this process stops after a finite number K

of stages. The union of the components picked in this way defines a network gv. We denote by Gv the
set of all networks that can be found through this algorithm. More than one network may be picked
up through this algorithm since players may be permuted or even be indifferent between components of
different sizes.

Lemma 1 tells us that there is no pairwise or groupwise farsighted improving path emanating from
each g ∈ Gv.

Lemma 1. Consider any component additive value function v. For all g ∈ Gv we have f(g) = ∅ and
F (g) = ∅ under the componentwise egalitarian allocation rule Y ce.

Take any g ∈ Gv where g =K
k=1 hk with hk ∈ g (v,N \ ∪i≤k−1N(hi)). Players belonging to

N(h1) in g who are looking forward will never engage in a move since they can never be strictly better
off than in g given the componentwise egalitarian allocation rule Y ce. Players belonging to N(h2)

in g who are forward looking will only engage in a move if they can end up in some h such that
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v(h)/#N(h) > v(h2)/#N(h2). Suppose there exists some h such that v(h)/#N(h) > v(h2)/#N(h2).
Since h2 ∈ g (v,N \N(h1)) it follows that N(h) ∩N(h1) 6= ∅. Given that players in N(h1) will never
engage in a move, players belonging to N(h2) can never end up strictly better off than in g under
the componentwise egalitarian allocation rule Y ce. So, players belonging to N(h2) in g will never
engage in a move. Players belonging to N(hk) in g who are forward looking will only engage in a
move if they can end up in some h such that v(h)/#N(h) > v(hk)/#N(hk). Suppose there exists
some h such that v(h)/#N(h) > v(hk)/#N(hk). Since hk ∈ g (v, N \ ∪i≤k−1N(hi)) it follows that
N(h) ∩ {∪i≤k−1N(hi)} 6= ∅. Given that players in ∪i≤k−1N(hi) will never engage in a move, players
belonging to N(hk) can never end up strictly better off than in g under the componentwise egalitarian
allocation rule Y ce. So, players belonging to N(hk) in g will never engage in a move; and so on. Thus,
f(g) = ∅ and F (g) = ∅.

From Lemma 1 it follows that there is no pairwise or groupwise myopic improving path emanating
from each g ∈ Gv.

Corollary 1. Consider any component additive value function v. For all g ∈ Gv we have m(g) = ∅
and M(g) = ∅ under the componentwise egalitarian allocation rule Y ce.

Lemma 2 tells us that from any g′ /∈ Gv there is some pairwise farsighted improving path going to
some g ∈ Gv. Hence, from any g′ /∈ Gv there is some groupwise farsighted improving path going to
some g ∈ Gv.

Lemma 2. Consider any component additive value function v. For all g′ /∈ Gv there exists g ∈ Gv such
that g ∈ f(g′) under the componentwise egalitarian allocation rule Y ce.

We show in a constructive way that for all g′ /∈ Gv there exists g ∈ Gv such that g ∈ f(g′) under the
componentwise egalitarian allocation rule Y ce. Take any g′ /∈ Gv.

Step 1: If there exists some h1 ∈ g(v, N) such that h1 ∈ C(g′) then go to Step 2 with g1 = g′.
Otherwise, two cases have to be considered. (A) There exists h ∈ C(g′) such that h1  h for
some h1 ∈ g(v, N). Then, take h1 ∈ g(v, N) such that there does not exist h′1 ∈ g(v, N) with
h1  h′1  h. From g′, let the players who belong to N(h1) and who look forward to g ∈ Gv

delete successively their links that are not in h1 to reach g1 = g′ − {ij | i ∈ N(h1) and ij /∈ h1}.
Along the sequence from g′ to g1 all players who are moving always prefer the end network g to
the current network. (B) There does not exist h ∈ C(g′) such that h1  h with h1 ∈ g(v, N).
Pick h1 ∈ g(v, N) such that there does not exist h′1 ∈ g(v,N) with h′1  h1. From g′, let the
players who belong to N(h1) and who are looking forward to g ∈ Gv such that h1 ∈ C(g) first
delete successively their links not in h1 and then build successively the links in h1 that are not in
g′ leading to g1 = g′ − {ij | i ∈ N(h1) and ij /∈ h1} + {ij | i ∈ N(h1), ij ∈ h1 and ij /∈ g′}.
Along the sequence from g′ to g1 all players who are moving always prefer the end network g to
the current network. Once g1 and h1 are formed, we move to Step 2.

Step 2: If there exists some h2 ∈ g(v, N \N(h1)) such that h2 ∈ C(g1) then go to Step 3 with g2 = g1.
Otherwise, two cases have to be considered. (A) There exists h ∈ C(g′) such that h2  h for
some h2 ∈ g(v, N \ N(h1)). Then, take h2 ∈ g(v,N \ N(h1)) such that there does not exist
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h′2 ∈ g(v, N \ N(h1)) with h2  h′2  h. From g1 let the players who belong to N(h2) and who
look forward to g ∈ Gv such that h1 ∈ C(g) and h2 ∈ C(g) delete successively all their links that
are not in h2 to reach g2 = g1 − {ij | i ∈ N(h2) and ij /∈ h2}. Along the sequence from g1 to
g2 all players who are moving always prefer the end network g to the current network. (B) There
does not exist h ∈ C(g′) such that h2  h with h2 ∈ g(v,N \N(h1)). Pick h2 ∈ g(v, N \N(h1))

such that there does not exist h′2 ∈ g(v, N \ N(h1)) with h′2  h2. From g1 let the players who
belong to N(h2) and who are looking forward to g ∈ Gv such that h1 ∈ C(g) and h2 ∈ C(g) first
delete successively their links not in h2 and then build successively the links in h2 that are not in
g1 leading to g2 = g1 − {ij | i ∈ N(h2) and ij /∈ h2} + {ij | i ∈ N(h2), ij ∈ h2 and ij /∈ g1}.
Along the sequence from g1 to g2 all players who are moving always prefer the end network g to
the current network. Once g2 and h2 are formed, we move to Step 3.

Step k: If there exists some hk ∈ g(v,N \ {N(h1) ∪ ... ∪ N(k − 1)}) such that hk ∈ C(gk−1) then
go to Step k + 1 with gk = gk−1. Otherwise, two cases have to be considered. (A) There exists
h ∈ C(g′) such that hk  h for some hk ∈ g(v, N \ {N(h1) ∪ ... ∪ N(k − 1)}). Then, take
hk ∈ g(v, N \ {N(h1) ∪ ... ∪N(k − 1)}) such that there does not exist h′k ∈ g(v,N \ {N(h1) ∪
...∪N(k−1)}) with hk  h′k  h. ¿From gk−1 let the players who belong to N(hk) and who look
forward to g ∈ Gv such that h1 ∈ C(g), h2 ∈ C(g), ..., hk ∈ C(g) delete successively their links
not in hk to reach gk = gk−1 − {ij | i ∈ N(hk) and ij /∈ hk}. Along the sequence from gk−1 to
gk all players who are moving always prefer the end network g to the current network. (B) There
does not exist h ∈ C(g′) such that hk  h with hk ∈ g(v,N \ {N(h1) ∪ ... ∪ N(k − 1)}). Pick
hk ∈ g(v, N \ {N(h1) ∪ ... ∪N(k − 1)}) such that there does not exist h′k ∈ g(v,N \ {N(h1) ∪
... ∪ N(k − 1)}) with h′k  hk. ¿From gk−1 let the players who belong to N(hk) and who are
looking forward to g ∈ Gv such that h1 ∈ C(g), h2 ∈ C(g), ..., hk ∈ C(g) first delete successively
their links not in hk and then build successively the links in hk that are not in gk−1 leading to
gk = gk−1 − {ij | i ∈ N(hk) and ij /∈ hk} + {ij | i ∈ N(hk), ij ∈ hk and ij /∈ gk−1}. Along
the sequence from gk−1 to gk all players who are moving always prefer the end network g to the
current network. Once gk and hk are formed, we move to Step k + 1; and so on until we reach the
network g =K

k=1 hk with hk ∈ g(v, N \∪i≤k−1N(hi)). Thus, we have build a pairwise farsightedly
improving path from g′ to g; g ∈ f(g′). Since f(g′) ⊆ F (g′), we also have that for all g′ /∈ Gv

there exists g ∈ Gv such that g ∈ F (g′) under the componentwise egalitarian allocation rule Y ce.

The next proposition tells us that once players are farsighted it does not matter whether groupwise
or only pairwise deviations are feasible. Both pairwise farsighted stability and groupwise farsighted
stability single out the same unique set.

Proposition 1. Consider any component additive value function v. The set Gv is both the
unique pairwise farsightedly stable set and the unique groupwise farsightedly stable set under the
componentwise egalitarian allocation rule Y ce.

Consider any anonymous and component additive value function v. From Lemma 1 we know that
f(g) = ∅ and F (g) = ∅ for all g ∈ Gv under the componentwise egalitarian allocation rule Y ce. From
Lemma 2 we have that for all g′ /∈ Gv there exists g ∈ Gv such that g ∈ f(g′) under the componentwise
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egalitarian allocation rule Y ce. Using Theorem 5 in Herings, Mauleon and Vannetelbosch [6] which says
that G is the unique pairwise farsightedly stable set if and only if G = {g ∈ G | f(g) = ∅} and for
every g′ ∈ G \ G, f(g′) ∩ G 6= ∅, we have that Gv is the unique pairwise farsightedly stable set. In
case of groupwise deviations, Theorem 5 says that G is the unique groupwise farsightedly stable set if
and only if G = {g ∈ G | F (g) = ∅} and for every g′ ∈ G \ G, F (g′) ∩ G 6= ∅. Since f(g) ⊆ F (g)

∀g ∈ G, we have that Gv is also the unique groupwise farsightedly stable set.
Lemma 3 tells us that from any g′ /∈ Gv there is some groupwise myopic improving path going to

some g ∈ Gv.

Lemma 3. Consider any component additive value function v. For all g′ /∈ Gv there exists g ∈ Gv such
that g ∈M(g′) under the componentwise egalitarian allocation rule Y ce.

We show in a constructive way that for all g′ /∈ Gv there exists g ∈ Gv such that g ∈M(g′) under the
componentwise egalitarian allocation rule Y ce. Take any g′ /∈ Gv.

Step 1: If there exists some h1 ∈ g(v, N) such that h1 ∈ C(g′) then go to Step 2 with g1 = g′.
Otherwise, pick some h1 ∈ g(v,N). In g′ all players are strictly worse off than the players
belonging to N(h1) under the componentwise egalitarian allocation rule Y ce. Then, we have that
all members of N(h1) have incentives to deviate from g′ to g1 = g′|N\N(h1) ∪ h1. Indeed, g1 is
obtainable from g′ via deviations by N(h1) ⊆ N and Yi(g1, v) > Yi(g

′, v) for all i ∈ N(h1). In
words, players who belong to N(h1) delete their links in g′ with players not in N(h1) and build
the missing links of h1. Once g1 and h1 are formed, we move to Step 2.

Step 2: If there exists some h2 ∈ g(v, N \N(h1)) such that h2 ∈ C(g1) then go to Step 3 with g2 = g1.
Otherwise, pick some h2 ∈ g(v,N \ N(h1)). In g1 all the remaining players who are belonging
to N \N(h1) are strictly worse off than the players belonging to N(h2) under the componentwise
egalitarian allocation rule Y ce. Then, we have that all members of N(h2) have incentives to deviate
from g1 to g2 = g1|N\N(h2) ∪ h2. Indeed, g2 is obtainable from g1 via deviations by N(h2) ⊆ N

and Yi(g2, v) > Yi(g1, v) for all i ∈ N(h2). Once g2 and h2 are formed, we move to Step 3.

Step k: If there exists some hk ∈ g(v,N \ {N(h1)∪ ...∪N(k− 1)}) such that hk ∈ C(gk−1) then go to
Step k+1 with gk = gk−1. Otherwise, pick some hk ∈ g(v,N\{N(h1)∪...∪N(k−1)}). In gk−1 all
the remaining players who are belonging to N \{N(h1)∪ ...∪N(k−1)} are strictly worse off than
the players belonging to N(hk) under the componentwise egalitarian allocation rule Y ce. Then, we
have that all members of N(hk) have incentives to deviate from gk−1 to gk = gk−1|N\N(hk) ∪ hk.
Indeed, gk is obtainable from gk−1 via deviations by N(hk) ⊆ N and Yi(gk, v) > Yi(gk−1, v) for
all i ∈ N(hk). Once gk and hk are formed, we move to Step k + 1; and so on until we reach
the network g =K

k=1 hk with hk ∈ g(v, N \ ∪i≤k−1N(hi)). Thus, we have build a groupwise
myopically improving path from g′ to g; g ∈M(g′).

The next proposition tells us that groupwise myopic stability singles out the same unique set as
pairwise and groupwise farsighted stability do.

Proposition 2. Consider any component additive value function v. The set Gv is the unique groupwise
myopically stable set under the componentwise egalitarian allocation rule Y ce.
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Since the set of networks consisting of all networks that belong to a closed cycle is the unique
groupwise myopically stable set, we have to show that the set of all networks that belong to a closed
cycle is Gv. From Lemma 3 we know that for all g′ /∈ Gv there exists g ∈ Gv such that g ∈ M(g′)

under the componentwise egalitarian allocation rule Y ce. By Corollary 1 we have that M(g) = ∅ for all
g ∈ Gv. Thus, it follows that each g ∈ Gv is a closed cycle, all closed cycles belong to Gv, and Gv is the
unique groupwise myopically stable set.

Notice that all networks belonging to Gv are pairwise stable networks in a strict sense. However,
the pairwise myopically stable set may include networks that do not belong to Gv. Thus, if players are
myopic it matters whether groupwise or only pairwise deviations are feasible. So, pairwise farsighted
stability, groupwise farsighted stability and groupwise myopic stability refines the notion of pairwise
stability under Y ce when deviations are valid only if all deviating players are strictly better off.

In the example of Figure 1, the value function is component additive and the allocation rule is the
componentwise egalitarian one. Using the algorithm we obtain that Gv = {g7}. Hence, {g7} is the
unique pairwise (groupwise) farsightedly stable set and the unique groupwise myopically stable set.

5. Other Notions of Farsighted Stability

In this section we show that other notions of farsighted stability also single out the set Gv.7 The
largest consistent set is a concept that has been defined in Chwe [7] for general social environments. By
considering a network as a social environment, we obtain the definition of the largest consistent set.

Definition 5. G is a consistent set if ∀ g ∈ G, S ⊆ N , g′ ∈ G that is obtainable from g via deviations by
S, there exists g′′ ∈ G, where g′′ = g′ or g′′ ∈ F (g′) ∩G such that Yi(g

′′, v) ≤ Yi(g, v) for some i ∈ S.
The largest consistent set is the consistent set that contains any consistent set.

Proposition 3. Consider any component additive value function v. The set Gv is the largest consistent
set under the componentwise egalitarian allocation rule Y ce.

First, we show in a constructive way that any g′ /∈ Gv cannot belong to a consistent because there
always exists a deviation which is not deterred. Take any g′ /∈ Gv.

Suppose @h1 ∈ g(v,N) such that h1 ∈ C(g′). Then, in g′ all players are strictly worse off than the
players belonging to N(h1) under the componentwise egalitarian allocation rule Y ce. We have that the
deviation by all members of N(h1) from g′ to g′′ = g′|N\N(h1) ∪ h1 cannot be deterred. Indeed, g′′ is
obtainable from g′ via deviations by N(h1) ⊆ N and Yi(g

′′, v) > Yi(g
′, v) for all i ∈ N(h1). In words,

players who belong to N(h1) delete their links in g′ with players not in N(h1) and build the missing
links of h1. In addition, for any g∗ 6= g′′, we have that Yi(g

′′, v) ≥ Yi(g
∗, v) for all i ∈ N(h1). So, for

any g′′′ ∈ F (g′′) we have Yi(g
′, v) < Yi(g

′′, v) = Yi(g
′′′, v) for all i ∈ N(h1). Thus, g′ cannot belong to

a consistent set.
Suppose that ∃h1 ∈ g(v, N) such that h1 ∈ C(g′) but @h2 ∈ g(v, N \ N(h1)) such that h2 ∈ C(g′).

Then, in g′ all players who belong to N \ N(h1) are strictly worse off than the players belonging to

7Herings, Mauleon and Vannetelbosch [6] have studied the relationship between pairwise farsighted stability and
other farsighted concepts. In general, pairwise (groupwise) farsightedly stable sets have no relationships with the largest
consistent set.
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N(h2) under the componentwise egalitarian allocation rule Y ce. Then, we have that the deviation by all
members of N(h2) from g′ to g′′ = g′|N\N(h2) ∪ h2 cannot be deterred. Indeed, g′′ is obtainable from g′

via deviations by N(h2) ⊆ N and Yi(g
′′, v) > Yi(g

′, v) for all i ∈ N(h2). In addition, for any g∗ 6= g′′,
g∗ ⊆ gN\N(h1), we have that Yi(g

′′, v) ≥ Yi(g
∗, v) for all i ∈ N(h2). So, for any g′′′ ∈ F (g′′) we have

Yi(g
′, v) < Yi(g

′′, v) = Yi(g
′′′, v) for all i ∈ N(h2). Thus, g′ cannot belong to a consistent set.

Suppose that ∃h1, h2, h3, ..., hk−1 with hl ∈ g(v,N \ {N(h1) ∪ ... ∪N(hl−1)}), l = 2, ..., k − 1, and
hl ∈ C(g′) but @hk ∈ C(g′) such that hk ∈ g(v,N \ {N(h1) ∪ ... ∪ N(hk−1)}). Then, in g′ all players
who are belonging to N \ {N(h1) ∪ ... ∪ N(hk−1)} are strictly worse off than the players belonging to
N(hk) under the componentwise egalitarian allocation rule Y ce. Then, we have that the deviation by all
members of N(hk) from g′ to g′′ = g′|N\N(hk) ∪ h2 cannot be deterred. Indeed, g′′ is obtainable from g′

via deviations by N(hk) ⊆ N and Yi(g
′′, v) > Yi(g

′, v) for all i ∈ N(hk). In addition, for any g∗ 6= g′′,
g∗ ⊆ gN\{N(h1)∪...∪N(hk−1), we have that Yi(g

′′, v) ≥ Yi(g
∗, v) for all i ∈ N(hk). So, for any g′′′ ∈ F (g′′)

we have Yi(g
′, v) < Yi(g

′′, v) = Yi(g
′′′, v) for all i ∈ N(hk). Thus, g′ cannot belong to a consistent set.

And so forth.
Second, we have from Lemma 1 that F (g) = ∅ ∀ g ∈ Gv. Hence, each {g} with g ∈ Gv is a

consistent set. Thus, Gv is the largest consistent set under the componentwise egalitarian allocation
rule Y ce.

The von Neumann-Morgenstern stable set (von Neumann and Morgenstern [18]) imposes internal and
external stability. Incorporating the notion of farsighted improving paths into the original definition of the
von Neumann-Morgenstern stable set, we obtain the von Neumann-Morgenstern farsightedly stable set.
von Neumann-Morgenstern farsightedly stable sets do not always exist. Corollary 5 in Herings, Mauleon
and Vannetelbosch [6] tells us that if G is the unique pairwise (groupwise) farsightedly stable set, then
G is the unique von Neumann-Morgenstern pairwise (groupwise) farsightedly stable set. Hence, the
set Gv is both the unique von Neumann-Morgenstern pairwise farsightedly stable set and the unique von
Neumann-Morgenstern groupwise farsightedly stable set under the componentwise egalitarian allocation
rule Y ce.8

The definitions of stability we have considered allow for a deviation by a coalition to be valid
only if all members of the coalition are strictly better off. On the contrary, if we require that at least
one coalition member is strictly better off while all other members are at least as well off, then it is
not excluded that there are pairwise (groupwise) farsighted improving paths emanating from networks
belonging to Gv going to other networks belonging to Gv. Then, it follows that Gv is no more a
von Neumann-Morgenstern pairwise farsightedly stable set since internal stability is violated, and from
Theorem 5 in Herings, Mauleon and Vannetelbosch [6] we have that Gv is no more the unique pairwise
and groupwise farsightedly stable set.

8Page and Wooders [13] have introduced the notion of path dominance core. In general, the pairwise (groupwise) path
dominace core is contained in each pairwise (groupwise) farsightedly stable set of networks. However, a path dominance
core may fail to exist while a pairwise (groupwise) farsightedly stable set always exists. The set Gv is both the pairwise and
groupwise path dominance core under the componentwise egalitarian allocation rule.
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6. Conclusions

We have studied the stability of social and economic networks when players are farsighted. We have
provided an algorithm that characterizes the unique pairwise and groupwise farsightedly stable set of
networks under the componentwise egalitarian allocation rule. We have then shown that this set coincides
with the unique groupwise myopically stable set of networks but not with the pairwise myopically stable
set. Thus, if group deviations are allowed then whether players are farsighted or myopic does not matter,
or if players are farsighted then whether players are allowed to deviate in pairs only or in groups does
not matter.
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