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Abstract:



We study the solution concepts of partial cooperative Cournot-Nash equilibria and partial cooperative Stackelberg equilibria. The partial cooperative Cournot-Nash equilibrium is axiomatically characterized by using notions of rationality, consistency and converse consistency with regard to reduced games. We also establish sufficient conditions for which partial cooperative Cournot-Nash equilibria and partial cooperative Stackelberg equilibria exist in supermodular games. Finally, we provide an application to strategic network formation where such solution concepts may be useful.
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1. Introduction


The questions of coalition formation and cooperation are central to the theory of strategic behavior. When a subset of the agents forms a coalition, they often behave “cooperatively” in the sense that they choose and implement a joint course of action. Nevertheless, the players across those coalitions do not proceed jointly: their actions are chosen independently and non-cooperatively. Examples of such situations are the formation of a cartel of firms on a market, the signing of an environmental agreement across countries, the cooperation in R&D between firms and the formation of a coalition of political parties. All these examples share a joint cooperate/compete feature that has a long and checkered history within the framework of non-cooperative games. In this literature, it is assumed that coalitions are given, and each coalition, rather than maximizing its individual payoff, maximizes a group payoff function, which can range from a simple sum of individual payoff functions (Mallozzi and Tijs [1,2,3]) to a vector valued function choosing points on the Pareto frontier of the individual payoffs of the members of the coalition (Ray and Vohra [4], Ray [5]). In order to allow for payoff transfers among the players, we choose the sum of payoffs as the cooperators’s objective function rather than a point in the Pareto frontier.



The first way to analyze equilibria in these games is to assume that coalitions play in the spirit of the Nash equilibrium, namely an equilibrium is defined as a set of mutual best responses. The only difference is that individual players are now replaced by coalitions. Each coalition chooses a strategy vector to maximize the group payoff function. This has been the theme in articles such as Chakrabarti et al. [6], Chander and Tulkens [7], Deneckere and Davidson [8] and Ray and Vohra [4]. Other articles that have similar themes are Duggan [9], Salant et al. [10], Beaudry et al. [11], Carraro and Siniscalco [12,13] and Funaki and Yamato [14].



One can also look at a sequential structure, where coalitions do not proceed simultaneously but there is a sequence of moves and one coalition chooses its action followed by another coalition. Of course, the game becomes quite complicated and an open question would be: what is the order of moves? Due to this, one can analyze only very simple settings. The setting that has been analyzed here and also in Chakrabarti et al. [6] is that there is one non-singleton coalition and the rest of players are not part of any coalition. The coalition moves first, and the singleton players move subsequently. The issue in such games is how to define an equilibrium. Generally, while solving this game by backward induction, the coalition assumes that a Nash equilibrium will result in the second stage. If there is a unique Nash equilibrium for every choice made by the coalition, then the coalition can solve the game easily by backward induction. If on the other hand, there is more than one Nash equilibrium in the second stage of the game, the trend has been to focus on a certain focal Nash equilibrium. Two such focal equilibria are the one that is best from the point of view of the coalition, that is maximizes its group payoff function (the coalition is optimistic in its mental outlook) and the other is the worst Nash equilibrium, namely it minimizes the coalition’s group payoff function (the coalition is pessimistic or risk averse in this mental outlook). These ideas have been explored in Mallozzi and Tijs [1,2,3] and Chakrabarti et al. [6]. Other articles that have similar themes are Barrett [15], D’Aspremont et al. [16] and Diamantoudi and Sartzetakis [17].



In this article, we study the two types of sequences of moves: simultaneous moves (Cournot-Nash), where the group of cooperators and the remaining set of independent players choose their strategies simultaneously, and sequential moves (Stackelberg), where the group of cooperators moves first and the independent players choose their strategies subsequently. In these settings, the associated equilibrium concepts are called partial cooperative Cournot-Nash equilibrium and partial cooperative Stackelberg equilibrium respectively.



The relevance of such new solution concepts is highlighted in two directions. Firstly, we point out the importance of partial cooperation in strategic environments by considering a model of strategic network formation. This model has the structure of a social dilemma in the sense that the private interests are at odds with collective efficiency. The consequence is that the only Nash equilibrium corresponds to the Pareto-dominated empty network. On the other hand, whenever some players are allowed to cooperate, there is a partial cooperative Cournot-Nash equilibrium that results in the formation of a Bentham-efficient network, provided that the size of the set of cooperators is large enough compared to the cost of creating a link. Even though we focus on the partial cooperative Cournot-Nash equilibrium for the sake of exposition, a similar result can be obtained with the partial cooperative Stackelberg equilibrium.



Secondly, we characterize the concept of partial cooperative Cournot-Nash equilibrium using axioms that are similar in spirit to Peleg and Tijs [18]. Peleg and Tijs [18] have characterized the Nash equilibrium of a non-cooperative game using three axioms—one-person rationality, consistency and converse consistency. One player rationality is a basic notion of a player being an utility maximizer. For consistency, Peleg and Tijs [18] require that an equilibrium of a game is also the equilibrium of a reduced game, where the reduced game with respect to a certain coalition and a certain strategy tuple consists in fixing the strategies of players outside the coalition to be consistent with the strategy tuple. The remaining players are free to choose their strategies to maximize their reduced payoff function, which is in fact the original payoff function given the strategies of players outside the coalition. The interpretation is that if some players decide to choose their equilibrium strategies and leave, the members of the remaining coalition have no interest in reconsidering their strategies. Converse consistency says that if a strategy profile is an equilibrium in each reduced game, then it is also an equilibrium of the original game. The adaptation of consistency and converse consistency to our setting requires us to modify the reduction operator in order to account for the existence of cooperators. The basic idea is the following: if some cooperators choose their strategies and then leave the game, they transfer the sum of their payoffs to the remaining cooperators. In a sense, these transfers enable the remaining cooperators to evaluate the impact of their strategic choices on the whole group of cooperators. In other words, the group of cooperators never really breaks up when some of its members have left the game, which reflects the fact that it can be seen as having signed a binding agreement of cooperation. Payoff transfers can be found in other articles which mix cooperation and competition as for instance Jackson and Wilkie [19] and Kalai and Kalai [20]. In case the set of cooperators is empty, the reduced game considered in Peleg and Tijs [18] and ours coincide. However, we do not manage to find an axiomatic characterization of the partial cooperative Stackelberg equilibrium.



The application to strategic network formation and the characterization of the partial cooperative Cournot-Nash equilibrium conceal the fact that a partial cooperative equilibrium may fail to exist. In this article we also provide sufficient conditions for the existence of such equilibria by restricting ourselves to the class of supermodular games introduced by Topkis [21] and subsequently studied by Milgrom and Roberts [22], Vives [23], and Zhou [24], among others. The interesting feature of these games is that they allow existence of a Nash equilibrium while doing away with the assumptions of convexity of the strategy sets and quasi-concavity of the payoff functions as was the case in the analysis of Nash [25]. We prove the existence of partial cooperative Cournot-Nash and Stackelberg equilibria in supermodular games. In case these games are not supermodular, we show that a partial cooperative Stackelberg equilibrium exists if the strategy sets are compact, payoff functions are continuous and there exists a Nash equilibrium at the second stage of the game.



The rest of the article proceeds as follows. Section 2 introduces the notation and terminology. In Section 3, we present a model of network formation and discuss the effect of introducing a set of cooperators on the set of stable and efficient networks. In Section 4, we provide the axiomatic characterization of the partial cooperative Cournot-Nash equilibrium. In Section 5, we explore existence of a partial cooperative equilibrium in supermodular games. Finally, Section 6 concludes.




2. Preliminaries


Weak set inclusion is denoted by ⊆, proper set inclusion by ⊂. A game in strategic form is a system [image: there is no content], where I is a nonempty and finite set of players, [image: there is no content] is the non-empty set of strategies of player i, and [image: there is no content] is the payoff function of player i, where X=∏[image: there is no content][image: there is no content]. Typical elements of X are strategy profiles denoted by x and y. For any nonempty subset S of I, we let XS=∏i∈S[image: there is no content], with typical element [image: there is no content], and use X and [image: there is no content] instead of [image: there is no content] and [image: there is no content] respectively. For any [image: there is no content] and any S, let [image: there is no content]. A strategy profile [image: there is no content] is a Nash equilibrium of Γ if [image: there is no content] for any yi∈[image: there is no content] and any [image: there is no content], where [image: there is no content] stands for [image: there is no content]. We denote by G the set of all games in strategic form.



A group of cooperators for a game [image: there is no content] with player set I consists in a (possibly empty) subset C of I. A game in strategic form with partial cooperation is a pair [image: there is no content] where Γ=(I,([image: there is no content],[image: there is no content])[image: there is no content])∈G is a game in strategic form and [image: there is no content] is a group of cooperators. Cooperators are assumed to choose their strategies by maximizing the joint payoff of the group members given by=


[image: there is no content]



(1)




for each [image: there is no content]. Non-cooperators play as singletons and maximize their individual payoff functions. There are two main assumptions regarding the sequence of moves in the above set-up that are popular in the literature: (a) simultaneous moves (Cournot-Nash), where all the players choose their strategies simultaneously and (b) sequential moves (Stackelberg), where the cooperators enjoy a first mover advantage and non-cooperators choose their strategies subsequently.



We begin with the first. A strategy profile [image: there is no content] is a partial cooperative Cournot-Nash equilibrium of [image: there is no content] if


[image: there is no content]








for any yi∈[image: there is no content] and any [image: there is no content], and


[image: there is no content]








for any [image: there is no content].



Coming to the second, there are two stages in the game. In the first stage, the cooperators choose a joint strategy [image: there is no content]. In the second stage, the players in [image: there is no content] play the reduced game [image: there is no content]=(I\C,([image: there is no content],[image: there is no content])[image: there is no content]), i.e., the [image: there is no content]-person game in strategic form where each [image: there is no content] has strategy space [image: there is no content] and payoff function being given by [image: there is no content](x[image: there is no content])=[image: there is no content](x[image: there is no content],yC) for each x[image: there is no content]∈X[image: there is no content]. By D[image: there is no content]:[image: there is no content]⟶→X[image: there is no content], we denote the correspondence mapping [image: there is no content] to the set D[image: there is no content](yC)⊆X[image: there is no content] of Nash equilibrium profiles of game [image: there is no content].



First, let us consider the class of games where the correspondence D[image: there is no content] is non-empty and single-valued. Then [image: there is no content] has a unique Nash equilibrium denoted by [image: there is no content] for any [image: there is no content]. The cooperators maximize the joint payoff defined in (1) and solve the problem


max[image: there is no content]F(yC,η1(yC),η2(yC),…,ηk(yC))



(2)







A vector [image: there is no content] such that [image: there is no content] solves (2) is called a partial cooperative Stackelberg equilibrium of [image: there is no content].



Next, let us consider the case where the correspondence D[image: there is no content] is a non-empty valued correspondence that is not necessary single-valued. Then given the choice [image: there is no content] of the cooperators, the game [image: there is no content] may have multiple Nash equilibria. If the group of cooperators have a pessimistic view about the non-cooperator choice, the cooperators will maximize the function


[image: there is no content](yC)=minx[image: there is no content]∈D[image: there is no content](yC)F(yC,x[image: there is no content])








On the other hand if the group members are optimistic, the cooperators will maximize the function


[image: there is no content](yC)=maxx[image: there is no content]∈D[image: there is no content](yC)F(yC,x[image: there is no content])








The equilibria that result are called the pessimistic and optimistic partial cooperative Stackelberg equilibria of [image: there is no content] respectively. Therefore, a vector [image: there is no content] such that


[image: there is no content]∈argmax[image: there is no content][image: there is no content](yC)








and x[image: there is no content]([image: there is no content])∈D[image: there is no content]([image: there is no content]) is called a pessimistic partial cooperative equilibrium of [image: there is no content]. Similarly, a vector [image: there is no content] such that


[image: there is no content]∈argmax[image: there is no content][image: there is no content](yC)








and x[image: there is no content]([image: there is no content])∈D[image: there is no content]([image: there is no content]) is called an optimistic partial cooperative Stackelberg equilibrium of [image: there is no content]. For simplicity, we will write x[image: there is no content] instead of x[image: there is no content]([image: there is no content]). Also, for future reference, define correspondences [image: there is no content]:[image: there is no content]⟶→X[image: there is no content] and [image: there is no content]:[image: there is no content]⟶→X[image: there is no content] where for any arbitrary [image: there is no content],


[image: there is no content](yC)=argminx[image: there is no content]∈D[image: there is no content](yC)F(yC,x[image: there is no content])








and


[image: there is no content](yC)=argmaxx[image: there is no content]∈D[image: there is no content](yC)F(yC,x[image: there is no content])











These notions of equilibria, in the order they are presented have been depicted in Chakrabarti et al. [6], Mallozzi and Tijs [1], Chakrabarti et al. [6] and Mallozzi and Tijs [2] respectively. Mallozzi and Tijs [1] investigate a class of games in which a partial cooperative Stackelberg equilibrium always exists, namely the class of symmetric potential games with a strictly concave potential function. Mallozzi and Tijs [3] show that the joint payoff of the cooperators under an optimistic partial cooperative Stackelberg equilibrium is greater than or equal to that under a partial cooperative Cournot-Nash equilibrium. Chakrabarti et al. [6] have investigated the existence of partial cooperative Cournot-Nash equilibrium and the pessimistic partial cooperative Stackelberg equilibrium in symmetric games under standard assumptions for existence of a Nash equilibrium.



Before we end this section, we would like to compare these notions to the notion of coalitional equilibrium of Ray [5].1 A vector [image: there is no content] is called a coalitional equilibrium of the game [image: there is no content], if for all [image: there is no content],


[image: there is no content]








for all yi∈[image: there is no content], and there does not exist any [image: there is no content] such that


[image: there is no content]








for all [image: there is no content].



The principal difference between the coalitional equilibrium and the partial cooperative Cournot-Nash equilibrium is that the former assumes that no transfers are possible among the group members. So, the group of cooperators chooses a payoff vector that lies in the Pareto frontier of the set of payoff vectors that are attainable by the group of cooperators given the strategies chosen by the non-cooperators.




3. Network Formation with Consent


In order to highlight the impact of partial cooperation on strategic interaction, we consider the non-cooperative model of costly network formation with consent proposed by Myerson [26]. Firstly, let [image: there is no content] be a finite player set. The bilateral communication possibilities between the players are represented by an undirected graph on I, denoted by [image: there is no content], where the set of nodes coincides with the set of players I, and the set of links L is a subset of the set of unordered pairs [image: there is no content] of elements of I. For simplicity, we write [image: there is no content] to represent the link [image: there is no content]. For each player [image: there is no content], the set [image: there is no content] denotes the neighborhood of i in [image: there is no content]. Player i is a leaf in [image: there is no content] if [image: there is no content]. A sequence of distinct players [image: there is no content] is a path in [image: there is no content] if [image: there is no content] for [image: there is no content]. Let [image: there is no content] be the set of players j such that there exists a path between i and j.



Formally, the non-cooperative model of costly network formation with consent is described by a game [image: there is no content] with the following features. Each player [image: there is no content] has an action set [image: there is no content]={(x[image: there is no content])j≠i:x[image: there is no content]∈{0,1}}. Player i seeks contact with player j if x[image: there is no content]=1. Link [image: there is no content] forms if both players seek contact. Each profile [image: there is no content] induces a network [image: there is no content] such that


L(x)={ij:x[image: there is no content]=xji=1}











If link [image: there is no content] forms then both players support a cost [image: there is no content]. We assume that the value of network [image: there is no content] for player i depends on the number [image: there is no content] of players to whom i is connected but not on the distance between two connected players. Player i’s payoff is equal to his value of the network minus the cost c for any created link as in the connection model without decay in Jackson and Wolinsky [27]:


[image: there is no content]



(3)




A network [image: there is no content] is an equilibrium network if [image: there is no content] is a partial cooperative equilibrium of [image: there is no content] for some [image: there is no content]. A network [image: there is no content] is (Bentham) efficient if for each [image: there is no content]


∑[image: there is no content][image: there is no content](x)≥∑[image: there is no content][image: there is no content](y)








We assume [image: there is no content], that is, the cost of creating a link is larger than the direct value of that link. We also impose the upper bound [image: there is no content], which ensures the existence of a nonempty efficient network in which each player obtains a positive payoff. Given these assumptions, it is easy to see that every Nash equilibrium of game Γ induces the formation of the empty network.



The absence of nonempty networks arising from Nash equilibria can be avoided by several mechanisms. One of them consists in repeating the game over finitely many periods and assuming that the players have limited capacities to implement repeated game strategies (see Béal and Quérou [28]). In this paragraph, we show that the partial cooperation of a group yields an even stronger result: equilibrium networks can be not only nonempty but also efficient. In other words, partial cooperation can eliminate the tension between stability and efficiency of networks.



Proposition 1 Assume [image: there is no content].

	(i)

	
Every Nash equilibrium of Γ induces the empty network.




	(ii)

	
For each group [image: there is no content] such that [image: there is no content], there exists a partial cooperative Cournot-Nash equilibrium of [image: there is no content] that results in the formation of an efficient nonempty network.









The basic idea of the proof given in the appendix is as follows. For each group C such that [image: there is no content], we construct a line network in which the members of the group have strategic locations. More specifically, we can assume that the players on the line are ordered from 1 to n. If [image: there is no content], the members of C are the neighbors, 2 and [image: there is no content], of the two leaves. If [image: there is no content], the group consists of players 2, 3 and [image: there is no content]. If [image: there is no content], the group consists of players 2, 3, [image: there is no content] and [image: there is no content], and so on until [image: there is no content]. An illustration of the locations of group members on a line network is given below for the case where [image: there is no content] and [image: there is no content]:


 [image: Games 01 00338 i001]











In the proof of Proposition 1, we show that an action profile that induces such a network is a partial cooperative Cournot-Nash equilibrium. Observe that a neighbor of a leaf, say player 2, would increase his own payoff if he cuts his link with player 1 since he would lose one connection and reduce his cost by [image: there is no content]. This is the reason why such a player has to belong to the group: taking into account the sum of the payoffs of the group members, it is not interesting for 2 to delete link 12 since [image: there is no content] connections (with player 1) would be lost among group members while only player 2 reduces his cost by c. In other words, cutting link 12 affect the connections of each group member and this total loss is larger than the cost reduction of c provided that [image: there is no content].




4. Axiomatization of the Partial Cooperative Cournot-Nash Equilibrium


The relevance of the partial cooperative equilibria can also be defended axiomatically. Peleg and Tijs [18] have characterized the Nash equilibrium of a non-cooperative game in terms of three properties: one-person rationality, consistency and converse consistency. In this section we show that a similar characterization is possible for the notion of partial cooperative Cournot-Nash equilibrium. To embark on such an endeavour, we need to define an appropriate concept of reduced game.



4.1. More Definitions


In this section, let [image: there is no content] denote the universe of players. For any game Γ=(I,([image: there is no content],[image: there is no content])[image: there is no content])∈G and any subset K of [image: there is no content], [image: there is no content] denotes the unique game with partial cooperation associated to Γ and K, where the group of cooperators consists in those players of I who belong to K, that is [image: there is no content]. Recall that [image: there is no content] can be empty. We denote by [image: there is no content] the set of all games with partial cooperation induced by K and defined by:


[image: there is no content]=[image: there is no content]:Γ=(I,([image: there is no content],[image: there is no content])[image: there is no content])∈G,C=I∩K








Because game [image: there is no content] is associated to game [image: there is no content]∈[image: there is no content] in a unique way, we will henceforth refer to [image: there is no content] as Γ in order to save on notations. A solution concept for [image: there is no content] is a function ϕ which assigns to every Γ∈[image: there is no content] a subset [image: there is no content] of X. Let PCEK(Γ) denote the solution concept on [image: there is no content] which assigns to every game Γ∈[image: there is no content] the set PCEK(Γ) of strategy profiles [image: there is no content] such that x is a partial cooperative Cournot-Nash equilibrium of Γ with group [image: there is no content]. We shall refer to PCE as the partial equilibrium correspondence.



We adapt the notion of a reduced game used in Peleg and Tijs [18] in order to account for the existence of a group of cooperators. Given a game Γ=(I,([image: there is no content],[image: there is no content])[image: there is no content])∈[image: there is no content], any non-empty [image: there is no content] and any [image: there is no content], the reduced game of Γ with respect to S and x, denoted by [image: there is no content], is the system (S,([image: there is no content],[image: there is no content])i∈S) where


[image: there is no content](yS)=[image: there is no content](yS,[image: there is no content])ifi∈S\K[image: there is no content](yS,[image: there is no content])+1|S∩K|∑j∈(I\S)∩Kfj(yS,[image: there is no content])ifi∈S∩K








for each [image: there is no content].2 Note that the class of games with partial cooperation [image: there is no content] is closed under the reduction operation, that is, if game [image: there is no content] belongs to [image: there is no content], then [image: there is no content], [image: there is no content], and [image: there is no content] imply [image: there is no content]∈[image: there is no content] with set of cooperators [image: there is no content].



The interpretation of the reduced game is as follows. In the reduced game [image: there is no content], each player in S obtains his payoff in the original game with partial cooperation Γ given that the members of [image: there is no content] play [image: there is no content] in accordance with x. In addition, if some but not all cooperators [image: there is no content] belong to [image: there is no content], they equally transfer the sum of the payoffs they would have received with (yS,[image: there is no content]) in Γ to the cooperators [image: there is no content] who play the reduced game [image: there is no content]. The group can be seen as a single entity interrelated by a binding agreement. In the reduced game, the departed members do not actively participate anymore in the choice of a strategy profile. Still they passively participate by transferring a part of their payoff to each of the remaining members. Thus the remaining members are able to measure the consequences of their choices on the whole group.




4.2. Axioms


We provide axioms of solution concepts on the class of games [image: there is no content]. In order to take into account the particular structure of a game with partial cooperation, we consider variations of several axioms defined in Peleg and Tijs [18]. Throughout this section, ϕ is an arbitrary solution concept on [image: there is no content].



Group rationality: For any game Γ=(I,([image: there is no content],[image: there is no content])[image: there is no content])∈[image: there is no content] such that [image: there is no content] or [image: there is no content], it holds that ϕ(Γ)={argmax[image: there is no content]∑[image: there is no content][image: there is no content](x)}.



Group consistency: For each Γ=(I,([image: there is no content],[image: there is no content])[image: there is no content])∈[image: there is no content] such that [image: there is no content], each [image: there is no content] and each [image: there is no content], [image: there is no content], [image: there is no content]∈ϕ([image: there is no content]).



For each Γ=(I,([image: there is no content],[image: there is no content])[image: there is no content])∈[image: there is no content] such that [image: there is no content] and [image: there is no content], we define


ϕ˜(Γ)=x∈X:[image: there is no content]∈ϕ([image: there is no content]),∀S∉{∅,I}.











Group converse consistency: For each Γ=(I,([image: there is no content],[image: there is no content])[image: there is no content])∈[image: there is no content] such that [image: there is no content], [image: there is no content]



Observe that if [image: there is no content], then group rationality, group consistency and group converse consistency are equivalent to the axioms one-person rationality, consistency and converse consistency defined in Peleg and Tijs [18] respectively.




4.3. Characterization


The three axioms that we defined in the previous section uniquely characterize the partial cooperative Cournot-Nash equilibrium correspondence on the class of games [image: there is no content].



Theorem 1 The PCEK correspondence is the unique solution on [image: there is no content] that satisfies group rationality, group consistency and group converse consistency.



[Existence] We show that PCEK satisfies the three axioms on [image: there is no content].



Group rationality: Consider any game Γ=(I,([image: there is no content],[image: there is no content])[image: there is no content])∈[image: there is no content] such that [image: there is no content] or [image: there is no content]. In case [image: there is no content], then all players in Γ belong to the group of cooperators [image: there is no content] associated with Γ. Together with the definition of the payoff function of the group of cooperators in Γ, this means that the set of best responses of cooperators in Γ coincides with the set of maximizers of the sum of the payoff functions of players in I. Hence, [image: there is no content] if and only if x∈argmax[image: there is no content]F(y)=argmax[image: there is no content]∑[image: there is no content][image: there is no content](y). In case [image: there is no content] but [image: there is no content], arguments are similar.



Group consistency: Consider any game Γ=(I,([image: there is no content],[image: there is no content])[image: there is no content])∈[image: there is no content] such that [image: there is no content], any [image: there is no content] and any [image: there is no content], [image: there is no content]. First, pick a player [image: there is no content] if such a player exists. By construction, player i’s payoff in the reduced game [image: there is no content] is [image: there is no content](yS)=[image: there is no content](yS,[image: there is no content]) for each [image: there is no content]. Because [image: there is no content], it holds that [image: there is no content] for any yi∈[image: there is no content]. Hence, [image: there is no content]([image: there is no content])≥[image: there is no content](yi,xS\{i}) for any yi∈[image: there is no content]. Second, in case [image: there is no content], consider the subset [image: there is no content] of the group of cooperators [image: there is no content] who play in [image: there is no content]. We have


∑i∈S∩K[image: there is no content]([image: there is no content])=∑i∈S∩K[image: there is no content]([image: there is no content],[image: there is no content])+1|S∩K|∑j∈(I∩K)\(S∩K)fj([image: there is no content],[image: there is no content])=∑i∈I∩K[image: there is no content](x)=F(x)≥F(y[image: there is no content],x-(I∩K))








for each y[image: there is no content]∈X[image: there is no content] since it is assumed that [image: there is no content]. For the particular case when players in [image: there is no content] play [image: there is no content], this inequality is


∑i∈S∩K[image: there is no content]([image: there is no content])≥F(y[image: there is no content],x-(S∩K))








for each y[image: there is no content]∈X[image: there is no content], which is equivalent to


∑i∈S∩K[image: there is no content]([image: there is no content])≥∑i∈S∩K[image: there is no content](y[image: there is no content],x-(S∩K))








for each y[image: there is no content]∈X[image: there is no content]. We proved that [image: there is no content]∈PCEK([image: there is no content]), and because S was chosen arbitrarily, we conclude that PCEK satisfies group consistency.



Group converse consistency: Consider a game Γ=(I,([image: there is no content],[image: there is no content])[image: there is no content])∈[image: there is no content] such that [image: there is no content] and [image: there is no content], and consider [image: there is no content] such that [image: there is no content]∈PCEK([image: there is no content]) for each [image: there is no content], [image: there is no content]. To show: [image: there is no content].



First, pick a player [image: there is no content], and consider the reduced game [image: there is no content]. By assumption xi∈PCEK([image: there is no content]), which implies that xi∈argmaxyi∈[image: there is no content][image: there is no content](yi). By definition of [image: there is no content], this is equivalent to xi∈argmaxyi∈[image: there is no content][image: there is no content](yi,[image: there is no content]).



Second, in case [image: there is no content], consider the subset of cooperators [image: there is no content] who play in Γ and the reduced game [image: there is no content]. Note that [image: there is no content] implies [image: there is no content]. Since [image: there is no content]∈PCEK([image: there is no content]) for each [image: there is no content], [image: there is no content], we have x[image: there is no content]∈PCEK([image: there is no content]), and so


x[image: there is no content]∈argmaxy[image: there is no content]∈X[image: there is no content]∑i∈I∩K[image: there is no content](y[image: there is no content])








which is equivalent to


x[image: there is no content]∈argmaxy[image: there is no content]∈X[image: there is no content]F(y[image: there is no content],x-(I∩K))








by construction of function [image: there is no content] in [image: there is no content]. This proves that [image: there is no content] as desired.



[Uniqueness] Consider any solution ϕ which satisfies the three axioms on [image: there is no content]. To show: [image: there is no content]. Let Γ=(I,([image: there is no content],[image: there is no content])[image: there is no content])∈[image: there is no content] be any game in [image: there is no content]. We distinguish two cases. In a first case, suppose that [image: there is no content]. Then all players in I are members of the group. Because ϕ satisfies group rationality, we have ϕ(Γ)=argmax[image: there is no content]F(y)=PCEK(Γ).



In a second case, suppose that [image: there is no content]. Firstly, we prove that [image: there is no content] for each Γ∈[image: there is no content]. So let Γ be any game in [image: there is no content]. If [image: there is no content] then the inclusion is trivially satisfied. Otherwise, choose any [image: there is no content]. Pick any [image: there is no content] and consider the reduced game [image: there is no content]. By group consistency of ϕ, we have xi∈ϕ([image: there is no content]). In the reduced game [image: there is no content], group rationality yields [image: there is no content](xi)≥[image: there is no content](yi) for each yi∈[image: there is no content], which is equivalent to [image: there is no content] for each yi∈[image: there is no content]. Next, consider the group of cooperators [image: there is no content] involved in game Γ. Once again, group consistency implies x[image: there is no content]∈ϕ([image: there is no content]). In this reduced game, group rationality yields ∑i∈I∩K[image: there is no content](x[image: there is no content])≥∑i∈I∩K[image: there is no content](y[image: there is no content]) or equivalently F(x)≥F(y[image: there is no content],x-(I∩K)) for each y[image: there is no content]∈X[image: there is no content]. We proved [image: there is no content].



Secondly, we prove that [image: there is no content]. The proof is by induction on the number of players. So, consider any game Γ=(I,([image: there is no content],[image: there is no content])[image: there is no content])∈[image: there is no content] such that [image: there is no content]. Denote by i the unique element of I. By group rationality, it holds that ϕ(Γ)={argmaxxi∈[image: there is no content][image: there is no content](xi)}=PCEK(Γ), and it does not matter whether [image: there is no content] or not. Now assume that [image: there is no content] for any game Γ=(I,([image: there is no content],[image: there is no content])[image: there is no content])∈[image: there is no content] such that [image: there is no content] and [image: there is no content]. Next, consider a game Γ=(I,([image: there is no content],[image: there is no content])[image: there is no content])∈[image: there is no content] such that [image: there is no content] and [image: there is no content]. Pick any [image: there is no content]. By group consistency of PCEK, [image: there is no content]∈PCEK([image: there is no content]) for each [image: there is no content], [image: there is no content]. Since [image: there is no content], the induction hypothesis implies that [image: there is no content]∈PCEK(Γ)⊆ϕ([image: there is no content]). Since ϕ satisfies group converse consistency, [image: there is no content]. Hence, [image: there is no content]. This completes the proof.





5. Existence in Supermodular Games


Before we formally define supermodular games, we start with the following result which proves existence of optimistic and pessimistic partial cooperative equilibria under standard assumptions of continuity of the payoff functions and compactness of the strategy sets, provided we can guarantee that the reduced game [image: there is no content] admits at least one Nash equilibrium for every [image: there is no content]. This Lemma will be used later on for proving the existence of an optimistic and a pessimistic partial cooperative Stackelberg equilibrium.



Lemma 1 Consider a game [image: there is no content], where Γ=(I,([image: there is no content],[image: there is no content])[image: there is no content])∈G and [image: there is no content]. For each [image: there is no content], suppose that [image: there is no content] is a compact subset of a Euclidean space and that [image: there is no content] is continuous. If the correspondence D[image: there is no content]:[image: there is no content]⟶→X[image: there is no content] is non-empty valued, then both an optimistic and a pessimistic partial cooperative equilibrium of [image: there is no content] exist.



The proof of Lemma 1 is quite involved, so we have relegated it to the Appendix.



5.1. Supermodular Games


Consider a set W partially ordered by the binary relation ⪯ and let V be a subset of W. If w is in W and [image: there is no content] ([image: there is no content]) for each v in V, then we say w is an upper bound (lower bound) of V with respect to W. An upper bound (lower bound) of a set that belongs to the set itself is a maximum (minimum). If the set of upper bounds (lower bounds) of V with respect to W has a minimum (maximum), we say it is the least upper bound or supremum (greatest lower bound or infimum) of V with respect to W and is denoted by [image: there is no content] ([image: there is no content]). For two elements, v and w of W, if their supremum (infimum) lies in W, it is their join (meet) and denoted by [image: there is no content] ([image: there is no content]).



A partially ordered set that contains the join and meet of each pair of its elements is a lattice. An example of a lattice is a Euclidean space [image: there is no content] where the relevant binary relation is simply the usual vector ordering relation ≤. Namely, for [image: there is no content] and [image: there is no content], [image: there is no content] if [image: there is no content] for all [image: there is no content]. The join and meet of a pair of elements v and w are simply the coordinate-wise maximum and minimum, namely,


[image: there is no content]








and


[image: there is no content]








For a lattice W, let [image: there is no content] be non-empty. If both [image: there is no content] and [image: there is no content] belong to V for all [image: there is no content], then we say that W is complete lattice. By putting [image: there is no content], it follows that a complete lattice has a greatest and least element. A lattice W for which either [image: there is no content] or [image: there is no content] for all [image: there is no content] is called a chain.



If V is a subset of a lattice W and V contains the join and meet (with respect to W) of each pair of elements of V, then V is a sublattice of W.



Let V be some sublattice of [image: there is no content]. A function [image: there is no content] is said to be supermodular on V (sometimes, we say supermodular in [image: there is no content]) if for all [image: there is no content], it is the case that


[image: there is no content]








Let W and Θ be subsets of a Euclidean space partially ordered by ≥. A function [image: there is no content] is said to satisfy increasing differences in [image: there is no content] if for all [image: there is no content] such that [image: there is no content] and all [image: there is no content] such that [image: there is no content], it is the case that


f[image: there is no content]-f([image: there is no content],θ)≥f(w,θ′)-f([image: there is no content],θ′)








Next, we present a lemma linking these notions.



Lemma 2 Suppose [image: there is no content] is supermodular in [image: there is no content]. Then,

	(i)

	
f is supermodular in w for each fixed θ, i.e., for any fixed [image: there is no content], and for any w and [image: there is no content] in W, we have


f[image: there is no content]+f([image: there is no content],θ)≤f(w∧[image: there is no content],θ)+f(w∨[image: there is no content],θ)












	(ii)

	
f satisfies increasing differences in [image: there is no content].









For a proof, see Sundaram ([29], p. 257). In fact an equivalence can be derived by a slightly stronger notion of increasing differences. To see this, let V⊂[image: there is no content]. A function [image: there is no content] satisfies increasing differences on V if for all distinct i and j in [image: there is no content], all [image: there is no content] such that [image: there is no content] and all [image: there is no content] such that [image: there is no content], it is the case that


[image: there is no content]











Then, we can show the following.



Lemma 3 Let V⊂[image: there is no content]. A function [image: there is no content] is supermodular on V if and only if f has increasing differences on V.



For a proof, see Sundaram ([29], p. 264). Finally, the game [image: there is no content] is supermodular if for each [image: there is no content]:

	
[image: there is no content] is a sublattice of some Euclidean space;



	
[image: there is no content](·,[image: there is no content]) is supermodular on [image: there is no content] for each [image: there is no content]∈X-i;



	
[image: there is no content] has increasing differences in (xi,[image: there is no content]).








Next, we present the following result.



Theorem 2 (Zhou, 1994) Consider a supermodular game Γ=(I,([image: there is no content],[image: there is no content])[image: there is no content])∈G. If [image: there is no content] is compact and [image: there is no content](·,[image: there is no content]) is upper semi-continuous on [image: there is no content] for each fixed [image: there is no content] and each [image: there is no content], then the set of Nash equilibria constitutes a non-empty complete lattice, and hence has a maximum and a minimum.




5.2. The Partial Cooperative Stackelberg Equilibrium


First, we prove the existence of an optimistic and a pessimistic partial cooperative Stackelberg equilibrium for supermodular games. Using Lemma 1 and Theorem 2, the Theorem follows.



Theorem 3 Consider a supermodular game [image: there is no content]. For each [image: there is no content], assume that [image: there is no content] is compact and [image: there is no content] is continuous. Then, for any [image: there is no content], both an optimistic and a pessimistic partial cooperative Stackelberg equilibrium of [image: there is no content] exist.



Consider any [image: there is no content]. Given Lemma 1, all that needs to be proven is that the correspondence D[image: there is no content]:[image: there is no content]⟶→X[image: there is no content] is non-empty valued. Consider an arbitrary [image: there is no content] and the reduced game [image: there is no content]. Clearly [image: there is no content] is a supermodular game and satisfies all the assumptions of Theorem 2. Hence, [image: there is no content] admits a Nash equilibrium for every [image: there is no content] making D[image: there is no content] non-empty valued.



We can weaken continuity of [image: there is no content] to upper semi-continuity of f(·,[image: there is no content]) on [image: there is no content] and get existence of an optimistic and a pessimistic partial cooperative Stackelberg equilibrium, but this requires additional assumptions regarding the nature of strategy sets and/or payoff functions. We summarize them in the form of the following proposition.



Proposition 2 Consider a supermodular game Γ=(I,([image: there is no content],[image: there is no content])[image: there is no content])∈G. For each [image: there is no content], let [image: there is no content] be compact and [image: there is no content](·,[image: there is no content]) be upper semi-continuous on [image: there is no content] for each fixed [image: there is no content]∈X-i. Then, for any [image: there is no content], both an optimistic and a pessimistic partial cooperative Stackelberg equilibrium of [image: there is no content] exist if either of the following conditions hold:

	(a)

	
X is finite.




	(b)

	
[image: there is no content] is finite and, for all [image: there is no content], [image: there is no content] is monotone increasing (or monotone decreasing) in X[image: there is no content], i.e., x[image: there is no content]≥z[image: there is no content] implies F(x[image: there is no content],yC)≥F(z[image: there is no content],yC) (or F(x[image: there is no content],yC)≤F(z[image: there is no content],yC)









Firstly, for any given [image: there is no content], consider the reduced game [image: there is no content]. It is a supermodular game and satisfies all the conditions of Theorem 2. Therefore, the set of Nash equilibria of [image: there is no content] is a non-empty complete lattice and admits a greatest and a least element.



(a) For every [image: there is no content], D[image: there is no content](yC) being a nonempty subset of a finite set X[image: there is no content], is finite. Since any finite set of real numbers has a maximum and minimum, [image: there is no content] and [image: there is no content] are non-empty. So, [image: there is no content] and [image: there is no content] are well-defined functions. Now, consider the sets of real numbers {[image: there is no content](yC):yC∈[image: there is no content]} and {[image: there is no content](yC):yC∈[image: there is no content]}. Given that [image: there is no content] is finite, these are finite sets of real numbers as well and hence, admit a maximum.



(b) If [image: there is no content] is monotone increasing in X[image: there is no content], then [image: there is no content] contains the least element and [image: there is no content] contains the greatest element of the complete lattice D[image: there is no content](yC). So, [image: there is no content] and [image: there is no content] are well-defined functions. Once again, finiteness of [image: there is no content] implies that {[image: there is no content](yC):yC∈[image: there is no content]} and {[image: there is no content](yC):yC∈[image: there is no content]} admit a maximum. The proof when [image: there is no content] is monotone decreasing is similar and is omitted.




5.3. The Partial Cooperative Cournot-Nash Equilibrium


For a supermodular game to admit a partial cooperative Cournot-Nash equilibrium, we require the strategy sets to be compact, and the payoff functions to be upper semi-continuous on the entire domain of all strategy tuples. To prove this, we begin by creating an artificial game and showing that the Nash equilibrium of this game corresponds to the partial cooperative Cournot-Nash equilibrium in the original game. To this end, consider the non-cooperative game [image: there is no content] corresponding to the game with partial cooperation [image: there is no content] defined in Section 2 where


Γ(C)=(I\C∪{C},([image: there is no content],[image: there is no content])[image: there is no content],[image: there is no content],F)











Lemma 4 Given [image: there is no content], a Nash equilibrium of [image: there is no content] is a partial cooperative Cournot-Nash equilibrium of [image: there is no content].



Fix any [image: there is no content]. Towards a contradiction, consider a Nash equilibrium [image: there is no content] of [image: there is no content] that is not a partial cooperative Cournot-Nash equilibrium of [image: there is no content]. Then, either [image: there is no content](yi,[image: there is no content])>[image: there is no content](x) for some [image: there is no content] and yi∈[image: there is no content] or [image: there is no content] for some [image: there is no content]. Both cases contradict that x is a Nash equilibrium of [image: there is no content].



Lemma 4 directly leads us to our existence result by showing that [image: there is no content] under appropriate restrictions satisfies the conditions of Theorem 2 and hence admits a Nash equilibrium.



Theorem 4 Consider a supermodular game Γ=(I,([image: there is no content],[image: there is no content])[image: there is no content])∈G. For each [image: there is no content], suppose that [image: there is no content] is compact and [image: there is no content] is upper semi-continuous and supermodular on X. For any [image: there is no content], a partial cooperative Cournot-Nash equilibrium of [image: there is no content] exists.



Consider the non-cooperative game [image: there is no content] constructed from [image: there is no content] and [image: there is no content]. We will prove that [image: there is no content] satisfies all the conditions of Theorem 2. The cartesian product of sublattices is a sublattice, which makes [image: there is no content] a sublattice of some Euclidean space. The sum of supermodular functions on a lattice is also supermodular. Since [image: there is no content] is supermodular on X for each [image: there is no content], it follows that F is supermodular on X. Hence, by Lemma 2, F(·,x[image: there is no content]) is supermodular on [image: there is no content] for all x[image: there is no content]∈X[image: there is no content]. Further, the fact that F is supermodular on X implies by Lemma 2 that F has increasing differences in ([image: there is no content],x[image: there is no content]). The finite sum of upper semi-continuous functions is upper semi-continuous so that F is upper semi-continuous on X and F(·,x[image: there is no content]) is upper semi-continuous on [image: there is no content] for all x[image: there is no content]∈X[image: there is no content]. The game [image: there is no content] satisfies all the conditions of Theorem 2, and hence admits a Nash equilibrium. Therefore, using Lemma 4, [image: there is no content] admits a partial cooperative Cournot-Nash equilibrium.





6. Conclusions


We would like to end by briefly considering some topics of further research. First, consider the partial cooperative Cournot-Nash equilibrium. Obviously, we are looking at the second stage of a two stage process, the first stage being a coalition formation game. A complete analysis would therefore make the formation of the group endogenous and look at stable coalitions. However, to do this kind of analysis, one needs to specify in significant details, for instance the nature of the payoff function. Such analysis has been carried out in Carraro and Siniscalco [12,13].



The other direction in which to take this kind of analysis is to consider other coalition structures. Here, we have analyzed the case of one non-singleton coalition because this is the dominant theme in several articles. But one can also look at multiple non-singleton coalitions. For instance, see Beaudry et al. [11]. Our results can be generalized into these settings without significant hurdles.



With regard to the partial cooperative Stackelberg equilibrium, one can look at settings where such an equilibrium would normally arise. For instance, see D’Aspremont et al. [16] and Barrett [15] for an analysis of stable coalitions in this setting. One can also look at axiomatization of these equilibria analogous to our axiomatization of the partial cooperative Cournot-Nash equilibria, an issue that we have tried to tackle without much success.
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Appendix


Proof of Proposition 1


The graph [image: there is no content] is the subgraph of [image: there is no content] induced by S. Two players i and j are connected in [image: there is no content] if [image: there is no content] or if there exists a path from i to j. A coalition T of I is a component of a graph [image: there is no content] if the subgraph [image: there is no content] is maximally connected, i.e., if the subgraph [image: there is no content] is connected and for each [image: there is no content], the subgraph [image: there is no content] is not connected. Note that the collection of components of [image: there is no content] forms a partition of I. A tree is a graph [image: there is no content] such that every pair of players is connected by a unique path. Note that a tree on I has exactly [image: there is no content] links. A line is a tree with exactly two leaves. A forest is a graph [image: there is no content] such that each subgraph [image: there is no content] induced by a component T is a tree.



[Proposition 1] For a proof of point (i), see Proposition 1 in Béal and Quérou [28]. For the proof of point (ii), we start by proving that under condition [image: there is no content], a network is efficient if and only if it is a tree network. Firstly, a tree network is more efficient than the empty network if [image: there is no content] and this inequality holds if [image: there is no content]. Secondly, any network that is not a forest cannot be efficient since some links can be deleted without altering the value of the network. Therefore, the set of efficient networks is included in the set of nonempty forests. Thirdly, we show that a tree is more efficient than any forest with at least two components. So consider any nonempty forest [image: there is no content] with K components, [image: there is no content]. We denote by [image: there is no content] the number of players in component [image: there is no content], [image: there is no content]. The total payoff of forest [image: there is no content] is


∑k=1K([image: there is no content]-1)([image: there is no content]-2c)








Because n>[image: there is no content] for each [image: there is no content], we obtain


(n-2c)∑k=1K([image: there is no content]-1)>∑k=1K([image: there is no content]-1)([image: there is no content]-2c)








Moreover,


n-1>∑k=1K([image: there is no content]-1)=n-K








so that


(n-1)(n-2c)>(n-2c)∑k=1K([image: there is no content]-1)>∑k=1K([image: there is no content]-1)([image: there is no content]-2c)








which proves efficiency of tree networks. Next, let [image: there is no content] be any group of size at least [image: there is no content]. For any [image: there is no content], [image: there is no content] denotes the largest integer smaller than or equal to k. Three cases have to be distinguished.



Case (a). If [image: there is no content], the result is immediate since the line network is an efficient network by assumption [image: there is no content].



Case (b). If [image: there is no content], let [image: there is no content] if [image: there is no content] is odd or [image: there is no content] if [image: there is no content] is even. Consider the strategy profile x such that


x1,j=1ifj=20otherwise










xn,j=1ifj=n-10otherwise








and for each [image: there is no content],


xi,j=1ifj∈{i-1,i+1}0otherwise








Remark that [image: there is no content] is a line network described by the path [image: there is no content]. Let us prove that x is a partial cooperative Cournot-Nash equilibrium of [image: there is no content]. A player [image: there is no content] cannot add a link by himself to [image: there is no content] since [image: there is no content] for each [image: there is no content]. Similarly, it is not in the interest of the group to add more links since the extra links would not bring more value to the network.3 Therefore, it is sufficient to test whether the group and players in [image: there is no content] have an incentive to cut some of their links. It is easy to check that the assumption [image: there is no content] implies [image: there is no content](x)≥0 for each [image: there is no content] and thus [image: there is no content], which means that neither the group nor any player in [image: there is no content] would benefit from cutting all their links. Next, observe that [image: there is no content] for each [image: there is no content] while deleting their unique link entails a null payoff. It remains to check deviations for the group of cooperators and for players in [image: there is no content]. Firstly, consider the case of a player [image: there is no content]. If player i cuts one of his two links, he will lose at least [image: there is no content] connections while paying for one less link. Such a deviation is deterred if


[image: there is no content]








Since [image: there is no content], this condition is met whenever [image: there is no content]. Secondly, consider the case of the group. The best deviation that the group can consider consists in cutting link 12 or link [image: there is no content]. Cutting one such link implies a loss of one connection for each member of the group and a cost reduction of c. The deviation is deterred if [image: there is no content]. Since both [image: there is no content] for each [image: there is no content] and [image: there is no content], this condition is verified whenever the condition in the statement of the proposition holds. Once again, the previous inequality prevents deviations in which the group deletes links 12 and [image: there is no content].



Case (c). If [image: there is no content], the proof is similar except that one of the two leaves is added to the group.



This proves that x is a partial cooperative Cournot-Nash equilibrium assumption of [image: there is no content] that induces the formation of an efficient nonempty network.




Proof of Lemma 1


In this section, we consider games Γ=(I,([image: there is no content],[image: there is no content])[image: there is no content])∈G for which it is assumed that the correspondence D[image: there is no content]:[image: there is no content]⟶→X[image: there is no content] is non-empty valued for each [image: there is no content] and each [image: there is no content]∈[image: there is no content]. First, we prove that the correspondence D[image: there is no content] is closed and compact-valued.



Proposition 3 Consider a non-cooperative game Γ=(I,([image: there is no content],[image: there is no content])[image: there is no content])∈G such that, for each [image: there is no content], [image: there is no content] is a compact subset of a Euclidean space and [image: there is no content] is continuous. For any [image: there is no content], if the correspondence D[image: there is no content]:[image: there is no content]⟶→X[image: there is no content] is upper hemi-continuous and compact-valued.



Consider any [image: there is no content] satisfying the conditions above and any [image: there is no content]. First, we show that the correspondence D[image: there is no content]:[image: there is no content]⟶→X[image: there is no content] is closed. Consider two convergent sequences, [image: there is no content] and (xI\C,p)[image: there is no content]⟶x[image: there is no content] such that xI\C,p∈D[image: there is no content](yC,p) for each [image: there is no content]. We shall prove that x[image: there is no content]∈D[image: there is no content](yC). By the definition of a Nash equilibrium,


[image: there is no content](xI\C,p,yC,p)-[image: there is no content](yi,xI\(C∪{i}),p,yC,p)≥0








for each [image: there is no content] and any arbitrary yi∈[image: there is no content]. Given [image: there is no content] is continuous and the fact that (xI\C,p)[image: there is no content]⟶x[image: there is no content] and [image: there is no content], it holds that for any yi∈[image: there is no content],


[image: there is no content](x[image: there is no content],yC)-[image: there is no content](yi,xI\(C∪{i}),yC)≥0








This proves that x[image: there is no content]∈D[image: there is no content](yC). Hence, D[image: there is no content] is a closed correspondence. Next, because a closed correspondence is closed-valued, D[image: there is no content] is closed-valued and hence D[image: there is no content](yC) is a closed set for all [image: there is no content]. Given that X[image: there is no content] is compact, D[image: there is no content](yC) being a closed subset of a compact set is compact as well, making D[image: there is no content] compact-valued. Finally, since a closed and compact-valued correspondence is upper hemi-continuous, we conclude that D[image: there is no content] is upper hemi-continuous.



Next, we show that functions [image: there is no content] and [image: there is no content] are well-defined.



Proposition 4 Consider a non-cooperative game Γ=(I,([image: there is no content],[image: there is no content])[image: there is no content])∈G such that, for each [image: there is no content], [image: there is no content] is a compact subset of a Euclidean space and [image: there is no content] is continuous. For any [image: there is no content], functions [image: there is no content] and [image: there is no content] are well-defined.



Consider any [image: there is no content] satisfying the conditions above and any [image: there is no content]. For any [image: there is no content], consider the function [image: there is no content]:X[image: there is no content]⟶R defined as [image: there is no content](x[image: there is no content])=F(yC,x[image: there is no content]) for each x[image: there is no content]∈X[image: there is no content]. From the continuity of [image: there is no content], [image: there is no content] is continuous. In addition, we would like to maximize [image: there is no content] on the subset D[image: there is no content](yC)⊆X[image: there is no content], which is a compact set by the proof of Proposition 3. As a consequence, a maximum and a minimum of [image: there is no content] on D[image: there is no content](yC) exists for each [image: there is no content]. Thus [image: there is no content] and [image: there is no content] are non-empty for every [image: there is no content], which implies that functions [image: there is no content] and [image: there is no content] are well-defined.



The proof of Lemma 1 uses the following Berge’s Theorem in order to show that the two correspondences [image: there is no content] and [image: there is no content] are upper hemi-continuous. Let [image: there is no content] and B⊆[image: there is no content].



Theorem 5 (Berge, 1963) Let ϕ:A⟶→B be an upper hemi-continuous and non-empty valued correspondence and [image: there is no content] an upper semi-continuous function. Then the function [image: there is no content] defined as


[image: there is no content]








is upper semi-continuous.



For a proof, see Theorem 2 pp. 116 in Berge [30] or Proposition 12.3 pp. 278 in Moore [31].



[Proof of Lemma 1] We only detail the proof of existence of an optimistic partial cooperative equilibrium since the proof of existence of a pessimistic partial cooperative equilibrium is similar. Consider any [image: there is no content] satisfying the conditions above and any [image: there is no content]. From Proposition 3, D[image: there is no content] is upper hemi-continuous and compact-valued. Then, upper semi-continuity of [image: there is no content] follows from an application of Theorem 5 to correspondence D[image: there is no content]:[image: there is no content]⟶→X[image: there is no content], function F:[image: there is no content]×X[image: there is no content]⟶R and [image: there is no content]:[image: there is no content]⟶R. Since the upper semi-continuous function [image: there is no content] is defined on the compact set [image: there is no content], it admits a maximum. Hence, an optimistic partial cooperative equilibrium exists.







	
1.See also Ray and Vohra [4].



	
2.Note that [image: there is no content].



	
3.For completeness, note that the group can simultaneously delete and add links between its members. However any such change in the network configuration cannot improve the value of the network for the group.







© 2010 by the authors; licensee MDPI, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).







nav.xhtml


  games-01-00338


  
    		
      games-01-00338
    


  




  





media/file0.png





