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Abstract: We study social learning in a large population of agents who only observe the
actions taken by their neighbours. Agents have to choose one, out of two, reversible actions,
each optimal in one, out of two, unknown states of the world. Each agent chooses rationally,
on the basis of private information and of the observation of his neighbours’ actions. Agents
can repeatedly update their choices at revision opportunities that they receive in a random
sequential order. We show that if agents receive equally informative signals and observe both
neighbours, then actions converge exponentially fast to a configuration where some agents
are permanently wrong. In contrast, if agents are unequally informed (in that some agents
receive a perfectly informative signal and others are uninformed) and observe one neighbour
only, then everyone will eventually choose the correct action. Convergence, however, obtains
very slowly, at rate

√
t.
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1. Introduction

In many economic and social situations, we make our decisions after observing the choices of others.
We can learn from such choices, since they can reveal information that others hold. Observing others
can help us to form a more precise evaluation and make a better choice. Of course, observing others can
also lead to conformism, in so far as we decide to just follow the crowd.
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The process of learning from others has first been studied by Bikhchandani et al. [1], and
Banerjee [2]. These papers focused on a simple case in which agents, endowed with some private
information, act sequentially and make one irreversible choice, after observing the entire history of
actions taken by their predecessors. This set up was, of course, very convenient for the analysis, but, at
the same time, quite restrictive.

One of the features that restrict the applicability considerably is that every agent can observe the whole
set of choices made by others. In most cases, we do not observe everyone’s decisions but only those
made by agents that we know, like our friends or neighbours. We know, for example, which restaurant
our friends go to, which bank they use, which car they bought. We may try to infer information from
their actions. But this inference is, of course, very complicated. While we observe their actions, and can
take these into account to make our decision, they themselves could have gone through a similar process
when it was their turn to make a choice. They could have observed our previous decisions and those of
their friends and neighbours, that maybe we do not observe. And their neighbours, in turn, could have
observed the decisions of others, and so on. Clearly, when we take all this into account, we realize that
the process of social learning is quite an intricate and complex phenomenon.

The purpose of our paper is to shed some light on social learning when agents can only
observe the actions taken by their neighbours. The seminal papers by Bikhchandani et al. [1] and
Banerjee [2] illustrated a striking phenomenon: in their set up, eventually agents decide to disregard their
private information and just conform to the prevailing action chosen by their predecessors. Conformism
prevails, and it may well be that the entire population settles on the wrong action. Beliefs may never
converge to the truth, despite the population is only formed of rational agents. In situations in which
agents can only observe their neighbours’ decisions, should we still expect uniformity of behavior? Can
we still expect agents to neglect their private information? Will the population as a whole eventually
learn the right decision? And in the positive case, will this convergence process be slow or fast?

When the agents’ observation is limited to their neighbours’ choices, the amount of information that
they receive is limited and the possibility of learning seems reduced. On the other hand, the way in
which this information is disseminated may be more efficient, since agents may rely more on their
private information, and feed this into the social learning process by their choice of actions. Therefore,
the social learning process under local interactions can differ in many ways from the one studied in the
canonical models.

To address these issues, we build a simple model that departs from the canonical one in various ways.
First, as we said, we assume that agents can only observe the behavior of their neighbours, that is, a subset
of other individuals who live close by, on an appropriately characterized spatial structure. Second, we
let each agent revise his original decision repeatedly and postulate that updating opportunities occur in a
random sequential order. Third, we assume that agents do not know the time of their decision and have
no recall of past (own and neighbours’) experiences. This last assumption makes the inference problem
easier but far from trivial. We believe that not only it helps to make the model tractable (assuming perfect
memory would make the inference problem overwhelmingly complicated), but it is also plausible in the
analysis of the dynamics of choices taken by a large population.

In this set up, we address two issues. The first concerns the social learning process in terms of its
asymptotic properties. Starting from an initial random configuration of beliefs in the population, we ask
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whether social learning is complete, in the sense that beliefs converge to the truth, or at least adequate,
in the sense that all agents choose the action that is optimal given the state of the world. The second
issue concerns the speed of learning. In our view, this issue is particularly relevant as the distinction
between slow convergence to the truth and fast convergence to the false is not an obvious one, neither
in practical terms, nor in terms of efficiency. We are able to provide an analytical solution for the speed
of convergence of actions, and, by pursuing a space-time analysis (i.e., by relating the two dimensions,
time and space, over which our process is defined), for the process of cluster formation.

Our main results are the following. When agents are equally informed (i.e., endowed with a signal
of equal precision) learning is not complete and the process of actions converges exponentially fast to
a configuration where somebody is permanently wrong. When agents are unequally informed, in the
sense that some receive a fully informative signal and some receive a completely uninformative signal,
social learning is adequate, that is, there is convergence to a state in which everybody chooses the correct
action. Convergence, however, obtains very slowly.

The paper is organized as follows. Section 2 describes the model. Section 3 contains the main results.
Section 4 relates our work to the existing literature. Finally, Section 5 concludes and Appendices A and
B contain the proofs.

2. The Economy

We consider a set Ω = {0, 1} of possible states of nature. The two states are equally likely. In the
economy there is a set X of countably many agents. Each agent x ∈ X has to choose an action in the
action space A = {0, 1}. Time t runs continuously (t ≥ 0). Each agent x makes a decision at time t = 0

and then may be called to revise it more than once. In particular, each agent may have to choose a new
action at a random exponential time, with mean 1. In any small time interval, at most one agent can
reassess his decision, and every agent is equally likely to receive an updating opportunity. We denote the
action of agent x at time t by ηt(x) ∈ A. Let {τxl} be the sequence of times when x receives an updating
opportunity, with τx0 ≡ 0 and l = 0, 1, 2, ... Agent x’s choice at t is equal to the decision he made at his
last updating opportunity, that is, ηt(x) = ητxl (x) for τxl ≤ t < τxl+1

.
Each agent gathers information on the state of the world in two ways. At time t = 0 he observes a

private symmetric binary signal on the realized state of nature. We denote the signal observed by agent
x by θσ(x) : Ω → {0, 1}, where the index σ ∈ {h, l} refers to the precision of the signal. An agent can
receive a signal of high precision qh ≡ Pr[θh(x) = 1 | ω = 1] = Pr[θh(x) = 0 | ω = 0] ∈ (0.5, 1] or
a signal of low precision ql ≡ Pr[θl(x) = 1 | ω = 1] = Pr[θl(x) = 0 | ω = 0] ∈ [0.5, qh]. Note that,
conditional on a state of nature, the signals that agents receive are independently distributed. Note also
that ql is weakly lower than qh. We will analyze a case in which the precisions are identical and one in
which one precision is strictly lower than the other.

Having observed the signal at time 0, each agent x makes his first choice, η0(x). When the agent
receives another opportunity to take a decision (i.e., to revise the choice previously made), he observes
the decisions taken by a subset of other agents in the population. This is the second way in which
he gathers information on the state of nature. We provide each agent with a spatial location on a
1-dimensional lattice Z1 (an address), and assume that he can only interact with the set of agents
who live in his vicinity. Formally, we take X ⊆ Z1 and define the set of x’s nearest neighbours as
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N(x) = {y :‖ y − x ‖= 1}, that is, the set of two agents who live at Euclidean distance 1 from
agent x. We denote these two agents by x − 1 and x + 1, and the information set upon which agent
x takes a decision at time t by It(x). In order for agents to be able to fully draw inference upon the
observation of their neighbours’ action, one should endow each agent with a very rich information set,
including the history of actions chosen in their neighbourhood and the exact order in which updating
opportunities have been assigned until that point. Although we assume that agents are able to perform
Bayesian updating, we take the view that these requirements are unreasonable in the set up of a large
population of agents. On these grounds, we assume that agents have limited memory, in the sense that,
if at time t agent x has to choose an action, his information set is:

It(x) ⊆

{
{θσ(x), σ} for t = 0

{ηt(x), ηt(y), y ∈ {x± 1}, σ} for t > 0

where σ ∈ {h, l}. For the entire paper, we keep the assumption that at time t = 0 agents observe only
their private signal. For t > 0, instead, we will consider two cases, one in which the agent observes both
neighbours, and one in which he only observes one neighbour (randomly drawn). Note that, because of
limited memory, agents revise their decisions every time completely ignoring past history1. Note also
that the time t does not belong to the information set, that is, the agent does not know the time of his
decision, neither he knows how many times he already had an opportunity to revise his choice. On the
other hand σ does belong to agent x′s information set, meaning that at each time a decision is to be
made, x knows the precision of the signal he received.

Agents’ payoff only depends on the realized state of nature ω and on the chosen action. While action
0 always gives a payoff of zero, action 1 gives a payoff of one if the state is 1 and a payoff of minus one
if the state is 0. On the basis of the available information, at time t agent x chooses ηt(x) to maximize
E[U(ηt(x), ω)|It(x)] and sticks to this decision until a new updating opportunity arises.

If we denote the belief at time t that ω = 1 by πt(x) = Pr[ω = 1 | It(x)], then x’s optimal action is

η∗t (x) =


1 if πt(x) > 0.5

{0, 1} if πt(x) = 0.5

0 if πt(x) < 0.5

(1)

or, equivalently,

η∗t (x) =


1 λt(x) > 0

{0, 1} λt(x) = 0

0 λt(x) < 0

(2)

where λt(x) ≡ log Pr[ω=1|It(x)]
Pr[ω=0|It(x)]

denotes the log-likelihood ratio (LLR).
Essentially, agents choose their best action whenever they have the opportunity to do so. A simple

interpretation is that the actual payoff is realized only when at a random time the game is over. Since
agents do not know the end of the game, maximizing the payoff every time is in fact their optimal
behavior.

We now define the equilibrium in our game.
1An entirely equivalent specification could be obtained by enlarging the information set and by imposing that agents only

use stationary strategies, that is, strategies that do not depend on time, nor on location.
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Definition 1 (Equilibrium) An equilibrium is a profile of strategies {η∗t (x)}x∈X such that, for all x ∈
X , η∗t (x) ∈ arg maxE[U(η(x), ω)|It(x)].

Clearly, an equilibrium is absorbing for our learning processes if there exists a time T such that for
any x ∈ X and for any t > T , η∗t (x) = η∗(x). The dynamics are as follows. Agent x makes a decision
at time t = 0 and then, whenever he has an updating opportunity, chooses an action according to (1),
that is,

ηt(x) = η∗τxl
(x) for τxl ≤ t < τxl+1

and l = 0, 1, 2, ...

At the beginning of time, ω is realized and each agent x receives a signal θσ(x) which determines
η0(x). The process then evolves stochastically in continuous time. We refer to the process of social
learning as to the dynamic process generated by the collection of all individual actions and we are
interested in analyzing its properties. We shall denote the state of the process at time t by ηt ∈ {0, 1}X

and we are interested in characterizing its evolution over time and over space.

3. Social Learning

Before proceeding to the analysis, we find it useful to discuss the relation between a canonical model
of social learning and a model of social learning with local interactions as ours. Consider the standard
model of sequential social learning of Birkhchandani et al. [6] and suppose that each agent can directly
observe the signals received by his predecessors before making a decision. Suppose, for simplicity, that
qh = ql ≡ q ∈ (0.5, 1) and that agents are indexed by 1, 2, 3, ..n. Since the precisions of the signals are
identical, we omit the superscript for θ. Then, the LLR for agent n on the basis of his information set
I(n) = {{θ(y)}y≤n} is

λ(n) ≡ 2

(
log

q

1− q

)
(θ(n)− 1

2
) + 2

(
log

q

1− q

)∑
y<n

(θ(y)− 1

2
)

Suppose, for instance, that the true state of nature is ω = 0. Then, the random variables θ(.) have
mean 1− q. This implies that λ(n) tends to−∞, as n tends to infinity. In other words, the assessment of
the probability that state ω = 1 is true, π(n) ≡ exp[λ(n)]/[1+exp[λ(n)]], will tend to zero exponentially
fast, as the number of observations increases. Therefore, in a canonical model of social learning in which
agents can observe all signals, learning is complete in the sense that beliefs converge to the truth (and,
hence, actions to the correct decisions), that is, Pr[limn→∞ π(n) = η(n) = ω] = 1 for all n. In particular,
convergence obtains exponentially fast.

Essentially, in the canonical model of social learning, the observability of private information
guarantees that the outcome of the learning process is informationally efficient. Actions are clearly
not as informative as signals in this setting: potential inefficiencies may arise when agents only observe
the actions taken by their predecessors and not their signals. Indeed, given a discrete action space, these
inefficiencies may take the extreme form of an informational cascade, in which beliefs do not converge
to the truth and the entire population settles on the wrong action.

Things are different if interaction is local, as in our framework. To see this, assume that agents do
observe signals (and not actions), but only those of their nearest neighbours. Since signals are noisy and
each agent observes three signals only, agents’ beliefs, as measured by their LLR, are bounded. As a
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result, we cannot expect any convergence in beliefs to the truth in this case, and agents will continue
choosing the same action (perhaps the incorrect one) indefinitely. Observing actions may in fact make
agents better off, as actions taken by one’s neighbour may convey information on signals received by
that neighbour’s neighbours and so on.

We are interested in characterizing the properties of social learning processes with local interactions
in terms of the degree of informational efficiency. For the reasons just mentioned, requiring complete
learning would be too demanding in our model. A weaker requirement is, instead, that all agents
eventually choose the correct action, as in the following definition:

Definition 2 (Adequate Learning) The social learning process shows adequate learning if

lim
t→∞

Pr[ηt(x) = ω for all x in X] = 1

In fact, limt→∞ Pr[ηt(x) = ω] is the limit measure of agents who choose the action appropriate for
the true state of the world and is our measure of how informationally efficient the social learning process
is.

We now move to address these issues with reference to our specific models.

3.1. Equally Informed Agents

We start by studying the case in which each agent receives a signal of equal precision2 qh = ql ≡ q ∈
(0.5, 1) and observes both his neighbours. At any revising opportunity, agent x’s information set is:

It(x) =

{
{θ(x), σ} at t = 0

{ηt(x), ηt(y), y ∈ {x± 1}, σ} at each t = τx

where the superscript σ is dropped for notational convenience. We now show that in this set up in
equilibrium extreme inefficiencies arise.

Theorem 3 If each agent x receives a symmetric binary signal with precision q ∈ (0.5, 1) and can
observe both neighbours, then the process of social learning is not adequate, and limt→∞ Pr[ηt(x) = ω

for all x in X] = 0. The process converges exponentially fast to a configuration where some agents are
permanently wrong.

The proof of the Theorem is contained in Appendix A. It relies on the explicit characterization of the
process of inference underlying agents’ optimal choices. Let {τ i} be the sequence of random times at
which agents in the population have an opportunity to revise their choice. In other words, τ 1 is the first
time an agent (randomly chosen) has the opportunity to change his choice, τ 2 is the second time, etc.
Consider the following strategy S1:

At any time τx: if ητx(x− 1) = ητx(x+ 1), then choose ητx(x± 1)

if ητx(x− 1) 6= ητx(x+ 1), then stick to ητx(x)

Recall that by the assumptions of the model, Pr[τx = τy = τ i] = 0 (i.e., no two agents act at the same
time) and Pr[τx = τ i] = Pr[τy = τ i] for all x, y (i.e., within any time period agents are equally likely

2Note that this is the case contemplated by the canonical model of social learning.
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to receive an updating opportunity). Hence, to show that the above strategy is optimal, we need to show
that it is so at any time, that is, for any τx = τ i , and at any stage of the revision process, that is, for any
τxl , l = 1, 2, ...

To start the analysis, it is useful to notice that this strategy is clearly optimal if x is the first agent to
receive an updating opportunity. Indeed, at time t = 0, upon receiving the signal θ(x), any agent x has
an LLR equal to

λ0(x) = 2 log

[
q

1− q

](
θ(x)− 1

2

)
and, given the incentive structure, η0(x) = θ(x) is the optimal choice at time t = 0. Since at time
t = 0 all agents are playing their signals, if agent x is the first to act, his information set will consist of
{θ(x) = η0(x), θ(x± 1) = η0(x± 1)} and

λτ1(x) = 2 log

[
q

1− q

]
{
(
θ(x)− 1

2

)
+

(
θ(x− 1)− 1

2

)
+

(
θ(x+ 1)− 1

2

)
}

As a result, the above strategy is the only optimal strategy if x is the first agent to receive an updating
opportunity. As such, it is a candidate to be an optimal strategy at any time τx > 0. By induction,
in the proof, Remark 5 shows that this strategy is optimal as long as it is followed by all other agents.
On the basis of this result, Remark 6 proceeds to characterize the equilibrium of the social learning
process, as well as to compute the rate of convergence of the process of action choices. Finally, Remark
7 emphasizes that this social learning process with local interactions gives rise to an extreme form of
informational inefficiency, as the probability that the whole population learns to behave optimally, given
the state of the world, is in fact zero. The result shows that the process of social learning may get
absorbed in one of an infinite number of states where someone chooses the correct action and someone
does not. In essence, the reason for this endemic multiplicity of stable limit configurations is that agents
are extremely inward looking, in the sense that their choices are entirely determined by what happens
inside their small neighbourhood, and although neighbourhoods are overlapping, information fails to
be transmitted. To gain further intuition, consider the border between a cluster (of at least two agents)
choosing action 0 and a cluster (of at least two agents) choosing action 1. As each of the two bordering
agents has at least one neighbour choosing the same action as he does, neither of them will ever flip and
information transmission will come to a halt.

It is interesting to consider what would happen if such bordering agents did not rely so much on their
private (possibly wrong) information and allowed for the possibility of changing action in any situation
where the actions chosen by their neighbours were in conflict. In what follows, we build on this intuition.

3.2. Unequally Informed Agents

We now move to a different scenario, in which agents receive signals of different precisions. We
study, in particular, the case in which some agents in the population are perfectly informed, while others
receive an uninformative signal. In terms of our notation, this means that qh = 1, ql = 0.5 and that the
probability that each agent receives a strongly-informative signal is denoted by r ∈ (0, 1). We assume
that at each time t > 0, when x is to take a decision, he observes the action currently chosen by one of
his two neighbours, drawn with equal probabilities in {x± 1}.
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The main difference with respect to the model previously analyzed is that now information is not
homogeneous among agents: while agents who receive a fully informative signal will always choose
the correct action independently of their neighbours, agents who receive a (fully) uninformative signal
will draw Bayesian inference on the basis of their observation, that now consists of the action currently
chosen by a single neighbour. The next result shows that the properties of the entailed social learning
process with local interactions are very different in this set-up.

Theorem 4 If each agent is perfectly informed with probability r ∈ (0, 1) and perfectly uninformed
otherwise, and can observe a randomly drawn neighbour, then the process of social learning with local
interactions is adequate, as Pr[limt→∞ ηt(x) = ω for all x in X] = 1. The process converges slowly (at
rate
√
t) to a configuration where all agents choose the correct action.

The proof is contained in Appendix B and its logic parallels that of Theorem 3. Since agents who are
perfectly informed always choose the correct action, the focus is on the characterization of the behaviour
of the remaining uninformed agents. For convenience, we denote agents who are perfectly informed as
x and agents who are perfectly uninformed as x. Under the assumptions of this model,

It(x) =

{
{θσ(x), σ} at t = 0

{ηt(x), ηt(y), Pr[y = x− 1] = Pr[y = x+ 1] = 0.5, σ} at each t = τx

Consider the following strategy S2 for agent x:

At any time τx: choose ητx(x) = ητx(y)

To understand why this strategy is optimal, suppose agent x is the first to act and observes ητ1(y) = 1.
As x is uninformed, λ0(x) = 0 and

λτ1(x) ≡ log
Pr[η(y) = 1 | ω = 1] Pr[ω = 1]

Pr[η(y) = 1 | ω = 0] Pr[ω = 0]
= log

r + (1− r)1
2

(1− r)1
2

= log
1 + r

1− r
> 0

where, we recall, r is the probability that agent y is perfectly informed. By the same token, observing
η
τ1

(y) = 0, leads agent x to revise his LLR to log 1−r
1+r

< 0. Since each neighbour is equally likely to
be observed, choosing ητ1(x) = ητ1(y) is optimal for agent x at his first updating opportunity, τ 1. De
facto, this strategy posits that when the evidence provided by the observation of the neighbours is strong
(i.e., when both neighbours choose the same action), agent x optimally chooses to agree with them (as he
did in the previous model), but whenever the actions observed by x provide only weak evidence on the
unknown state (i.e., when neighbours disagree), agent x may choose any of the two actions with equal
probability.

Remark 8 shows that strategy S2 is optimal for any agent x at any stage of the revision process, as
long as it is followed by all other uninformed agents. Remark 9 characterizes the limit behaviour of this
social learning process and Remark 10 shows that this social learning process is adequate, in the sense
that, albeit very slowly, all agents will eventually choose the correct action.

The intuition behind this result is that, in this model, those agents who are aware of being uninformed
will disregard their private information and be more prone to changing actions. On the other hand, those
agents who are aware of being perfectly informed do unerringly play the correct action. As a result,
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this modeled heterogeneity in available private information significantly improves the efficiency of the
mechanism of information transmission.

4. Related Literature

The literature on social learning has been growing very fast over the last two decades. Early models
of social learning (Bikhchandani et al. [1], Banerjee [2]), typically referred to as models of herding and
informational cascades, show that individuals who take choices sequentially and observe the choices
made by all predecessors may neglect their private information and base their decisions entirely on what
is publicly observed (an informational cascade). Herds may occur because the informational content of
the public history of choices may overwhelm the information contained in the agents’ private signals.
Since in this case agents’ private information is not revealed through their actions, learning may come to
a halt and beliefs never converge to the truth.

After this seminal work, many papers have extended the analysis in various directions and applied it
to study different issues (for comprehensive surveys see, among others, Gale [3], Devenow et al. [4],
Hirshleifer and Theo [5], Chamley [6], Bikhchandani et al. [7], Vives [8]). The papers most related to
ours study social learning when agents can only observe other individuals to which they are connected in
a network. This is the case in Gale and Kariv [9]. In their model, agents act simultaneously, have perfect
recall, and can revise their previous decisions. Their results show that, under some conditions, despite the
fact that agents cannot observe the entire population, eventually, uniformity of actions occurs. Acemoglu
et al. [10] analyze a situation in which agents observe the past actions of a stochastically-generated
neighbourhood of individuals. In their set up, when beliefs are unbounded, there is asymptotic learning
(defined as convergence of the actions to the correct one) as long as there is some minimal amount of
“expansion in observations”. For many common deterministic and stochastic networks, bounded private
beliefs are, instead, incompatible with asymptotic learning, as in the canonical model of social learning.
Nevertheless, the authors find conditions under which asymptotic learning obtains even with bounded
private beliefs for a large class of stochastic network topologies.

Other models of social learning in networks include Bala and Goyal [11], De Marzo et al. [12],
Acemoglu et al. [13] and Ellison and Fudenberg [14]. What these papers have in common is that
they assume some form of bounded rationality. In Bala and Goyal [11], agents in a network choose
after observing their neighbours’ actions and payoffs. It should be noticed that this is a model of
social experimentation rather than social learning: agents learn by observing the outcome (payoff) of
an experiment (choice of action) rather than by inferring another agent’s private information from his
action. There is private information in their model, but agents are assumed to ignore it to some extent.
By assumption, each agent learns from his neighbour’s actions, but does not ask what information might
have led the neighbour to choose those actions. They show that, in a connected network, in the long run,
everyone adopts the same action and that the action chosen can be suboptimal. De Marzo et al. [12] and
Acemoglu et al. [13] also focus on networks, but learning in these models is non-Bayesian. In Ellison
and Fudenberg [14], finally, agents consider the experiences of their neighbours and learn using rules of
thumb. In some cases, even naive rules can lead to efficient decisions, but adjustment to an innovation
can be slow.
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Beyond the papers that focus on social learning in networks, our paper is also related in the motivation
to studies that analyze social learning when agents can only observe a subset of other agents’ actions.
Banerjee and Fudenberg [15] and Smith and Sørensen [16] study social learning when agents observe a
sample of predecessors’ actions. Banerjee and Fudenberg [15] present a model in which, at every time, a
continuum of agents choose a binary action after observing a sample of previous decisions (and, possibly,
of signals on the outcomes). This can be interpreted as a model of word of mouth communication in large
populations. The authors find sufficient conditions for herding to arise, and conditions for all agents
to settle on the correct choice. Smith and Sørensen [16] study a sequential decision model in which
agents can only observe unordered random samples of predecessors’ actions. They characterize different
conditions on the sampling procedure and on the beliefs to have complete or incomplete learning. When
the past is not over-sampled, that is, not affected forever by any one individual, and when beliefs are
unbounded, complete learning eventually obtains.

The theme of imperfect observability of other agents’ actions is common to a series of other papers
in the social learning literature. Çelen and Kariv [17] extend the standard model of sequential social
learning by allowing each agent to observe the decision of his immediate predecessor only. The
prediction of these authors is that behavior does not settle on a single action. Long periods of herding
can be observed, but switches to the other action may occur. As time passes, the periods of herding
become longer and longer, and the switches increasingly rare. Larson [18] analyzes a situation in
which agents observe a weighted average of past actions before making a choice in a continuous action
space. Similarly to our work, the focus is on the speed of learning (since the continuous action space
guarantees that complete learning eventually occurs). An interesting observation of this study is that the
speed of learning depends on how effectively the noise coming from early actions is purged. Guarino
et al. [19] introduce a model of aggregate information cascades where only one of two possible actions
is observable to others. Agents make a binary decision in a random order and agents are not aware of
their own position in the sequence. When called upon, they are only informed about the total number
of others who have chosen the observable action before them. The result of this study is that only one
type of cascade arises in equilibrium, the cascade on the observable action. Collander and Hörner [20]
present a model in which an agent observes only the total number of choices of each type (in a binary
action setting), rather than the full sequence of actions. They characterize conditions under which later
agents optimally imitate the minority, rather than the majority action.

Finally the issue of imperfect observability is also discussed in recent papers by Bohren [21], Eyster
and Rabin [22] and Guarino and Jehiel [23] in contexts in which agents are not fully rational. The
imperfect observability can actually alleviate some biases that bounded rationality produces in a classical
model of learning with continuous action space similar to that of Lee [24].

5. Conclusions

In our economy, a large population of individuals have to choose one out of two available actions.
Each action is optimal in one of two unknown states of the world. Agents repeatedly and reversibly
choose an action, the payoff to which will materialize when the state of the world realizes. Agents derive
a posterior probability on the basis of a symmetric binary signal that they receive and by observing a
sample of other agents, called their neighbours. Observed choices can be informative, since signals
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are, and this raises an issue of informational externality. While signals are generated by a probability
distribution that is exogenously given to each agent, observed choices are endogenous to the model and,
given the postulated spatial structure of the process, show a potentially high degree of spatial correlation.

We have studied two social learning processes, one in which agents are homogenous in the quality of
the private information they receive (as measured by the precision of their signals) and one in which the
quality of the information differs (in that some agents are perfectly informed, while others are completely
uninformed). We have compared the two social learning processes in terms of the probability with which
they may prove to be adequate, that is reach a configuration where every agent adopts the action that is
optimal given the true state of the world. As we pointed out, since beliefs are bounded by the local
nature of the social interaction, complete learning is out of reach within this class of models. We have
shown that the specific kind of heterogeneity embedded in the second model guarantees that, albeit very
slowly, the social learning process is adequate, since it converges to a configuration where all agents
adopt the correct action. This cannot be so in the first model, as the social learning process gets absorbed
exponentially quickly in a configuration where some agents permanently adopt the incorrect action. The
explicit characterization of the rates of convergence proves to be relevant if one wants to compare the two
models in terms of informational efficiency: while in the first model we observe a quick and complete
blockage of information transmission, in the second information does get disseminated, but this occurs
very slowly.

We conclude with a few remarks and conjectures.
In the model of Section 3.1 social learning is not adequate. One may wonder whether learning could

be adequate in the presence of some agents who are perfectly informed about the state of the world.
To address this issue suppose that 1 = qh > ql > 0.5 and 0 < r < 1, that is, suppose that all agents
receive an informative signal and a positive measure of them are perfectly informed. We conjecture that
Theorem 3 would carry on in this case as well. Any perfectly informed agent, say agent 0, knows
the true state of the world, ω, and sticks to η(0) = ω independently of the actions adopted in his
neighbourhood. This relevant information is not necessarily transmitted to others. Since agents ±1

are themselves informed and observe both neighbours, if the other neighbour, ±2 respectively, chooses
the wrong action, 1 − ω, they would stick to the wrong action. Also, the speed at which the social
learning process converges would still be driven by the use of strategy S1 on the part of the less informed
agents, and hence would still be exponentially fast. The result would hold, a fortiori, if qh < 1, since
now agents know that no neighbour is perfectly informed about the state of the world. This suggests that
heterogeneity in the quality of information per se is not sufficient to guarantee that the social learning
process is adequate.

In the model of Section 3.2 an extreme form of heterogeneity in the quality of information leads
to adequate social learning. One may wonder whether the result extends to the case in which in the
population there are uninformed agents and other agents that receive a noisy signal: 1 > qh > ql = 0.5

and 0 < r < 1. We conjecture that this heterogeneity is not sufficient to guarantee adequate learning.
Strategy S2 would still be optimal for the uninformed agents in this case. Also, for a non empty set of
values of qh a better informed agent, say 0, would play his signal independently of his neighbours. As
a result, with positive probability, agents ±1 (if uninformed) will learn agent 0’s action, and transmit it
to agents ±2 (if uninformed), etc. The difference with Section 3.2 is that with positive probability some
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better informed agents receive the wrong signal and never correct their initial decision, which precludes
adequate learning.

In essence, sufficient conditions that guarantee that the social learning process is adequate, are the
existence of some agents who know the truth and unerringly choose the correct action, together with
the existence of some agents who, being uninformed, decide to change their original choice. Perhaps
contrary to intuition, in this set-up of limited memory a process of slow clustering on the correct decision
ensues, by thus guaranteeing that the social learning process reaches an informationally efficient state.
Our explicit characterization of the convergence rates shows that the speed at which this cluster grows
does not depend on the proportion of perfectly informed agents in the population: our estimate is in fact
unaltered for any value of the parameter 0 ≤ r < 1.3

Finally, one may wonder if endowing agents with the ability to convey more information to their
neighbours, for example by fully revealing their posterior belief to each other, may enhance informational
efficiency. Duffie et al. [25] show that this is the case in a model that does not account for a spatial
dimension and are able to characterize explicitly the convergence of the cross-sectional distribution
of beliefs to a common posterior. Their results do not apply to our setting,4 but the question grants
future research.
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Appendix A

Proof of Theorem 3.
The proof of the Theorem 3 is split into a few Remarks: Remark 5 shows that the model admits

an equilibrium; Remark 6 characterizes limit behaviour and convergence rates of this process of social
learning with local interactions and finally Remark 7 evaluates the degree of informational efficiency of
the process.
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Remark 5 Suppose all agents y 6= x choose stationary strategy S1. Then this strategy is also optimal
for x at any time τxl .

Proof. First, suppose that τx1 = τ 1 . Then, the statement is true, since η0(y) = θ(y) for all y. Suppose
now that τx1 > τ 1 . Let us describe the process of inference undertaken by agent x in such a case (i.e.,
if he knew that at least one other agent had received an updating opportunity before). We drop the time
subscript for notational convenience. Due to the symmetry of the model, WLOG we consider θ(x) = 0.

Let us consider first the case in which η(x− 1) = 1. Agent x needs to infer θ(x− 1) on the basis of
I(x) = {θ(x) = 0 = η(x), η(x− 1) = 1, η(x+ 1)}. By Bayesian updating,

Pr[θ(x− 1) = 1 | I(x)] ≡

(Pr[η(x− 1) = 1 | θ(x− 1) = 1, θ(x) = 0, η(x+ 1)] Pr[θ(x− 1) = 1 | θ(x) = 0, η(x+ 1)])

(Pr[η(x− 1) = 1 | θ(x− 1) = 1, θ(x) = 0, η(x+ 1)] Pr[θ(x− 1) = 1 | θ(x) = 0, η(x+ 1)] +

+ Pr[η(x− 1) = 1 | θ(x− 1) = 0, θ(x) = 0, η(x+ 1)] Pr[θ(x− 1) = 0 | θ(x) = 0, η(x+ 1)])−1

If τ(x−1)1 > τx1 , this probability is one, as x−1 is playing his signal, by construction. If τ(x−1)1 < τx1
and agent x − 1 has followed strategy S1, this probability is also equal to one, since Pr[η(x − 1) = 1 |
θ(x − 1) = 0, θ(x) = 0, η(x + 1)] = 0. Hence an agent who observes a neighbour choosing an action
different from the action he himself is choosing, infers that neighbour is playing his signal:

Pr[θ(x− 1) = 1 | I(x)] = 1

Let us consider now the case of η(x − 1) = 0. Agent x needs to infer θ(x − 1) on the basis of
I(x) = {θ(x) = 0 = η(x), η(x− 1) = 0, η(x+ 1)}. If τ(x−1)1 > τx1 , clearly θ(x− 1) = η(x− 1) = 0.
If τ(x−1)1 < τx1 and agent x− 1 has followed strategy S1, then by a logic analog to that followed in the
previous paragraph,

Pr[η(x− 1) = 0 | θ(x− 1) = 1, θ(x) = 0, η(x+ 1)] = Pr[η(x− 2) = 0 | I(x)]

and
Pr[η(x− 1) = 0 | θ(x− 1) = 0, θ(x) = 0, η(x+ 1)] = 1

Let Pr[η(x− 2) = 0 | I(x)] ≡ 1− α and Pr[θ(x− 1) = 1 | θ(x) = 0, η(x+ 1)] ≡ 1− β. Then,

Pr[θ(x− 1) = 1 | I(x), τ(x−1)1 < τx1 ] ≡
(1− α)(1− β)

(1− α)(1− β) + β

Note that β is the belief that agent x has on the signal of x− 1 being equal to zero. As such, β depends
on the value of η(x+ 1), i.e., either

Pr[θ(x− 1) = 1 | θ(x) = 0, η(x+ 1) = 1] = 0.5

or
Pr[θ(x− 1) = 1 | θ(x) = 0, η(x+ 1) = 0] < Pr[θ(x− 1) = 1 | θ(x) = 0] < 0.5
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Hence β ≥ 0.5 and, for all 0 ≤ α ≤ 1,

Pr[θ(x− 1) = 1 | I(x), τ(x−1)1 < τx1 ] ≡
(1− α)

(1− α) + β
1−β
≡ γ <

1

2

As a result,

Pr[θ(x− 1) = 1 | I(x)] ≤ Pr[τ(x−1)1 < τx1 ]γ <
1

2

Hence an agent who observes a neighbour choosing the same action as he himself is choosing, infers
that the neighbour is more likely to be playing his signal (than to have used an updating opportunity).

As a result of the above considerations, and for y ∈ {x± 1} the conditional expectations of θ(y) are

E[θ(y) | θ(x) = 0, η(y) = 1] = 1, and

E[θ(y) | θ(x) = 0, η(y) = 0] <
1

2

We now proceed to show that, given these conditional expectations, the strategy is optimal for x at
time τx1 for any possible I(x) = {θ(x) = 0 = η(x), η(x± 1)}.

Let us first prove the ”if” part. Suppose that I(x) = {θ(x) = 0, η(x − 1) = η(x + 1) = 1}. By the
above considerations θ(x− 1) = θ(x+ 1) = 1. Hence:

λ1(x) ≡ 2 log

[
q

1− q

](
E[θ(x− 1) | I(x)] + θ(x) + E[θ(x+ 1) | I(x)]− 3

2

)
=

= 2 log

[
q

1− q

](
2− 3

2

)
= log

[
q

1− q

]
> 0

Now let us prove the ”only if” part. We have to consider different cases.
Case a): Suppose that I(x) = {θ(x) = 0, η(x − 1) = η(x + 1) = 0}. By the above considerations

E[θ(x− 1) | I(x)] < 0.5. Hence:

λ1(x) ≡ 2 log

[
q

1− q

](
E[θ(x− 1) | I(x)] + θ(x) + E[θ(x+ 1) | I(x)]− 3

2

)
=

< 2 log

[
q

1− q

](
1− 3

2

)
= − log

[
q

1− q

]
< 0

since q > 0.5, as assumed.
Case b): Suppose that I(x) = {θ(x) = 0, η(x− 1) = 0, η(x + 1) = 1} (or viceversa). By the above

considerations E[θ(x− 1)] | I(x)] < 0.5) and E[θ(x+ 1) | I(x)] = 1. Hence:

λ1(x) ≡ 2 log

[
q

1− q

](
E[θ(x− 1) | I(x)] + θ(x) + E[θ(x+ 1) | I(x)]− 3

2

)
=

< 2 log

[
q

1− q

](
1

2
+ 1− 3

2

)
= 0

since q > 0.5, as assumed.
This concludes the proof that, under the stated assumptions, this strategy is optimal at time τx1 = τ i

for i = 1, 2, ... (i.e., at the first updating opportunity that agent x gets, independently of when this
opportunity arises). We now show that the statement holds at any time τxl for l = 2, 3...
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Consider τx2 > τx1 and let I2(x) = {θ(x) = 0, ητx2 (x ± 1)} denote x’s information set at time τx2 .
If ητx1 (x) = θ(x), clearly the previous part of the proof holds in this case as well. Suppose instead that
ητx1 (x) 6= θ(x). In this case x has flipped to η(x) = 1 at time τx1 , because ητx1 (x ± 1) = 1. By the
reasoning above, this means that x could perfectly infer that θ(x± 1) = 1. Hence, strategy S1 is optimal
at time τx2 as well. In other words, at the second updating opportunity and for any x :

either ητx1 (x) = 1 and λ1(x) = log

[
q

1− q

]
or ητx1 (x) = 0 and λ1(x) = − log

[
q

1− q

]
An entirely analog reasoning shows that the strategy is also optimal at any time τxl for l > 2, when

one notices that in between any τxl+1
and τxl within x’s neighbourhood the number of agents x ± 1

such that η(x ± 1) = η(x) cannot decrease. To see this, consider τx3 > τx2 and let I3(x) = {θ(x) =

0, ητx3 (x ± 1)}. If ητx2 (x) = θ(x) = 0, it must be that also ητx1 (x) = θ(x) = 0 (since it must have
been that ητx1 (x ± 1) = 1) and the first part of the proof holds. If ητx2 (x) = 1 6= θ(x) = 0, then x
must have flipped either at time τx1 or at time τx2 , and again we know from the previous part of the proof
that strategy S1 was optimal in those cases. As a Corollary, the above reasoning shows that, within this
model, each agent can flip at most once.

Remark 6 If agents use strategy S1, the characterization of the limit behaviour of the social learning
process is as follows5.

Let {η̂} be the set of configurations such that, for each x in X , there is at least a y in N(x) =

{η(x ± 1)} such that η(y) = η(x). Then, starting from any given initial distribution, µω, the process
converges in probability to a configuration η∞ ∈ {η̂}:

P µω [ lim
t→∞

ηt = η∞] = 1

Convergence obtains exponentially fast:

P µω [ηt 6= η∞] ∝ exp[−t]

Proof. We shall find it convenient to model transitions in terms of flip rates, i.e., the rates at which ηt(x)

flips to 1− ηt(x). By flip rate c we mean that the probability that the transition occurs in an infinitesimal
time dt is cdt. We shall denote flip rates by c(x, ηt) to emphasize their dependence on the current state
of action chosen in the population and assume that Pr[ηt(x) | 1− ηt(x)] = c(x, ηt)t+ o(t).

By Remark 5, the flip rates for this process are:

c(x, η) =

{
1 η(y) 6= η(x) ∀y = {x± 1}
0 otherwise

5In stating the results, we use the following additional notation. We denote any probability distribution over the state
space by µt, and the initial distribution by µω . Since at time t = 0 choices are determined by the signals and in any given
state of the world ω these are stochastically independent, this initial distribution is by construction a product measure. As for
any t > 0 choices may instead depend on the spatial configuration of action chosen within neighbourhoods, µt will typically
display an amount of spatial correlation.
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and the characterization of η̂ follows by simple inspection of these.
To show that the process of actions converges, let δx,y(t) = 1 if ηt(x) 6= ηt(y), and 0 otherwise. Recall

that agents live on a one-dimensional lattice X = Z1 = {..,−2,−1, 0,+1,+2, ..}. We follow the lines
of Durrett et al. [26] and define the following function:

Υt =
∑
x∈X

∑
y∈N(x)

exp[−|x+ y|]δx,y(t)

Note that, by construction, 0 ≤ Υt < Υ < ∞. We shall show that, starting from Υ0, at any time in
which any x flips from η(x) to 1 − η(x), this function decreases by a strictly positive amount. To this
aim, let Υt(x) be:

Υt(x) =
∑

y∈N(x)

exp[−|x+ y|]δx,y(t)

and for simplicity6 take x = 0, with neighbours y ∈ {−1,+1}:

Υt(0) =
∑

y∈{−1,+1}

exp[−|y|]δ0,y(t)

Note that agent x = 0 will flip if and only if
∑

y δ0,y(t) = 2, and, by the construction of the model,
this can happen with positive probability. Suppose that this happens. Then the drop in Υ at site 0, after
the flip occurred, is equal to 2 exp[−1] which is strictly positive. As the same argument applies to any
generic site, this implies that the function Υt is strictly decreasing at any time at which an agent flips
action.

Let Υ̂ ≡ Υ̂(η̂) be the value of this function at any stable configuration η̂ such that limt→∞ ηt = η̂

and consider Υ̂t ≡ Υt − Υ̂ along the realizations of the process leading to η̂. To show that convergence
obtains exponentially fast we will show that there exists k > 0 and ε > 0 such that:

PΥ0 [Υ̂t > 0] ≤ kΥ0 exp[−εt]

To this aim, we need to make the transition from convergence along integer times (as in Υ̂t) to
convergence in real time (for ηt). Let δx,y[(n − 1)t, nt] for n ≥ 1 and Υ̂nt = [Υ̂(n−1)t,nt] ≤∑

k=1,...,t Υ̂(k−1)t,kt. Since, by construction, Υ̂ is finite, E[Υ̂t] is also finite. Since Υ̂ ≤ Υ < ∞, then̂̂
Υ ≡ (Υ)−1Υ̂ ≤ 1. Let

Υ̃ ≡ E[exp[ξ
̂̂
Υnt]] < 1

which is true for a small positive ξ. This implies that:

Pr[Υ̂nt > 0] ≤ Υ̃n

and since PΥ0 [Υ̂s > 0] is monotonic in s, for k ≡ Υ̃−1 and for ε ≡ t−1 log Υ̃−1 the assert is proved.

Remark 7 If agents use strategy S1, the process of social learning with local interactions is not adequate
and

Pr[ lim
t→∞

ηt(x) = ω for all x in X] = 0

6This is done WLOG, since the initial distribution that determines the initial condition is (a product measure and hence)
traslation invariant.
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Proof. Recall that the initial choice of actions is produced by a product measure: Prµω=1 [η : η(x) =

1] = q or Prµω=0 [η : η(x) = 1] = 1 − q respectively. Since 0.5 < q < 1 the probability that any
two adjacent agents receive the same signal is strictly positive. Once this happens, as the above Remark
shows, these agents will never flip. Hence, this process fails to satisfy Definition (2) and learning is not
adequate.

Appendix B

Proof of Theorem 4.
The proof of Theorem 4 is split into three Remarks: Remark 8 shows that an equilibrium exists,

Remark 9 characterizes the limit behaviour and Remark 10 evaluates the degree of informational
efficiency of this model. The logic of the proof parallels that of Theorem 3.

Remark 8 Suppose all agents y 6= x choose strategy S2. Then this strategy is also optimal for x at
any τxl .

Proof. We follow exactly the same logic as that of Remark 5 and describe the process of inference
undertaken by agent x at time τxl , (we drop the time subscript for notational convenience). Notice that,
within this model, agent x cannot draw any inference from his signal. Also, agent x cares about his
neighbours’ signal only insofar as they are informed.

Since q(x) = 0.5 by construction, λ0(x) = 0.

Suppose τx1 = τ 1 (i.e., agent x is the first to receive an updating opportunity) and η(x) = 1. Agent x
needs to compute λ1(x) on the basis of I(x) = {η(x), ητx1 (y)}, for y ∈ {x± 1}, resulting in:

λ1(x) ≡ log
Pr[η(y) | ω = 1] Pr[ω = 1]

Pr[η(y) | ω = 0] Pr[ω = 0]

=

 log
r+(1−r) 1

2

(1−r) 1
2

= log
[

1+r
1−r

]
> 0 if η(y) = η(x) = 1

log
(1−r) 1

2

r+(1−r) 1
2

= log
[

1−r
1+r

]
< 0 if η(y) 6= η(x) = 1

Since Pr[y = x− 1] = Pr[y = x+ 1] = 0.5, this shows that S2 is optimal at time τx1 = τ 1.
Consider τx > τ 1 and let Iτx(x) = {ητx(x), ητx(y))} denote x’s information set at time τx. When

drawing inference, agent x has now to consider the possibility that agent y may have received an updating
opportunity and may have used strategy S2. As x is uninformed, λ(x) = 0. Let s ≡ Pr[τy < τx], i.e., the
probability that agent y has received an updating opportunity before agent x.

Suppose y = x− 1 , η(x− 1) = 1 and η(x) = 1. Then:

Pr[η(x− 1) = 1 | ω = 1] = r + (1− r){(1− s)1
2

+ s[η(x− 2)1
2

+ 1
2
]}

Pr[η(x− 1) = 1 | ω = 0] = (1− r){(1− s)1
2

+ s[η(x− 2)1
2

+ 1
2
]}

where the term in square brackets refers to the possibility that x− 1 might have chosen η(x− 1) = 1

as a result of S2 (and hence observed either η(x − 2) = 1 or η(x) = 1). Notice that, by construction,
η(x− 2) ∈ {0, 1} is given at time τx.

Suppose y = x+ 1 , η(x+ 1) = 0 and η(x) = 1.
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Then:
Pr[η(x+ 1) = 0 | ω = 1] = (1− r){(1− s)1

2
+ s[1

2
(1− η(x+ 2))]}

Pr[η(x+ 1) = 0 | ω = 0] = r + (1− r){(1− s)1
2

+ s[1
2
(1− η(x+ 2))]}

where the term in square brackets refers to the possibility that x+ 1 might have chosen η(x+ 1) = 0

as a result of S2 (and hence observed either η(x + 2) = 0 or η(x) = 1). Notice that, by construction,
η(x+ 2) ∈ {0, 1} is given at time τx.

As a result,

λ(x) ≡ log
Pr[η(y) | ω = 1] Pr[ω = 1]

Pr[η(y) | ω = 0] Pr[ω = 0]

=

 log
r+(1−r){(1−s) 1

2
+s[η(x−2) 1

2
+ 1

2
]}

(1−r){(1−s) 1
2

+s[η(x−2) 1
2

+ 1
2

]} > 0 if y = x− 1, η(y) = 1 = η(x)

log
(1−r){(1−s) 1

2
+s[ 1

2
(1−η(x+2))]}

r+(1−r){(1−s) 1
2

+s[ 1
2

(1−η(x+2))]} < 0 if y = x+ 1, η(y) = 0 6= η(x)

Since Pr[y = x− 1] = Pr[y = x+ 1] = 0.5, this shows that S2 is optimal at any time τx.

Remark 9 If agents use strategy S2, the characterization of the limit behaviour of the social learning
process is as follows.

Let ηω be the configurations where η(x) = ω for all x ∈ X Then, starting from any given initial
condition, µω, the process converges in probability to configuration ηω:

P µω [ lim
t→∞

ηt = ηω] = 1

Convergence obtains slowly, namely at rate
√
t:

P µω [ηt 6= ηω] ∝ 1√
t

Proof. Let us denote the population of agents as X ∪ X, where x ∈ X are the informed agents and
x ∈ X are the uninformed agents. By construction, the flip rates for this process {c(x, η), c(x, η)} are:

c(x, η) = 0 (3)

c(x, η) =

{
1
2

∑
y∈{x±1} η(y) η(x) = 0

1
2

∑
y∈{x±1}(1− η(y)) η(x) = 1

(4)

By simple inspection, it is clear that only the state for which η(x) = ω for all x in X is stationary for
this process. However, since the process η defines a continuous time Markov chain on the state-space
S = Z1 which is countable, but infinite, we need to prove that the process is ergodic, that is, that starting
from any initial distribution µω, the process will converge to ηω with probability one (first part of the
assert).

We proceed as follows. Let SN be finite sets that increase to S, such that limN→∞ SN = S. Define
the following flip rates:

cNi =


{c(x, η), c(x, η)} if x,x ∈ SN

0 if x,x /∈ SN and η(x) = i

1 if x,x /∈ SN and η(x) 6= i
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Let us call the process defined by these flip rates Si,N(t). Notice that this process is equal to the original
process for all x,x in SN and characterized by all coordinates set equal to i for x,x not in SN .

Let µ0S0,N(t) be the law of the process characterized by flip rates cN0 when the initial distribution is
given by all 0 at time 0 and let µ1S1,N(t) be the law of the process characterized by flip rates cN1 when the
initial distribution is given by all 1 at time 0. As the original process is attractive7, so are the processes
cNi and, by Theorem 2.7 in Liggett [26]:

µ0S0,N(t) ≤ µθS(t) ≤ µ1S1,N(t)

for θ ∈ (0, 1), and

lim
N→∞

lim
t→∞

µ0S0,N(t) = lim
t→∞

µ0S(t)

lim
N→∞

lim
t→∞

µ1S1,N(t) = lim
t→∞

µ1S(t)

WLOG suppose ω = 1. Then limt→∞ µ
0S0,N(t) = limt→∞ µ

1S1,N = µ1,N , that is, as t → ∞,
independently of the initial distribution, the process restricted on SN converges to a configuration
all ones. In fact Si,N(t) is a finite Markov chain over SN , and as there is a unique absorbing state
(η1N ≡ {η(x) = 1 for all x ∈ SN}) we know that the unique ergodic distribution posits pointmass one on
this state. As limN→∞ SN = S, il follows that

lim
N→∞

lim
t→∞

µ0S0,N(t) = lim
N→∞

lim
t→∞

µ1S1,N(t) = lim
N→∞

µ1,N = µ1

and the first part of the assert follows.
To prove the second part of the statement, we need to compute the rate of convergence for this

process. Notice that the rate at which social learning takes place is given by the speed with which
those uninformed agents flip. Hence we need to study the dynamics of choices of the individuals in
X . We notice that this dynamics is analog to that of the Voter’s model (Liggett [27], Section 1 and 3,
Chapter V or in Bramson and Griffeath [28]), well studied in the statistical literature. In the Voter’s
model, a voter at x ∈ Zd changes his opinion at an exponential rate (with mean one) proportional to the
number of 2d nearest neighbours with the opposite opinion. If 2d neighbours disagree with the person
at x, the flip rate is 1. It can be seen by equation (3) that this is exactly the dynamics of the uninformed
agents in our model. Hence, although the asymptotics of our model are substantially different from those
of the Voter’s model, the dynamics is exactly the same.

To show that learning occurs at rate
√
t we proceed as follows. As the process is defined in the two

dimensions of time and space, we shall find it useful to relate these two dimensions in a space-time
analysis. In particular, we characterize a clustering process, by relying on the local specification of the
model. With the term “cluster” we mean the length of a segment with all connected individuals choosing

7We say that, for η, ζ ∈ {0, 1}Z1

, η ≤ ζ if η(x) ≤ ζ(x) for all x ∈ Z1. Then a process is defined to be attractive (or
monotonic) if, whenever η ≤ ζ flip rates satisfy the following:

c(x, η) ≤ c(x, ζ) if η(x) = ζ(x) = 0

c(x, η) ≥ c(x, ζ) if η(x) = ζ(x) = 1
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the same action. In order to see how the size of a cluster increases with time, we shall later express
the length of a cluster as a function of t. Formally, given a configuration, η, we define a cluster as the
connected components of {x : η(x) = 0} or {x : η(x) = 1}; the size of a cluster of ones in a segment of
side l around the origin as:

| ηl |=| {x : η(x) = 1; x ∈ [−l, l]} |

and the mean cluster size of η around the origin as:

C(η) = lim
l→∞

2l

‘number of clusters of η in [−l, l]’

whenever this limit exists.
Given the asymptotics described, we already know that the mean cluster size tends to grow

indefinitely. To prove the statement, we need to show that the mean cluster size, Cµω(ηt), grows in
probability at rate

√
t, in the sense that:

Cµω(ηt)

t1/2
→p K

where K is a positive constant depending on ω. Since, as stated before, this model reproduces the of the
Voter’s model, this statement is proved in Bramson and Griffeath [9]. In fact, Theorem 7, p. 211 of that
paper also provides the following estimate for the lower and upper bound of the limit expected value of
the above quantity (re-written with our parametrization):

√
π

(
1

21+r
2

1−r
2

)

)
≤ lim

t→∞
E[
Cµω(ηt)

t1/2
] ≤ 2

((
1+r

2

)2
+
(

1−r
2

)2(
1+r

2

) (
1−r

2

) )
√
π (5)

where π = 3. 141 6.

Remark 10 If agents use strategy S2 , the process of social learning with local interactions is adequate,
in that

lim
t→∞

Pr[ηt(x) = ω for all x in X] = 1

Proof. Recall that the initial condition is produced by a product measure: Prµω=1 [η : η(x) = 1] = 1+r
2

or
Prµω=0 [η : η(x) = 1] = 1−r

2
respectively. Hence, by the previous Remark, the assert follows.
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