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Abstract: This paper studies a two-person trading game in continuous time that generalizes Garivaltis
(2018) to allow for stock prices that both jump and diffuse. Analogous to Bell and Cover (1988) in
discrete time, the players start by choosing fair randomizations of the initial dollar, by exchanging it
for a random wealth whose mean is at most 1. Each player then deposits the resulting capital into some
continuously rebalanced portfolio that must be adhered to over [0, t]. We solve the corresponding
“investment ¢-game”, namely the zero-sum game with payoff kernel E[¢{W1V;(b)/(W2Vi(c))}],
where W; is player i’s fair randomization, V;(b) is the final wealth that accrues to a one dollar deposit
into the rebalancing rule b, and ¢(e) is any increasing function meant to measure relative performance.
We show that the unique saddle point is for both players to use the (leveraged) Kelly rule for jump
diffusions, which is ordinarily defined by maximizing the asymptotic almost-sure continuously
compounded capital growth rate. Thus, the Kelly rule for jump diffusions is the correct behavior
for practically anybody who wants to outperform other traders (on any time frame) with respect to
practically any measure of relative performance.

Keywords: portfolio choice; continuously rebalanced portfolios; Kelly criterion; log-optimal
investment; minimax; jump processes

JEL Classification: C44; D80; D81; G11

1. Introduction

1.1. Literature Review

Bell and Cover [1] studied a static, zero-sum competitive investment game whose payoff kernel is
the probability that Player 1 has more wealth than Player 2 after a single period’s fluctuation of the
stock market. They found it necessary to introduce the device of “fair randomization” of the initial
dollar for a random capital whose mean is at most 1. This being done, in equilibrium both players use
the Kelly [2] rule (or log-optimal portfolio) in conjunction with uniform (0, 2) randomizations of the
initial dollar.

Kelly [2] initially found his criterion by considering repeated bets on horse races by a wire
fraudster whose advance knowledge is not 100% reliable. Kelly’s example, which is beautiful in
its simplicity, leads one to recover the logarithm as the “correct” utility function. As naturally as
ever, Kelly considered fixed-fraction betting schemes and found the one with the highest possible
almost-sure asymptotic capital growth rate. This gave him his “New Interpretation of the Information
Rate” of the wire.

Bell and Cover’s [3] sequel replaces the probability of outperformance by the expectation of
some arbitrary measure ¢(e) of the two gamblers’ relative performance. They again found that the
Kelly rule reigns supreme, along with fair randomizations that are completely characterized by ¢(e).
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Thus, for practically any egotist whose only goal is to outperform other traders over the short term
(by whatever his personal criterion), the correct behavior is specified by the Kelly criterion. Well,
maybe not correct for everybody: Samuelson’s [4] simplified approach to critiquing the Kelly rule uses
only one-syllable words.

Garivaltis [5] wanted to see whether or not Bell and Cover’s results hold up in the context
of a stochastic differential investment ¢-game for several It6 processes with state-dependent drift
and diffusion. They do; the correct behavior is to use Bell and Cover’s [3] randomizations W;[¢] in
conjunction with the feedback control policy b(S,t) := £~ 1[u(S, t) — r1], which is the local version of
the multivariate Kelly rule in continuous time. Here, (S, t) is the local drift vector, 2(S, t) is the local
covariance matrix of instantaneous returns per unit time, and 1 is a vector of ones.

1.2. Contribution

The present paper extends the analysis of Garivaltis [5] to a general stock market where security
prices both jump and diffuse, as introduced by Merton [6]. We define the corresponding leveraged
Kelly rule and show that it is the unique saddle point of the expected ratio of the players’ final wealths.
Jumps arrive at an expected rate of A per unit time; when the diffusion parameters are zeroed out, we
recover Bell and Cover [3], albeit with the proviso that the players must twiddle their thumbs while
waiting for jumps to arrive. In this connection, we have extended Bell and Cover’s analysis to allow
for leveraged portfolios in so far as solvency can be guaranteed for all possible jump realizations x in
some compact, arbitrage-free support Z. For background material on market games featuring this type
of environment (i.e., compactly supported jump returns), we refer the interested reader to the book by
Bernhard et al. [7].

2. Investment ¢-Game for Jump Diffusions

We consider a two-person trading game in continuous time that generalizes Garivaltis [5].
A discrete-time version of the game was studied by Bell and Cover [1,3]. The game has several
moving parts, which we discuss presently. Each player starts with a dollar.

Definition 1. By a fair randomization of the initial dollar is a random wealth W distributed over [0, 00) such
that E]W] < 1.

Example 1. W :~ uniform(0,2).
Example 2. W := exp(—0c?/2+ 0Z), where Z is a unit normal.
Example 3. W := 1 with certainty.

At the start of the game, each player i € {1,2} picks a fair randomization W; of his initial dollar.
He then deposits the resulting capital into a continuously rebalanced portfolio over a stock market
with 7 correlated securities whose prices both jump and diffuse.
Jumps arrive according to a Poisson process, at an expected rate of A jumps per unit time. We let
N; denote the number of jumps that occured over [0, t|. Thus, we have N; ~ poisson(At) and
AN — {1 with probability A - dt ' 1)
0 withprobability1 — A - dt

We let S;; denote the price of stock i at time f, where i € {1, ..., n}. The gross-returns on jumps are
random vectors X := (Xj, ..., X)’, where X; := S;(t+)/S;(t—) is the gross-return on stock 7 for a jump
that occurs at £. We let x; := X; — 1 be the net return, and we write x := (xg, ..., X, )’ for the vector of net
returns on a jump. We assume that jumps X are drawn iid according to some CDF F(e).
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The general law of motion for the price of stock i is given by

das;
S-;t = pidt + o; dWi + (X; — 1)dNy, @)
1

where yi; and o; are the drift and volatility, respectively, of stock i, and Wj; is a standard Brownian
motion. We let p;; := Corr(dWy, det) be the correlation of the unanticipated (diffusive) instantaneous
returns of stocks i and j. We let &;; := Cov(dSit/Sit,det/Sjt)/dt = p;jo;0; denote the covariance
of instantaneous returns per unit time. We assume that the matrix X := [Zij] nxn 1s invertible, and
therefore positive definite. All sources of randomness in the game, namely W1, Wy, N, X, and (Wit)?zl,
are assumed to be mutually independent.

We allow each player to use a leveraged, continuously rebalanced portfolio (or fixed-fraction
betting scheme) that continuously maintains some fixed fraction b; of wealth in each stock i. Thus,
a constant rebalancing rule is a vector b := (by, ..., b,)" € R". During diffusion, the rebalancing rule

b must trade continuously (in small amounts) so as to counteract allocation drift. Immediately after
jumps, the gambler must execute comparatively large rebalancing trades so as to restore the target
allocation b; of wealth in each stock i.

We assume that there is a risk-free bond whose price By := e follows dB;/ By = r - dt. We let V;(b)
denote the wealth at ¢ that accrues to a $1 deposit into the rebalancing rule b. Thus, the trader owns
b;Vi(b)/Si shares of stock 7 at time ¢. The remaining (1 — Y_1' ; b;)V;(b) dollars are invested in bonds.
While diffusing, there is no risk of bankruptcy over the differential time interval [t, t + dt], no matter
how much leverage is used. However, in order to avoid bankruptcy after jumps X, there must be limits
on how much leverage each trader can use.

Accordingly, we assume the net return vectors x have a closed and bounded support, denoted
& C R". Limited liability means that E is bounded below by the vector -1 = (—1,...,—1)’, e.g,,
x; > —100%. E generates a corresponding set B of non-bankruptable (admissible) rebalancing
rules, where

B:={beR":1+b'x > 0forallx € E}. ©)]

Here 1 + b'x is the gross-return of the rebalancing rule b during a jump. We assume that no
bond interest is received (or paid) during a jump, since no time elapses. During diffusion, the
trader’s margin loan balance is (3.} ; b; — 1) V;(b). Thus, he maintains a constant debt-to-assets ratio

Proposition 1. The action set B is nonempty, convex, and open.

Proof. First, note that 0 € B. Next, since B = Nyez{b € R" : 1+ b'x > 0} is an intersection of
half spaces, it is convex. Finally, define the function m(b) := 1+ min b'x. By the Theorem of the
xes

Minimum [8], m(b) is continuous, since Z is compact. Note that m(b) > 0 if and only if b € B. Thus,
B = m~1(0,0) is open, since it is the preimage of the open set (0, o) under a continuous mapping. [

We will assume that = does not allow arbitrage, in the sense that

max min b'x = 0. 4)
beB xe&

Example 4. The net return support & := [0.01,0.2] is disallowed, because sup min bx = +co. The gambler
veB xXex
could take out an arbitrarily large margin loan and earn an infinite, riskless profit on the first jump that occurs.

We have B = (—5, ) and

m(b) =

140016 b>0
{ ®)

1+02b b<O.
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Example 5. For a market with a single stock whose jumps have a net return x € & := [x, %] where x < 0 < X,
we have B = (—1/%,—1/x).

The wealth V;(b) that accrues to a one dollar deposit into b evolves according to

avi - dSit - l S /
7Vt = E b; S, +({1—- E b; |r-dt = [F + (‘u - 1’1) b]dt + E b;o;dWi + b'x - ANy, 6)
i=1 i i=1 i=1

where1:= (1,...,1)" isann x 1 vector of ones. The trader’s growth factor from jumps is Hi\il (1+'x),
where x; is the net return vector of the k' jump. Applying It6’s lemma for several diffusions [9], the
trader’s growth factor from diffusion is exp{[r + (u — r1)’b — b’Lb /2]t + Y1 ; bjo;W;; }. Thus, we have
the formula

n N¢
Vi(b) = exp {[r +(u—r1)b—VEb/2t+ ) bicfiWit} [T +0'x). )
i=1 k=1

Definition 2. The investment ¢-game is the two-person zero-sum game with payoff kernel

where Player 1 (numerator, maximizing) picks a rebalancing rule b € B and a fair randomization Wy, and
Player 2 (denominator, minimizing) picks a rebalancing rule c € B and a fair randomization Wy. ¢(e) is any
increasing function meant to measure the relative performance of the two traders. Player 1’s payoff is I1(b, c)
and Player 2’s payoff is —I1(b, c).

Example 6. ¢(R) := 1f; o) (R). This turns the payoff kernel into the probability that Player 1 has more final
wealth than Player 2.

Example 7. ¢(R) := 1(, o) (R). We get the probability that Player 1 achieves at least the fraction a of the final
wealth of Player 2.

Example 8. ¢(R) := R7, for v > 0.

Example 9. ¢(R) := R/ (R +1). This turns the payoff kernel into E[W;V;(b) /{W1V;(b) + W Vi(c)}],
e.g., the expected ratio of Player 1's wealth to the agqregate wealth.

3. The Basic Saddle Point

We start by solving the simplified game with payoff kernel E[V;(b)/V;(c)]. This will culminate in

Theorem 1. max min E[V;(b)/V;(c)] = min max E[V;(b)/Vi(c)] = 1. The maximin strategy b* and
beB ceB ceB beB

the minimax strategy c* are both equal to the Kelly rule (log-optimal continuously rebalanced portfolio) for
jump diffusions.

In preparation for proving the theorem, we explain and define the Kelly rule for jump diffusions.
The trader’s realized continuously compounded capital growth rate over [0, ] is

Nt
Y. log(1+ b'x
Wi Ni k=1 8l )

log Vi (b
log Vi (b) W, D N ,
t

n
; =r+(u—r1)b—b'Eb/2+ ) bio;

i=1

)

which converges to ‘ L(b):=r+ (u—7r1)b—b'2b/2+ AE[log(1 + b'x)] ‘ as t — co. The asymptotic
growth rate I'(b) is strictly concave over B.
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Definition 3. The Kelly rule for jump diffusions is the (unique) rebalancing rule that maximizes the
asymptotic continuously-compounded capital growth rate. It is characterized by the first order condition

_y—1 _
b=% <;4 r1+AEL+b,]>. (10)

Next, we calculate that

E[Vi(b)/Vi(c)] =
! ! No b’xk
E|exp{(y —r1) (b—c)t+ (t/2)(Zc — b'Lb) —1—2 Do lt}} {H ]

=

—|—CXk

:exp{(ﬂ—rl—ZC)/(b—C)t}eXP{M(EF+b/] )

—exp{(y—rl—Zc—i—/\E[ Tre })(b—c)t}. (11)

Thus, we will work with the simplified payoff kernel

ni(b,c) := <y—r1 Zc+AE[1+ ])l(b—c), (12)

which is the compound-growth rate of E[V;(b)/V;(c)]. Since 7t(b, c) is concave (in fact, linear) in b and
convex in ¢, the saddle point is characterized by the first-order condition V7t(b,c) = 0. Taking the
gradient with respect to b, we get the equation

S (y — 11+ AE {M’ZXJ ) (13)

This is precisely the first-order condition that defines the Kelly rule for jump diffusions.
The equation has a unique solution that serves to define c¢*. In just a moment, we will take the
gradient of 77(b, c) with respect to ¢, by using the product rule. To this end, we let D denote the

differential (an n x n matrix) of the mapping ¢ — E[ %~ Lo | of R" into itself. We have

[ x ] a0
Dij = a(JjE{1+C/X:| B acj{acz [log(lJrcx)}} (14)

We note that D is negative semi-definite, since it is the Hessian matrix of the concave function
¢ — E[log(1 + ¢’x)]. This being done, we apply the product rule and get the first-order condition

0 = V(o)

(=X + AD)(b — ¢) — I, - (y—rl—Zc#—AE{H_)(C,)J), (15)

=V,7(b,c)=0

where I, is the n X n identity matrix (e.g., the differential of ¢ — c). Now, note that the matrix —X + AD
is negative definite (therefore invertible), since it is the sum of a negative definite matrix and a negative
semi-definite matrix. Thus, from the equation (—X 4+ AD)(b — c) = 0 we obtain b = c. This proves
that the unique saddle point is for both players to use the Kelly rule for jump diffusions, and that the
value of the simplified game (with kernel E[V;(b)/Vi(c)]) is 1.
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4. Solution of the Investment ¢-Game

On account of the fact that the unique saddle point of E[V;(b)/Vi(c)] is to set b* and ¢* equal to
the Kelly rule, we have the inequalities

E[Vi(0)/Vi(c")] < E[Vi(67)/Vi(c")] < E[Vi(6")/Vi(c)], (16)
=1
which hold for all b, c € B. Thus, when the numerator player uses the Kelly rule it guarantees that the
expected payoff is >1, and when the denominator player uses the Kelly rule it guarantees that the
expected payoff is <1. With these guarantees in mind, we proceed to solve the general investment
¢-game. First, we need a definition.

Definition 4. For any increasing function ¢(e), the “primitive ¢p-game,” with value v|¢)|, is the two-person,

zero-sum game with payoff kernel E[¢p(W1/W,)|, where player 1 chooses a fair randomization Wy and player

2 chooses a fair randomization Wy. The value of the primitive ¢-game is v[¢p] := sup i&f E[¢p(W1/W,)] =
w, W2

ivrvlf sup E[¢p(W1/W,)]. The random wealths Wy and W, are independent of each other.
2w,

We should stress to the reader that this definition tacitly assumes the existence of a saddle point
of the primitive ¢-game, e.g., we have assumed the equality

olg] = sup inf E[p(W,/W)] = inf sup E[p(W,/Wy)] = 7l¢) 7
W, "2 2 Wy

of the lower and upper values of the game. For more on this point, we refer the interested reader to
Bell and Cover (1988).

Theorem 2. The investment ¢-game has the same value v|¢p| as the primitive ¢-game. In equilibrium,
both players use the Kelly rule for jump diffusions, and the players use the same fair randomizations (W3, W5)
that solve the primitive ¢-game.

Proof. The proof given in Garivaltis (2018) carries over to the more general case of several jump
diffusions. We start by showing that E[p{W; V;(b*)/ (W2 V;(c))}] > v[@] for any fair randomization
W, and any rebalancing rule ¢ € B, where b* is the Kelly rule. Note that W, V;(c)/V;(b*) > Ois a
fair randomization, since E[V;(c)/V;(b*)] < 1. Thus, since W7, is Player 1’s maximin strategy in the
primitive ¢-game, we have E [p{W] V;(b*)/ (W2 V(c))}] > v[¢].

Similarly, we show that E[¢p{W;V;(b)/(W;Vi(c*))}] < v[¢] for any fair randomization W and
any rebalancing rule b € B, where c* is the Kelly rule. Note that W;V;(b)/V;(c*) > 0 is a fair
randomization, since E[V;(b)/V;(c*)] < 1. Thus, since W3, is Player 2’s minimax strategy in the
primitive ¢-game, we must have E[p{W;V;(b) /(W3 Vi(c*))}] < v[g].

Thus, we have shown that (W7, b*) guarantees that the expected payoff is > v[¢] and (W3, c*)
guarantees that the expected payoff is < v[¢] when b* and c* are equal to the Kelly rule and (W7, W3)
are the equilibrium strategies from the primitive ¢-game. This proves the theorem. [

5. Examples

To close the paper, we simulate some gameplay for a market with a single stock that diffuses
according to the parameters v := 0.07, ¢ := 0.15, and ¢ = v + 0?/2 = 0.08125. We assume a
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risk-free rate of r := 0.03, and that jumps arrive at an expected rate of A := 1 per year. On jumps, the

gross-returns X will be distributed according to “Shannon’s Demon” (Poundstone 2010 [10]), e.g.,

X e 2 with probability 1/2 , (18)
1/2 withprobability 1/2

meaning that the stock price either doubles or gets cut in half, each with equal probability. If one
could anticipate these jumps, then the growth-optimal policy would be to put b := 0.5 the instant
before each jump, achieving long-run capital growth of 6% per jump. During diffusion (before and
after the jumps), the correct policy would be to set b := (4 — r) /0> = 2.27, achieving a growth rate of
8.8% a year, for a total of 14.8% annually. In our game, however, the jumps are unanticipated; the rule
b := 2.27 goes bankrupt just as soon as x - dN; = —50%. In fact, B = (—1,2). The Kelly rule for jump
diffusions is b := 0.585, for a yield of 11.3% per year. The saddle is plotted in Figure 1. We compare
this to the sub-optimal behavior of two other players: a player who uses c := 1 (buy and hold) and a
daring player who uses d := 1.1. A sample path for T := 300 years is plotted in Figure 2. A (different)
sample path for T := 10 years is shown in Figure 3.

100 - (b, )

c

Figure 1. Payoff kernel 100 - 7z(b, ¢) for the parameters v := 0.07,¢ := 0.15,r := 0.03,A := 1,x €
{+100%, —50%}. The saddle point is b* = ¢* = 0.585.

55 T T T
——log, V(")

50 H ——log, St
—log, Vi(1.1)

45

N w w I
< S < S
T T T T

Number of Doublings

[
<
T

L L L
0 50 100 150 200 250 300
Time

Figure 2. A sample path in the large. v := 0.07,0 := 0.15,7 := 0.03,A := 1,b := 0.585,c := 1,d :=
1.1,x € {4+100%, —50%}, T := 300.
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1 : ; ! : :
—log, Vi(b') %
B o Si

05t g, Vi(L.

-1.5

L

-3

Number of Doublings
S
~ wn

T
Figure 3. A (different) sample path in the small. v := 0.07,0 := 0.15,7 := 0.03,A :=1,b := 0.585,c :=
1,d:=1.1,x € {+100%, —50%}, T := 10.

Let U; denote the number of times the stock jumps upward over the interval [O, t], where N; — U; is
the number of times it jumps downward. We let P(n,u,t;b,c) := Prob{V;(b) > Vi(c)|Ny = n,U; = u}.

Then we have o n
Prob{V;(b) > Vi(c e My Z )\t/Z

nOuO

( n,u,t;b,c), (19)
where, for b # ¢,

P(n,u,t;b,c) = , (20)

q><ulog<1+> (n _5|)blig<|%? + [(b) - W(C)H)

where ®(e) is the cumulative normal distribution function and «(b) := r + (u — r)b — 02b? /2 denotes
the growth rate of b during diffusion. The outperformance probabilities for this particular experiment
(b* = 0.585,c =1,d = 1.1) are plotted in Figure 4 for 0 <t < 300.

1

0.95 -

P ob{V;(b*) > S}
wm Prob{V,(b*) > V,(1.1)}

S
°
T

Probability
N ol > b

S
Y
N

0.6 | | | | |
0 50 100 150 200 250 300

Time
Figure 4. Outperformance probabilities over different game lengths ¢ € [0,300] for the parameters
v:=0.07,0:=0.15,r:=0.03,A :=1,b:=0.585,c:=1,d := 1.1,x € {+100%, —50%}.

6. Conclusions

This paper formulated and solved a two person trading game in continuous time that generalizes
Garivaltis [5] to the case of several jump diffusions. Following a train of thought initiated by Bell and
Cover [1,3], we solved a leveraged “investment ¢-game” where the object is to outperform the other
investor with respect to some more or less arbitrary criterion ¢(e) of relative performance.
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At the start of the game, each player makes a “fair randomization” of the initial dollar by
exchanging it for a random wealth whose mean is at most 1. Each player then deposits the resulting
capital into some continuously rebalanced portfolio (or fixed-fraction betting scheme) that is adhered
to over a fixed interval of time. We showed that the unique saddle point of the expected final wealth
ratio is for both players to use the Kelly rule for jump diffusions, in conjunction with appropriate fair
randomizations that are completely determined by the criterion ¢(e).

From time immemorial Kelly [2], the Kelly rule has been defined by maximizing the almost sure
asymptotic continuously-compounded growth rate of one’s bankroll. However, the above analysis
shows that, even for an egotist whose sole objective is to outperform his peers over very short
time periods, the Kelly rule for jump diffusions is the correct behavior. On the one hand, although
the investor knows the distribution of jump returns, he cannot anticipate their exact arrival times.
Thus, his only recourse is to build a portfolio that is continuously ready to perform well when the
lightning strikes. On the other hand, he wants a trading strategy that performs well during purely
diffusive movements of security prices. The Kelly rule is the sweet spot that perfectly balances these
two concerns.

Thus, the present paper constitutes a direct generalization of both Bell and Cover [3] and Garivaltis
[5]. If the expected jump arrival rate is zero, we specialize to Garivaltis [5]. If the diffusion parameters
are zeroed out (meaning that stock prices do not change during “diffusion”), then we get a leveraged
version of Bell and Cover’s original [3] game-theoretic optimal portfolios, albeit with the proviso that
the players must watch the paint dry as they wait for jumps to arrive. If everything is zeroed out, then
we get the “primitive ¢-game” of choosing fair randomizations W; that constitute a saddle point of
E[p(Wy/Wa)].

Funding: This research received no external funding and the Article Publishing Charge was funded through the
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