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Abstract: In the context of choice with limited consideration, where the decision-maker may not pay
attention to all available options, the consideration function of a decision maker is path-independent
if her choice cannot be manipulated by the presentation of the choice set. This paper characterizes
a model of choice with limited consideration with path independence, which is equivalent to a
consideration function that satisfies both the attention filter and consideration filter properties from
Masatlioglu et al. (2012) and Lleras et al. (2017), respectively. Despite the equivalence of path-
independent consideration with the consideration structures from these two papers, we show that,
to have a choice with limited consideration that is path-independent, satisfying both axioms on the
choice function that characterize choice limited consideration with attention and consideration filters
unilaterally (from Masatlioglu et al. (2012) and Lleras et al. (2017)) is necessary but not sufficient.

Keywords: revealed preferences; limited attention; consideration set; choice reversals; path independence

1. Introduction

Individuals do not always compare all alternatives in making a decision, particularly
when a decision problem is complex or contains many alternatives. For instance, Laper-
sonne et al. [1] reported that 22% of new car customers consider only one brand out of
more than 100 car brands available in USA. Instead, a decision maker (DM) often forms a
consideration set, a subset of her actual feasible set, and ignores the rest (see, e.g., [2]).

The issue of limited consideration shakes the main principle of revealed preferences
and raises the following question: How can we identify the DM’s preference by observing
her choice under limited attention? It is not straightforward to answer this question by
the standard revealed preference tools since the revealed preference implicitly relies on
the knowledge of consideration, which is not observable in real life. The authors of [3,4]
managed to provide answers to the above question when she picks her most preferred
item from her consideration set, not from her actual entire feasible set. These two papers
impose certain assumptions on the consideration set and employ the feasible set variations
to reveal preferences.

The conditions on the formation of consideration sets contemplated in [3,4] are called
attention filter and competition filter. According to the attention filter, the consideration set
is not affected when overlooked alternatives are removed from her feasible set, whereas
the competition filter requires that, if she ignores some alternatives, she will also do so
when her feasible set expands. Attention filter is plausible when her inattention is based
on unawareness, while, for a competition filter, the alternatives are competing for DM’s
attention (such as in a large supermarket).

The consideration set formation in both models are vulnerable to manipulation. To
illustrate a manipulation possibility in a simple example, consider the following consid-
eration set formation which is an attention filter (but not a competition filter). There are
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three products x, y, and z, where z is considered only when both x and y are present.1

The consideration set of such DM is {x, y, z} if everything is presented at once. On the
other hand, when x and z are offered first and then y, z is never considered. Hence, the
consideration set of a DM may be manipulated by way the choice problem is presented.2

More precisely, if instead of presenting a large menu, A, the choice problem is divided
into sub-menus, S and T, where S ∪ T = A, and first the sub-menu S is presented. Once a
DM forms her consideration based on S, then the sub-menu T is presented. Now, the DM
forms her consideration based on the sub-menu T and the consideration set of S. If this
consideration set is different from presenting the large menu A as a whole, a firm that is
responsible for presenting DMs with menus may have the ability to manipulate the DMs’
consideration sets.

In this paper, we are interested in situations where the formation of consideration sets
are free from this kind of manipulation. This non-manipulability requirement is captured
by the well-known property of choice theory, path-independence, proposed by Plott [5],
which imposes a “consistency” requirement on how consideration sets are determined
across comparable situations. Path-independence requires that the consideration set cannot
be manipulated by changing the presentation of the set of alternatives.

Our model rests on the realistic assumption of path-independence and thus offers a
better understanding non-manipulation in the consideration set formation. This property
not only will eliminate manipulation examples mentioned above but also makes the
revealed preference analysis more complete.

In the literature, the formation of the consideration sets has been motivated by be-
havioral reasons, such as shortlisting [6]3, rationalization [16], and categorization [17]. At
first glance, the path-independence property may be normatively plausible but does not
sound behaviorally plausible. However, the path-independence property is equivalent to
consideration set formation satisfying both the attention filter by Masatlioglu et al. [3] and the
competition filter by Lleras et al. [4]. Therefore, the path-independence property, although it
appears to be demanding, has a behavioral background, too. In Section 2, we provide a list
of heuristics generating a consideration set satisfying the path-independence property.

The organization of this paper is as follows. Section 2 introduces notations and the
model. Section 3 provides our characterization. Section 4 analyzes the revealed preference.

2. Model

We denote the set of alternatives by X, which is an arbitrary non-empty finite set. X
denotes the set of all non-empty subsets of X with cardinality at least 2. Each subset of X is
a choice problem. Let c be a choice function: c : X → X and c(S) ∈ S for all S ∈ X . Our
DM assigns a unique alternative for each choice problem S. Let � be a complete, transitive,
and antisymmetric binary relation (a linear order) over X. max(�, S) represents the best
element in S with respect to �.

Let Γ : X → X be a self-map on X , that is, Γ(S) ⊂ S for all S ∈ X . Γ(S) represents
the consideration set under S ∈ X ; that is, the set of alternatives is considered when the
DM is facing feasible set S. Since the DM can only consider options that are available, Γ(S)
must be a subset of S.

The next definition describes the behavior of DM with limited consideration. That is,
the DM picks her most preferred alternative within her consideration set, not the entire
feasible set.

1 This example is from page 2198 in [3] called “pairwisely unchosen”.
2 A DM who has a competition (but not an attention) filter can be manipulated in a similar manner. For instance, suppose she ignores y when x is

present and z when y is given. This is a competition filter but not an attention filter. She considers only x when all of the three are presented at once.
On the other hand, she will consider x and z when she first sees x and y (so discards y) and then is given z, as y has been already gone.

3 For the extensions of the shortlisting procedure, see also [7–15].
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Definition 1. A choice function c is a choice with limited consideration (LC) if there exists a linear
order � and a consideration mapping Γ such that

c(S) = max(�, Γ(S))

The LC model is very broad. Indeed, without further condition on Γ, any choice
behavior has an LC representation. The authors of [3,4] proposed two conditions on
consideration sets. Masatlioglu et al. [3] required that a DM who overlooks some feasible
alternative has the same consideration set if that alternative is removed. This property is
called Attention Filter (AF).4

AF : If x 6∈ Γ(S ∪ x) then Γ(S ∪ x) = Γ(S)

Lleras et al. [4] imposed that, when the size of the opportunity set gets larger, DMs
tend to overlook more options. This property is called Competition Filter (CF).5

CF : If for all x and y, x /∈ Γ(S) then x /∈ Γ(S ∪ y).

It turns out that, if a consideration function satisfies both AF and CF, then it also
satisfies the well-known path independence condition. In consideration context, path
independence would mean that the final consideration set is independent of the way the
alternatives were initially presented.

PI : Γ(S ∪ T) = Γ(Γ(S) ∪ T) for all S and T.

Path independent imposes a consistency property on how the consideration sets are
determined. An important benefit of PI is the elimination of manipulation possibilities.
That is, the consideration set of our DM cannot be altered by different ways of presenting
the available set of alternatives. We now define our model formally.

Definition 2. We say c is a π-LC model if c is a choice with limited consideration and Γ satisfies
path independence.

Before we state our main result, we first state the result of Aizerman and Malishevski [28]
that AF and CF together is equivalent to PI. Then, we provide a list of examples of consid-
eration set formations satisfying path independence.

Theorem 1. ([28]) A consideration set Γ is path independent if and only if it satisfies AF and CF.

There are several examples of non-manipulable heuristics. For example, in elimination
by aspects of Tversky [29], at each stage, the DM selects an aspect perceived and eliminates
alternatives lacking that attribute. The DM continues selecting aspects and eliminating
products. The process stops at stage n when there is no alternative left. The consideration
set is the set of alternatives survived at stage n− 1. Additional examples can be listed as
follows: The DM considers:

• only the three cheapest suppliers in the market [30];
• the products that appear on the first page of the web search and/or sponsored

links [31]; and
• the first N available alternatives according to an exogenously given order [32];
• only a job candidate if she is the best in a program or the top-two job candidates from

all first-tier schools and the top candidate from second-tier schools; or

4 Equivalent properties are considered in the literature on choice functions: Postulate 5∗ of [18], Axiom 2 of [19], the strong superset’s axiom of [20],
the Outcast Property of [21], Axiom 2 of [22], and the irrelevance of rejected contracts of [23].

5 In the choice theory literature, this property is mainly known as Sen’s α axiom ([24]), Postulate 4 of [18], C3 of [25], the Heritage property of [21], or
the Heredity property of [26]. See also [27] for a detail discussion for these properties on choice functions.
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• only the cheapest car, the safest car, and the most fuel-efficient car on the market.

3. Characterization

In this section, we provide necessary and sufficient conditions for our model where
the consideration set mapping satisfies path independence. In other words, we ask how
one could decide whether choice data are consistent with the π-LC model.

The weak axiom of revealed preference (WARP) characterizes the preference max-
imization. However, WARP does not distinguish between “being feasible” and “being
considered.” Therefore, one cannot decide that an alternative is chosen from a choice
problem without confirming that the alternative is considered. The question is: How we
can infer that an alternative is considered? The answer for this question depends on the
structure imposed on the consideration set. The authors of [3,4] provided two axioms
characterizing their models. We now state each of them.

In [3], if removing an alternative from a set changes the DM’s choice, they infer this
alternative is considered. which is the additional requirement for x∗ to be chosen from T.
Masatlioglu et al. [3] introduced the following axiom.

WARP-AF: For any nonempty S, there exists b∗ ∈ S such that, for any T including b∗,

c(T) = b∗ whenever (i) c(T) ∈ S, and
(ii) c(T) 6= c(T \ b∗)

An alternative way to state this axiom is through revealed preferences. Whenever the
choices change as a consequence of removing an alternative, the initially chosen alternative
is preferred to the removed one. Formally, for any distinct x and y, define:

xPAFy if there exists T such that c(T) = x 6= c(T \ y). (1)

WARP-AF indeed guarantees that the binary relation PAF defined in (1) is acyclic
and it fully characterizes the class of choice functions generated by an attention filter. The
lemma from [3] states that WARP-AF is equivalent to the fact that PAF has no cycle.

Lemma 1 ([3]). PAF is acyclic if and only if c satisfies WARP-AF.

Given this result, we now illustrate that the just observing the following two choice
reversals falsifies WARP-AF.

c(S1) = x 6= c(S1 \ y), and c(S2) = y 6= c(S2 \ x).

These observations reveal that xPAFy and yPAFx, which is a cycle. By Lemma 1,
WARP-AF is violated.

In [4], if an alternative is considered in larger set, then it must be considered in a
smaller set. That is, if b∗ = c(T′) for some T′ ⊃ T, then b∗ ∈ Γ(T′) since a necessary
condition for choice is that the b∗ is considered. Since Γ is a competition filter, b∗ ∈ Γ(T).
The following axiom of Lleras et al. [4] summarizes this discussion.

WARP-CF For any nonempty S, there exists b∗ ∈ S such that for any T including b∗,

c(T) = b∗ whenever (i) c(T) ∈ S, and
(ii) b∗ = c(T′) for some T′ ⊃ T

Similar to the above, we can state this axiom through revealed preference. Whenever
a DM’s choices from a small set and a larger set are inconsistent, the former reflects her
true preference under CF more than the latter. Formally, for any distinct x and y, define the
following binary relation:

xPCFy if x = c(S) and y = c(T) such that {x, y} ⊆ S ⊂ T (2)
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Similar to Masatlioglu et al. [3], the binary relation PCF defined in (2) is acyclic and it
fully characterizes the class of choice functions generated by an attention filter. The lemma
from [4] states that WARP-CF is equivalent to the fact that PCF has no cycle.

Lemma 2 ([4]). PCF is acyclic if and only if c satisfies WARP-CF.

Only three observations can falsify this axiom. For example, consider the following
choice pattern:

c({x, y, z, t}) = y, c({x, y, z}) = x and c({x, y}) = y.

The first two observations imply that xPCFy. Similarly, the last two observations
indicate yPCFx, which leads a cycle of two. By Lemma 2, the axiom is violated.

Since each axiom characterizes the corresponding model, and the path-independence
is equivalent to an AF and CF, it is tempting to claim that WARP-AF and WARP-CF would
characterize the π-LC model where the consideration structure satisfies both AF and CF.
However, that is not the case. The following example satisfies the both axioms, but it cannot
be represented a pair of preference and consideration set satisfying path independence.

Consider the following “choosing pairwisely unchosen” pattern (the chosen alterna-
tive from {x, y, z} is never chosen in any binary comparisons):

c({x, y, z}) = x, c({x, y}) = y, c({y, z}) = y, c({x, z}) = z.

First, note that c satisfies both WARP-AF and WARP-CF. To see this, note c involves
just two choice reversals: when y or z is removed from {x, y, z}. Therefore, the revealed
preference generated by AF is just xPAFy and xPAFz and the one by CF is only yPCFx and
zPCFx. Neither of them contains a cycle so c satisfies both axioms. Nevertheless, x must
be best in AF and worst in CF, which is not compatible, so c cannot be represented by
Γ satisfying AF and CF simultaneously. In other words, there is no (Γ,�) pair that can
rationalize these data, where Γ satisfies PI.

The axiom we propose is a stronger version of both WARP-AF and WARP-CF. Re-
member that both axioms require that every set S has the “best” alternative x∗ and it must
be chosen from any other decision problem T as long as it attracts attention. Remember
that, with an attention filter, an alternative, say x∗, attracts attention at a choice set, T,
when removing it changes the choice, i.e., c(T) 6= c(T \ x∗). Now that we assume that
the consideration set is path independent, we can also conclude it when we know x∗ is
paid attention to at some bigger decision problem T′ ⊃ T by observing c(T′) 6= c(T′ \ x∗).
Therefore, we need to state that, if the removal of x∗ changes the choice in some superset of
T, then it attracts attention at T.

(WARP-PI) For any nonempty S, there exists x∗ ∈ S such that for any T 3 x∗,

c(T) = x∗ whenever (i) c(T) ∈ S, and
(ii) c(T′) 6= c(T′ \ x∗) for some T′ ⊃ T

It turns out that WARP-PI is the necessary and sufficient condition for the π-LC model.

Theorem 2. (Characterization) A choice function satisfies WARP-PI if and only if it is a π-LC model.6

Theorem 2 characterizes a special of class of choice behavior we above. The charac-
terization involves a single behavioral postulate which is stronger than both WARP-AF
and WARP-CF. We show that this model has higher predictive power, which comes with
diminishing explanatory power: “choosing pairwisely unchosen” is no longer within
the model.

6 Proofs are provided in the Appendix A.
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We finalize this section by considering Attraction Effect type choice pattern:

c({x, y, z}) = y, c({x, y}) = x, c({y, z}) = y, c({x, z}) = x.

It is routine to verify that this choice behavior satisfies WARP-PI.7 Hence, Theorem 2
implies that it is consistent with a π-LC model. The choice reversal between {x, y, z} and
{x, y} yields that her preference must be x � y � z. This implies that we can uniquely
pin down preference for this choice behavior. Note that this is not true for the models of
Masatlioglu et al. [3] and Lleras et al. [4].

In addition to unique preference, we can also reveal the unique consideration set
mapping. To see this, consider the set {x, y, z}. First of all, the choice, which is y, must
be in the consideration set. Since removing z changes the choice, z is also in it (attention
filter). Finally, we know x is better than the choice from the above discussion, as x does
not belong the consideration set of {x, y, z}. Hence, Γ({x, y, z}) = {y, z}. In addition, path
independence requires that y and z attract attention whenever they are available, which
pins down the consideration set mapping uniquely for this example.

Γ({x, y, z}) = {y, z}, Γ({x, y}) = {x, y}, Γ({y, z}) = {y, z}, and Γ({x, z}) = {x, z}.

Theorem 2 states that it is possible to test our model non-parametrically from observed
choice behavior even when the consideration sets themselves are unobservable.8

4. Revealed Preference

In this section, we discuss the revealed preference of our model. One might suspect
that PAF ∪ PCF should be the revealed preference of this model. The following example
illustrates that this is not the case. The example shows that there is an additional preference
revelation, which cannot be captured even by the transitive closure9 of PAF ∪ PCF.

Example 1. [Hidden Revelation] Consider the following behavior with four alternative x, y, z, t: A
DM chooses z whenever z is available except in two occasions {x, z, t} and {z, t}, from which the
DM chooses t. When z is not available, the DM chooses t whenever t is available. Lastly, the DM
chooses x from {x, y}. It is routine to show that this choice behavior satisfies WARP-PI, hence it is
a π-LC model.10

Let X be {x, y, z, t}. Consider the following choice behavior on X: A DM chooses z whenever z
is available except from {x, z, t} and {z, t}, x from {x, y}, and t from the rest of decision problems.

The DM exhibits only one choice reversal: c({x, y, z, t}) = z 6= c({x, z, t}) = t. This implies
that we must have zPAFy and tPCFz. This implies that t must be better than z and z is better
than y (of course, t is better than y). However, there is no revelation between x and y according to
PAF ∪ PCF.

We now illustrate that, in our model, we reveal that x must be better than y. To see this,
c(x, y, z, t) = z and c(x, z, t) = t implies y ∈ Γ({x, y, z, t}). Then, we must have y ∈ Γ({x, y}).
Since x is chosen from {x, y}, x must be better than y. However, this is not captured by either PCF

or PAF.

Given this observation, we provide a characterization for the revealed preference
when Γ is known to be path independent. To do this, we consider cyclical choice behavior:
c({x, y, z}) = x, c({x, y}) = x, c({y, z}) = y, c({x, z}) = z. Here, we can uniquely
pin down the preference for the cyclical choice example when Γ is path independent. To see

7 One can show that x serves the role of x∗ for {x, y, z}. For the rest, c(S) does the job.
8 There are two recent papers which provide similar characterizations under stronger data requirements. While Kopylov and Yang [33] assumed that

ex-ante menu preferences are observable, Ridout [34] assumed both preferences and choices are observable.
9 We can conclude x must be preferred to z when xPAFy and yPCFz. The revealed preference illustrated in this example is not captured even by

this process.
10 The following � and Γ represent the choice behavior: t � z � x � y and Γ(X) = {x, y, z}, Γ({y, z, t}) = {y, z}, and Γ(S) = S for all other S. Clearly,

Γ satisfies AF and CF property.
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this, first note that c({x, y, z}) = x implies that the DM pays attention to x at {x, y, z}, so she
does at {x, z} (revealed attention due to competition filter). Since she picks z from {x, z}, we
can conclude that she prefers z over x (revealed preference). Since c({x, y, z}) 6= c({x, z}),
y must attract attention at {x, y, z} (revealed attention due to attention filter). Since she
picks x from {x, y, z}, we can conclude that she prefers x over y (revealed preference).
Therefore, her preference is uniquely pinned down: z � x � y.

Now, we generalize this observation. Suppose c(T) 6= c(T \ y) and c(T) 6= y. Then, we
conclude that y must be paid attention to at T, hence c(T) � y. Since Γ is path independent,
c(T) must attract attention at any decision problem S smaller than T including c(T).
Therefore, if c(S) 6= c(T), c(S) is revealed to be preferred to c(T), hence c(S) � c(T) � y.
Formally, for any distinct pair of x and y, define:

xPPIy if there exist S and T such that (i) {x, y} ⊂ S ⊂ T and x = c(S)
(ii) c(T) 6= c(T \ y)

Note that the second condition in the definition of PPI holds trivially when y is equal
to c(T). This implies that c(T) must have been considered not only at T but also at any
decision problem S smaller than T including c(T) since Γ satisfies PI. Therefore, whenever
c(T) ⊆ S ⊂ T and c(T) 6= c(S), we have x = c(S) � c(T) = y.

As above, if xPPIy and yPPIz for some y, we also conclude that she prefers x to z even
when xPPIz does not hold. The following proposition states that the transitive closure of
PPI , denoted by PPI

R , is the revealed preference.

Proposition 1. Suppose c is a π-LC model. Then, x is revealed to be preferred to y if and only
if xPPI

R y.

Proof. The if-part is already demonstrated above. The only-if part can be shown paralleled
with Theorem 2, where we show that any � including PPI

R represents c by choosing
Γ properly.

Finally, note that PPI must include both PAF and PCF, but it might include more. To
show this, we revisit Example 1 and illustrate that PPI captures x better than y, which is
missed by both PAF and PCF. Let T = {x, y, z, t} and S = {x, y}. Since c(T) 6= c(T \ y) and
c(S) = x, we must have xPPIy. Hence, our model reveals more preference information
than the combined models of Masatlioglu et al. [3] and Lleras et al. [4].
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Appendix A. Proofs

The Proof of Theorem 2

Define xPPIy if and only if there exist T and T′ with x, y ∈ T ⊂ T′ such that

x = c(T) and c(T′) 6= c(T′ \ y)

Lemma A1. xPPI is acyclic if and only if c satisfies WARP-PI.

The proof of Lemma A1 is completely analogous to the proofs of Lemmas 1 and 2
(see [3,4]), hence we skip it here.

Let PPI
R be the transitive closure of PPI and let � be any arbitrary completion of PPI

R .
For every S, we call B ⊂ S a minimum block of S if and only if c(S) 6= c(S \ B) but
c(S) = c(S \ B′) for any B′ ( B. Given this, define Γ recursively as follows:

1. Γ(X) consists of the �-worst element of each of X’s minimum blocks.
2. Suppose Γ has been already defined for all proper supersets of S. Then, define Γ(S).

(a) First, put x ∈ S into Γ(S) if x ∈ Γ(T) for some T ) S.
(b) If there is a minimum block of S that does not have an element in Γ(S) accord-

ing to the above, add the �-worst element into Γ(S).

Lemma A2. For any S,

(i) c(S) is a minimum block of S. There is no other minimum block that includes c(S).
(ii) If B is a minimum block of S other than c(S), then c(S) � x for all x ∈ B.
(iii) If c(T) 6= c(S) and T ) S, then T has a minimum block that is a subset of T \ S.

Proof. Parts (i) and (iii) are trivial. For Part (ii), let B′ = B \ x (it may be empty). Then,
we have

c(S) = c(S \ B′) 6= c((S \ B′) \ x)

Therefore, we have c(S)PPI x so it must be c(S) � x.

Claim 1. Γ is path independent.

Proof. Γ satisfies CF by construction so we shall prove that Γ satisfies AF. Suppose not, i.e.,
x /∈ Γ(S) and Γ(S) 6= Γ(S \ x). Since Γ satisfies CF, we must have Γ(S) ⊆ Γ(S \ x). Hence,
Γ(S) ( Γ(S \ x), that is, there exists y ∈ S such that y /∈ Γ(S), but y ∈ Γ(S \ x). Then, there
exists T ⊃ S such that: (i) T \ x has a minimum block B and y is the worst element in B;
and (ii) none of the elements in B are included in Γ(T′) for any T′ ) T \ x.

Then, we must have c(T) = c(T \ x). Otherwise, {x} is a minimum block of T′ so we
have x ∈ Γ(T′) that implies x ∈ Γ(S). Therefore, we have

c(T) = c(T \ x) 6= c((T \ x) \ B) = c(T \ {{x} ∪ B})

Therefore, by Lemma A2 (iii), T has a minimum block that is a subset of x ∪ B so at
least one element in x ∪ B must be in Γ(T), which is a contradiction.

Now, we want to show that (�, Γ) represents c. Since Lemma A2 (i) implies that
c(S) ∈ Γ(S), all we need to show is that c(S) � y for all y ∈ Γ(S) \ c(S).

Claim 2. If y ∈ Γ(S) and y 6= c(S), then c(S) � y.

Proof. Since y ∈ Γ(S), there exists T ⊃ S such that y ∈ Γ(T). Furthermore, T has a
minimum block B where y is the worst element and none of elements in B is in Γ(T′) for
any T′ ) T. There are three easy cases: (i) if c(S) = c(T) then by Lemma A2 (ii) we have
c(S) = c(T) � y; (ii) if y = c(T) then we have c(S)PPIy so it must be c(S) � y; and (iii) if
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c(S) ∈ B, then c(S) � y by construction. Therefore, we only need to investigate the case
when y 6= c(T) 6= c(S) and c(S) /∈ B. Note that c(T) � y in this case by Lemma A2 (ii).

Now, let S′ = S \ B. Since y ∈ B, S′ is a proper subset of S.

Case I: c(S′′) 6= c(S) for some S′′ where S′ ⊂ S′′ ⊂ S.

By Lemma A2 (iii), S has a minimum block B′ that is a subset of S \ S′′ ⊂ B. Since
c(S) /∈ B′(⊂ B), every element in B′ is worse than c(S) by Lemma A2 (ii). Since y is the
worst element in B that is a superset of B′, we conclude c(S) � y.

Case II: c(S′′) = c(S) for all S′′ where S′ ⊂ S′′ ⊂ S.

Since y 6= c(T) = c(T \ {B \ y}) 6= c(T \ B), and c(S \ {B \ y}) ∈ {T \ {B \ y}}, we
have c(S \ {B \ y}) PPI y. Therefore, c(S) � y because of c(S \ {B \ y}) = c(S).
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