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Abstract: This paper studies fishery strategies in lakes, seas, and shallow rivers subject to agricultural
and industrial pollution. The flowing pollutants are modeled by a nonlinear differential equation in a
general manner. The logistic growth model for the fish population is modified to cover the pollution
impact on the fish growth rate. We start by presenting the stability analysis of the dynamical system
to discern the different types of the evolution of the fish population according to human actions. A
cooperative game is formulated to design strategies for preserving the fish population by controlling
the pollution as well as the fish stock for harvesting. The sufficient conditions for implementing the
cooperative strategy are investigated through an incentive design approach with an adaptive taxation
policy for the players. Numerical results are presented to illustrate the benefit of the cooperative for
fish population preservation but also for the players’ rewards.

Keywords: biodiversity preservation; stability analysis; optimal control; cooperative game

1. Introduction

Prior to the 2019 coronavirus disease (COVID-19) pandemic, towns and cities had
grown and attracted more than fifty percent of the world population. Their sustainability
and competitive efficiency have become increasingly important issues to decision-makers.
A city, more simply, is a geographic area where live people, with hard infrastructures and
changing systems that interconnect the city with itself. Because of pandemics, economic
drivers, energy, climate change, and resource supply, the concept of biodiversity preser-
vation has gained more attention for the next generation of cities, called smart cities. The
“smart city” can include a large and extensive range of systems, networks, and infras-
tructure elements. However, in this paper we use the term “smart city” to refer to more
intelligent, more efficient, and more sustainable cities, and we focus on pollution control
and economic supply. In support of the environment, risk management and sustainable de-
velopment; natural resource management including systems for the reduction of pollutants;
increasing energy efficiency; managing the human response to environmental stresses, and
sustaining biodiversity are key elements of smart cities.

Seas and lakes provide a variety of economic uses: they are sources of drinking water,
fishing, and recreational sports, and they provide pleasant locations for smart homes and
drainage for agriculture. Runoff from fields flows into the streams and rivers that feed
the lake. Much of the agricultural runoff includes phosphorus from fertilizers and animal
wastes. Phosphorus is the primary nutrient of algae and weeds in the water. When it grows
excessively from an infusion of phosphorus, algae blooms reduce the oxygen content of
the lake and release toxins into the water. In addition, large amounts of waste produced by
some industries and municipal sewage enter natural water bodies, either without treatment
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or through inappropriate and inadequate treatment processes [1]. In fact, the sources of
water pollution are various [2]. Seas and lakes are polluted with high concentrations of
phosphorus, Pb, Zn, Cu, Cd, and other toxins in their sediments. This pollution severely
affects aquatic life and leads to a serious environmental, climatic, and public health problem.
Fish and other marine species die due to high levels of pesticides and toxins in water and
other types of water pollution, such as plastic and litter [3]. On the other hand, fish
reproduction is seriously affected because of genetic mutations when toxins are absorbed.
Fish are therefore mainly affected by human nuisance and it is necessary to give sufficient
attention to this issue and to implement the necessary corrective measures [3,4].

Research activities are focused on finding suitable solutions to these problems. Anu-
pam et al. [5] proposed a new mathematical model that uses fuzzy inferences to study the
impacts of global warming, water pollution, and juvenile fish harvesting on the production of
mature Hilsa fish. They used the Mamdani inference method and applied it to a model based
on fuzzy rules. Most recent mathematical models take into account the spatialization of
fisheries to study the control of a multi-site fishery [6]. For this, bio-economic models can
be used. These models take into account economic aspects and, in particular, changes in
investment and prices, in fisheries management models [7]. It is possible to eliminate over-
fishing and move towards a sustainable fishery without risk of extinction for the exploited
species, by varying the number of fishing sites and the costs of operating the fishery [8]. For
a more recent work on economic models, see [9], where the authors studied the dynamics
of marine industrial interactions through a dynamical systems theory approach.

For pollution control, the authors in [10] considered a dynamic partial equilibrium
model that combines the optimum exploitation of renewable resources with optimum
pollution control. For them, the pollution accumulates as a slowly decomposing stock and
is supposed to affect the growth and quality of the stock of renewable resources. They
maximized a social welfare function that gives the present value of the difference between
the benefits of natural resources and the costs of controlling pollution. Their analysis
also gives a general result concerning the state of equilibrium of two problems of optimal
control. In [11], a mathematical model for solving the dispersion of pollutants in a river is
considered. The concentration of the pollutant is obtained using a finite element method.
This is subject to optimal control of the water treatment plants in order to achieve minimum
costs.

In this paper, we introduce a mathematical model describing the impact of pollution on
the fish population. The pollution dynamic covers the time unit input of chemical residuals
and the eutrophication process; see [12]. The dynamic of the fish population is obtained
by discharging the harvested fish stock from the natural logistic growth model. The in-
water part of the allowed portion, according to the regulations, of the fishable population
is referred to as the “fish stock” [13]. To gain clarity in the mathematical analysis, we
first study the properties of the eutrophication dynamics. Moreover, considering fish
preservation, we investigate the gain optimization for polluters and fishermen in non-
cooperative and cooperative regimes. Two separate payoff functions are defined in the
non-cooperative regime, while a single aggregated payoff for all the players is considered
in the cooperative regime under the authority of a third entity. It is revealed that the
cooperative regime is more supportive of fish preservation.

The outline of the paper is as follows: in Section 2, we discuss the management prob-
lem to develop the mathematical model. Section 3 is dedicated to the mathematical analysis,
which is based on the basic reproduction number of the eutrophication dynamics. The
non-cooperative optimization between the polluters and the fishermen with the constraint
of preserving the fish population is presented in Section 4. In Section 5, we address the
cooperative optimization and present sufficient conditions for its implementation.
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2. Water Pollution and Fishing Industry

In this section, we describe the management problem of ecosystem preservation,
present the mathematical models for the pollution and the fish population, and identify
the control variables.

2.1. Management Problema

We identify the first class of players: farmers and mining industries surrounding
rivers, lakes, and seas are polluters. Industry companies need to clean up material or
deposit chemical waste into the water. Farmers use artificial fertilizers to grow crops; these
fertilizers contain chemical elements such as phosphorus and zinc, which are ultimately
washed out into the water. The dynamic of the chemical waste (such as the amount of
phosphorus in the water) is given by [12,14]:

9x1ptq “
n
ÿ

j“1

ajptq ´ cx1ptq ` b
xp

1 ptq
xp

1 ptq `mp
.

Here, n is the total number of polluters (farming and industrial companies); aj is the
input of chemical waste (due to industrial production and farming) produced by the player
j; c ě 0 is proportional to the rate of loss of chemical elements due to the sedimentation, the

outflow, and the sequestration in other biomasses. The term b xp
1

xp
1`mp (p ě 2, b ą 0) models

the production of chemicals in the water because the dissolution process generates other
types of chemicals through reactions between water components and the spilled chemical.

Fishes represent the second class of players. To illustrate the dynamics and the impact
of the fishing industry, we consider that the fish population size evolves according to:

9x2ptq “ h1px1ptq, x2ptqq ´ h2px2ptqq,

where the first term h1 is the inflow and the second term h2 is the outflow due to harvesting
activities. We agree that the function h2 is essentially the harvesting activity as the natural
death rate is neglected and we interpret the term h1 as the drift of the logistic growth
model [6], i.e.,

h1px1ptq, x2ptqq “ rx2ptq
ˆ

Kpx1ptqq ´ x2ptq
Kpx1ptqq

˙

.

The carrying capacity K is non-increasing with the pollution level x1 , while the natural
growth rate r is taken to be constant. If h1 ą h2 , then the fish population growth continues,
and for h1 ă h2 , the harvesting activities are at over-fishing levels that lead to the extinction
of the fish population.

2.2. Mathematical Model

The resulting ecosystem from the above problem consists of two predators (polluters
and fishermen) and a single prey (fish population). The polluters are indirect predators
because they do not have a direct interest in the fish population, but their activities are
harmful for the fish population and can cause the fish population’s extinction. The fish-
ermen are the direct predators for the fish population but they are naturally concerned
with its preservation. If the watercourse is polluted, the fish population drops to the lowest
level through Kpx1q. The fish industry will lose considerable profit because the harvesting
cost becomes higher and the utility (the price of fish in the market) smaller due to the low
quality. Thus, a smarter solution, addressed in this paper, is to design a policy for the fish
industry that may obtain a better outcome by cooperating with the farmers to control the
pollution level. In this way, the farmers may be compensated by a tax reduction.
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We consider h2 “ x2
2
u2 , where u2 measures the fish stock to be harvested. Accordingly,

the dynamics of the fishery subject to industrial and agricultural pollution is:
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

9x1ptq “ u1ptq ´ cx1ptq ` b
xp

1 ptq
xp

1 ptq `mp
,

9x2ptq “ rx2ptq
ˆ

Kpx1ptqq ´ x2ptq
Kpx1ptqq

˙

´ x2ptq2u2ptq,

x1pt “ 0q “ x0
1

and x2pt “ 0q “ x0
2
,

(1)

where u1ptq “
řn

j“1 ajptq globalizes the actions of the n polluters to lighten the notation.
Then, the dynamical system (1) can be recast in the condensed form:

9xptq “ f pxptq, uptqq, starting at xp0q “ x0. (2)

where the vector u “ pu1 , u2q describes the players’ activities. Short-term suspension of
the players’ activities appears to be insufficient to restore the fish population because, for
u1 “ u2 “ 0, the residual chemicals continue to jeopardize the natural growth of the fish
population through eutrophication.

3. Analysis of the Model

This section is devoted to the stability analysis of the system (1). We start by addressing
the stability of the eutrophication dynamics in a more general setting, which facilitates the
stability analysis of the system, which is considered without chemical input and fishery
activities, i.e., u1 “ u2 “ 0,

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

9x1ptq “ kpx1ptqqx1ptq, where kpx1q
def
“ ´c`

bx
p´1

1

xp

1
`mp , @ xp

1
ě 0

9x2ptq “ rx2ptq ´
rx2

2
ptq

Kpx1ptqq
,

x1p0q “ x0
1

and x2p0q “ x0
2
, px0

1
, x0

2
q P R2

`.

(3)

For this, we primarily focus on the analysis of the eutrophication process, which is the
first equation of (3), and secondly, we end with the analysis of the complete dynamics.

3.1. Stability Analysis of the Eutrophication Process

Here, we consider the dynamics of the pollutant, described by the following nonlinear
equation:

$

&

%

9x1ptq “ kpx1ptqqx1ptq,

x1p0q “ x0
1
P R`,

where kpx1q
def
“ ´c`

bx
p´1

1

xp

1
`mp , @ xp

1
ě 0 (4)

with m ą 0 and the integer p ě 2. Remark that the mapping x1 ÞÑ kpx1qx1 ` cx1 is
nonnegative and increasing for x1 P R`, which implies that the semi-flow generated by (4)
is monotone with respect to the initial conditions in R`. In this sequel, we will denote by
t ÞÑ Xpt, x0

1
q the unique solution of the Cauchy problem (4) with data x0

1
. The monotonicity

of (4), for two initial conditions, xa and xb , is given by:

0 ď xa ď xb ùñ Xpt, xaq ď Xpt, xbq, @t ě 0. (5)
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To establish the causality of the function k on the existence of the equilibrium points
and their asymptotic behaviors, we look at the variation of k and find that k is increasing

on r0, x‹
1
s and decreasing on rx‹

1
,`8q, where x‹

1
“ mpp´ 1q

1
p is the global maximum of k

max
x1PR`

kpx1q “ kpx‹
1
q “ ´c`

b
m p

pp´ 1q1´
1
p while kp0q “ ´c and lim

x1Ñ`8
kpx1q “ ´c.

We now introduce the basic reproduction number R0 of the chemical eutrophication
process:

R0
def
“

b
mpc

pp´ 1q1´
1
p . (6)

In contrast to the epidemiological approach of defining R0 as an amplification factor—
see [15,16]—we assign to R0 the rate of generating new chemical components as a result of
the reactions between the components during eutrophication. We note that kpx‹

1
q “ cpR0´1q;

thus, for R0 ă 1, the total amount of generated chemicals during eutrophication is less than
the number of involved input chemicals. If R0 ą 1, the eutrophication tends to increase the
amount and the number of chemicals, while R0 “ 1 means that the toxicity level, given by the
amount of residual chemicals, stays constant because it is not affected by the eutrophication.
We enumerate the equilibrium points of (4) according to R0.

Proposition 1. The number of equilibrium points of the eutrophication dynamics (4) is given by
R0 as follows:

• If R0 ă 1, the only stationary point is the free-pollution equilibrium x˝
1
“ 0.

• If R0 “ 1, additional to the free-pollution equilibrium x˝
1
“ 0, there is one equilibrium point

x‹
1
, which is positive.

• If R0 ą 1, additional to the free-pollution equilibrium x˝
1
, there are two equilibrium points x‚

1
and x§

1
, which are positive. For p “ 2, they are given by:

x‚
1
“

b´
?

b2 ´ 4c2m2

2c
and x§

1
“

b`
?

b2 ´ 4c2m2

2c
.

It is clear that the pollution-free equilibrium x˝
1
“ 0 is always a stationary solution

of (4). Furthermore, the other equilibrium of (4) is obtained by solving kpx1q “ 0 in R.
Indeed, using the variation of k stated earlier in this section, we observe that the graph of k
intersects the abscissa x1 “ 0 once at x‹

1
when R0 “ 1 and twice at x‚

1
and x§

1
when R0 ą 1.

The following lemmas concern the behavior of the equilibrium points given in Proposition 1.
In fact, Lemma 2 states that when R0 ă 1, the pollution-free equilibrium x˝

1
is globally asymp-

totically stable. The case R0 “ 1 is given in Lemma 3. In this latter case, the dynamics converges
to x˝

1
or x‹

1
whether the initial condition is in p0, x‹

1
q or in px‹

1
,`8q. When R0 ą 1, we have in

Lemma 4 that x‚
1

is a uniform repeller. In addition, the dynamics converges to x˝
1

or x§
1

whether
the initial condition is in p0, x‚

1
q or in px‚

1
,`8q.

Lemma 2. If R0 ă 1, then the pollution-free equilibrium point is globally asymptotically stable.
Moreover, for initial state x0

1
ą 0, the mapping t ÞÑ Xpt, x0q is exponentially decreasing at the rate

of cp1´R0q, i.e.,

0 ă Xpt, x0
1
q ď x0

1
exp p´cp1´R0qtq @ t ě 0. (7)

Proof. Let us consider a positive initial condition x0
1
ą 0; we use the monotonicity property

(5) with xa “ 0 and xb “ x0
1

to show that the solution t ÞÑ Xpt, x0
1
q satisfies:

Xpt, 0q ď Xpt, x0
1
q ùñ 0 ď Xpt, x0

1
q, @t ě 0,

since 0 is an equilibrium point.
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Moreover, we have

9Xpt, x0
1
q “ kpx1qXpt, x0

1
q ď max

x1PR`

kpx1qXpt, x0
1
q “ kpx1qXpt, x0

1
q “ cpR0 ´ 1qXpt, x0

1
q.

In short, we have 9Xpt, x0
1
q ď cpR0 ´ 1qXpt, x0

1
q ă 0 for all t ě 0, and for R0 ă 1; this

means 0 ă Xpt, x0
1
q ď x0

1
exp p´cp1´R0qtq for all t ě 0.

Lemma 3. If R0 “ 1, the notion of stability is weakened because there is no basin of attraction
covering the neighborhood of any two equilibrium points. However, the following properties hold:

(1) For all x0
1
P p0, x‹

1
q, the solution t ÞÑ Xpt, x0

1
q is decreasing and Xpt, x0

1
q Ñ x˝

1
as t Ñ `8.

(2) For all x0
1
P px‹

1
,`8q, the solution t ÞÑ Xpt, x0

1
q is decreasing and Xpt, x0

1
q Ñ x‹

1
as t Ñ `8.

Proof. We recall that when R0 “ 1, the global maximum of k is attained at x‹
1
, which is

also an equilibrium of the dynamical system (4), i.e.,

9Xpt, x‹
1
q “ Xpt, x‹

1
qkpx‹

1
q “ cXpt, x‹

1
qpR0 ´ 1q “ 0 and Xpt, x‹

1
q “ x‹

1
.

For an initial condition x0
1
Ps0, x‹

1
s, the monotonicity property (5) applied to xa “ x˝

1
,

xb “ x0
1

and to xa “ x0
1
, xb “ x‹

1
gives us:

0 “ Xpt, x˝
1
q ď Xpt, x0

1
q ď Xpt, x‹

1
q “ x‹

1
@t ě 0,

which, because the function k is increasing in R`, implies that:

´c “ kp0q ď kpXpt, x0
1
qq ď kpx‹

1
q “ 0, @t ě 0.

Multiplying by 0 ď Xpt, x0
1
q ď Xpt, x‹

1
q, we find that:

0 ď Xpt, x0
1
qkpXpt, x0

1
qq ď Xpt, x‹

1
qkpx‹

1
q “ 0, @t ě 0,

which implies that:

0 ď 9Xpt, x0
1
q ď 9Xpt, x‹

1
q “ 0, @t ě 0.

This shows that the mapping t ÞÑ Xpt, x0
1
q is decreasing, and since it is bounded from

below by the pollution-free equilibrium x˝
1
, we have Xpt, x0

1
q Ñ x˝

1
“ 0 as t Ñ `8.

For an initial condition greater than x‹
1
, x0

1
ą x‹

1
, it yields from the monotonicity

condition (5) with xa “ x‹
1
, xb “ x0

1
that:

x‹
1
“ Xpt, x‹

1
q ă Xpt, x0

1
q, @t ě 0

and since k is decreasing in px‹
1
,`8q, we obtain:

kpXpt, x0
1
qq ă kpx‹

1
q “ 0, @t ě 0.

Multiplying by 0 ă x‹
1
ă Xpt, x0

1
q, we obtain:

9Xpt, x0
1
q “ Xpt, x0

1
qkpXpt, x0

1
qq ă 0, @t ě 0,

which means t ÞÑ Xpt, x0
1
q is decreasing since it is bounded from below by the equilibrium

x‹
1
. We conclude that Xpt, x0

1
q Ñ x‹

1
as t Ñ `8.

Lemma 4. If R0 ą 1, then x‚
1

is a uniform repeller and we have the following properties:

(1) For all x0
1
P p0, x‚

1
q, the solution t ÞÑ Xpt, x0

1
q is decreasing and Xpt, x0

1
q Ñ x˝

1
as t Ñ `8.
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(2) The solution t ÞÑ Xpt, x0
1
q is increasing if x0

1
P px‚

1
, x§

1
q and decreasing if x0

1
P px§

1
,`8q.

Moreover, Xpt, x0
1
q Ñ x§

1
as t Ñ `8 for all x0

1
P px‚

1
,`8q.

It is worth mentioning that the fact that x‚
1

is a repeller, for R0 ą 1, is a consequence of
(1) and (2). It is therefore sufficient to prove (1) and (2). However, the proof of (1) is similar
to that of Lemma 3; therefore, we elaborate only the proof of (2). We will do so stepwise, by
considering first the initial conditions in rx‚

1
, x§

1
s and then those in px§

1
,`8q.

Proof. Note that the global maximum of k, given by x‹
1
“ mpp´ 1q

1
p , satisfies x‚

1
ă x‹

1
ă x§

1
.

Then, for initial condition x0
1
P rx‚

1
, x§

1
s, either x0

1
P rx‚

1
, x‹

1
s or x0

1
P rx‹

1
, x§

1
s. For x0

1
P rx‚

1
, x‹

1
s,

we apply the monotonicity property (5) to xa “ x‚
1
, xb “ x0

1
and to xa “ x0

1
, xb “ x‹

1
,

to obtain:

x‚
1
“ Xpt, x‚

1
q ă Xpt, x0

1
q ă Xpt, x‹

1
q, @t ě 0.

Using the fact that the function k is increasing in px‚
1
, x‹

1
q, we obtain:

0 “ kpx‚
1
q ă kpXpt, x0

1
qq ă kpXpt, x‹

1
qq, @t ě 0.

By arguing similarly for x0
1
P rx‹

1
, x§

1
s and using the fact that the function k is decreasing

in px‹
1
, x§

1
q, we have:

0 “ kpx§
1
q ă kpXpt, x0

1
qq ă kpXpt, x‹

1
qq, @t ě 0.

Multiplying the terms of the previous inequality by 0 ă Xpt, x0
1
q, we obtain in both

cases:

0 ă Xpt, x0
1
qkpXpt, x0

1
qq “ 9Xpt, x0

1
q, @t ě 0,

meaning that t ÞÑ Xpt, x0
1
q is increasing since it is bounded from above by x§

1
. This implies

that Xpt, x0
1
q Ñ x§

1
as t Ñ `8.

For an initial condition greater than x§
1
, x0

1
ą x§

1
, it yields from the monotonicity condition

(5) with xa “ x§
1
, xb “ x0

1
that:

x§
1
“ Xpt, x§

1
q ă Xpt, x0

1
q, @t ě 0.

Since k is decreasing in px§
1
,`8q Ă px‹

1
,`8q, we obtain:

0 “ kpx§
1
q ą kpXpt, x0

1
qq, @t ě 0

Hence, t ÞÑ Xpt, x0
1
q is decreasing and bounded from below by the equilibrium x§

1
.

Therefore, Xpt, x0
1
q Ñ x§

1
as t Ñ `8.

3.2. Stability Analysis of the Fish Pollution Dynamic

Here, we focus on the analysis of the dynamical system (3), i.e.,

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

9x1ptq “ kpx1ptqqx1ptq, where kpx1q
def
“ ´c`

bx
p´1

1

xp

1
`mp , @ xp

1
ě 0

9x2ptq “ rx2ptq ´
rx2

2
ptq

Kpx1ptqq
,

x1p0q “ x0
1

and x2p0q “ x0
2
, px0

1
, x0

2
q P R2

`,

(8)

where K is a non-increasing function of x1ptq. The following results give the equilibrium
points related to the fish pollution dynamic. These points are obtained by combining the



Games 2021, 12, 65 8 of 21

equilibrium points of the eutrophication process (Section 3.1) with the equilibrium points
of the second equation of Equation (8), which are x˝

2
“ 0 and x̄2 “ Kpx̄1q, where x̄1 is x˝

1
, x‹

1
,

x‚
1

or x§
1
.

Proposition 5. The number of equilibrium points of the fish pollution dynamics (8) depends on
R0 as follows:

• If R0 ă 1, the only equilibrium points are the trivial equilibrium and the best-case
scenario equilibrium, which are given, respectively, by:

E0 “ px˝1 , 0q “ p0, 0q and E1 “ px˝1 , Kpx˝
1
qq “ p0, 1q.

• If R0 “ 1, additional to the trivial equilibrium and the best-case scenario equilibrium, there
are two equilibrium points, which are:

E2 “ px‹1 , 0q and E3 “ px‹1 , Kpx‹
1
qq.

• If R0 ą 1, additional to the trivial equilibrium and the best-case scenario equilibrium, there
are four equilibrium points, which are:

E4 “ px‚1 , 0q, E5 “ px‚1 , Kpx‚
1
qq, E6 “ px§1 , 0q and E7 “ px§1 , Kpx§

1
qq.

Here, x˝
1
, x‹

1
, x‚

1
and x§

1
are given in Proposition (1).

Since the second equation of (8) is a Bernoulli differential equation, we consider the
following Lemma, which will be used together with the results of Section 3.1 to analyze
the fish pollution dynamics.

Lemma 6. Let v P Cpr0,`8q,R`q be a given continuous function and w P C1pr0,`8q,R`q the
solution of the following Bernoulli differential equation:

#

9wptq “ rwptq ´ r
Kpvptqqw

2ptq, t ą 0
wp0q “ w0 P R`.

(9)

If v is a monotone function with vptq Ñ v˚ as t Ñ `8, then, for each w0 ą 0, we have:

lim
tÑ`8

wptq “ Kpv˚q.

Proof. The solution to the Bernoulli differential equation is:

wptq “
w0

e´rpt´t0q `w0

ż t

t0

r
Kpvpsqq

e´rpt´sqds
, @t ě t0, (10)

We recall that K is a non-increasing function of vptq. As vptq Ñ v˚, Kpvptqq Ñ Kpv˚q.
Let ε ą 0 be given and fixed. Then, there exists t0 ě 0 such that Kpv˚q ď Kpvptqq ă
Kpv˚q ` ε for all t ě t0.

Hence, for all t ě t0, we have:

w0

e´rpt´t0q `w0

ż t

t0

r
Kpv˚q ` ε

e´rpt´sqds
ď wptq ď

w0

e´rpt´t0q `w0

ż t

t0

r
Kpv˚q

e´rpt´sqds
.

This gives:
Kpv˚q ď lim inf

tÑ`8
wptq ď lim sup

tÑ`8
wptq ď Kpv˚q ` ε

Since ε is arbitrary, we obtain that wptq Ñ Kpv˚q as t Ñ `8.
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We have now all the technical elements in order to completely describe the asymptotic
behavior of the solutions of (8). In the following, we refer to E2, E4 and E6 as extinction-fish
equilibrium and E1, E3, E5 and E7 as persistent-fish equilibrium. Furthermore, E7 will be
called the worst-case scenario equilibrium.

Next, we list in a series of lemmas the results concerning the asymptotic behavior of
the system (8) in terms of the threshold R0. Lemma 8 states that when R0 ă 1, the best-case
scenario equilibrium E1 is globally asymptotically stable. When R0 “ 1 (Lemma 8), the
extinction-fish equilibrium E2 is unstable while the dynamics of the system converges either
to the best-case scenario equilibrium E1 or to the persistent-fish equilibrium E3 depending on
the initial condition. For the case R0 ą 1 (Lemma 9), the extinction-fish equilibrium E4 and
E6 are unstable. In this case, the dynamics of the system converges either to the best-case
scenario equilibrium E1 or to the worst-case scenario equilibrium E7 depending also on the
initial condition.

Lemma 7. If px0
1
, x0

2
q P R` ˆR˚`, then the fish is uniformly persistent. More precisely, there

exists δ ą 0 such that for each px0
1
, x0

2
q P R` ˆR˚`, we have:

lim
tÑ`8

x2ptq ě δ.

Proof. Let px0
1
, x0

2
q P R` ˆR˚` be given. Using the results of Section 3.1, we know that,

independently of R0, t Ñ x1ptq is monotone and converges to some κ, where κ is either x˝
1
,

x‹
1
, x˚

1
or x§

1
. Therefore, we deduce from Lemma 6 that x2ptq Ñ Kpκq as t Ñ `8. The proof

is completed.

Lemma 8. If R0 ă 1, then the best-case scenario equilibrium E1 is globally asymptotically stable
in R` ˆR˚`. More precisely, for each px0

1
, x0

2
q P R` ˆR˚`, we have:

lim
tÑ`8

x1ptq “ 0 and lim
tÑ`8

x2ptq “ 1.

Proof. Let px0
1
, x0

2
q P R` ˆ R˚` be given. If R0 ă 1, then, from Lemma 2, t ÞÑ x1ptq is

monotone and converges to 0 as t Ñ `8. Thus, Lemma 6 implies that x2ptq Ñ Kp0q “ 1 as
t Ñ `8.

Lemma 9. If R0 “ 1, then the extinction-fish equilibrium E2 “ px‹1 , 0q is unstable and we have
the following properties:

(i) For each px0
1
, x0

2
q P R` ˆR˚` with x0

1
P p0, x‹

1
q, we have:

lim
tÑ`8

x1ptq “ 0 and lim
tÑ`8

x2ptq “ 1

i.e., t ÞÑ px1ptq, x2ptqq converges to the best-case scenario equilibrium E1.
(ii) For each px0

1
, x0

2
q P R` ˆR˚` with x0

1
P rx‹

1
,`8q, we have:

lim
tÑ`8

x1ptq “ x‹
1

and lim
tÑ`8

x2ptq “ Kpx‹
1
q.

i.e., t ÞÑ px1ptq, x2ptqq converges to the persistent-fish equilibrium E3.

Proof. The fact that E2 “ px‹
1
, 0q is unstable is a consequence of (i) and (ii). The proof

of (i) follows the same lines of the proof of Lemma 8 and thus we only prove (ii). Let
px0

1
, x0

2
q P R` ˆR˚` with x0

1
P rx‹

1
,`8q be given. Then, Lemma 3 ensures that t ÞÑ x1ptq is

monotone and converges to x‹
1

as t Ñ `8. Hence, we infer from Lemma 6 that:

lim
tÑ`8

x2ptq “ Kpx‹
1
q.
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The proof of the next lemma uses the same arguments of the proofs of Lemmas 7–9.

Lemma 10. If R0 ą 1, then the extinction-fish equilibrium E4 “ px‚1 , 0q and E6 “ px§1 , 0q are
unstable and we have the following properties:

(i) For each px0
1
, x0

2
q P R` ˆR˚` with x0

1
P p0, x‚

1
q, we have:

lim
tÑ`8

x1ptq “ 0 and lim
tÑ`8

x2ptq “ 1

i.e., t ÞÑ px1ptq, x2ptqq converges to the best-case scenario equilibrium E1.
(ii) For each px0

1
, x0

2
q P R` ˆR˚` with x0

1
P px‚

1
,`8q, we have:

lim
tÑ`8

x1ptq “ x§
1

and lim
tÑ`8

x2ptq “ Kpx§
1
q

i.e., t ÞÑ px1ptq, x2ptqq converges to the worst-case scenario equilibrium E7.

3.3. Numerical Illustrations

For illustration, we consider the capacity function Kpx1q “
1

x1`1 and the following
values : p “ 2, m “ 1, c “ 1, and r “ 1. Therefore, the value of R0 will depend on b. For
b “ 0.7, 2 and 3, we have R0 “ 0.35 ă 1, R0 “ 1 and R0 “ 1.5 ą 1, respectively. The
dynamic of the model is given in Figure 1.
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Figure 1. Phase field of the uncontrolled dynamics for R0 ă 1 (top left), R0 “ 1 (right) and
R0 ą 1 (bottom left).

As stated in Proposition 5, the number of equilibrium points depends on R0.

• R0 ă 1. We have the trivial equilibrium E0 “ p0, 0q and the best-case scenario equilibrium
E1 “ p0, 1q, which is a nodal sink and globally asymptotically stable. It characterizes
non-pollution for a perfect natural growth of the fish population.

• R0 “ 1. Here, additionally to the trivial equilibrium E0 and the best-case scenario
equilibrium E1, we have E2 “ px‹1 , 0q “ p1, 0q, which is unstable, and E3 “ px‹1 , Kpx‹

1
qq “

p1, 1{2q. In this case, we see that if the initial condition x0
1

is in p0, 1q, the dynamic
converges to E1 as stated by Lemma 9. For initial condition x0

1
starting at x1 “ 1, E3 is
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a stable point and behaves as a nodal sink. The level of pollution is damping at half
the level of fish population growth.

• R0 ą 1. Additionally to the trivial equilibrium E0 and best-case scenario equilibrium
E1, we have E4 “ px‚

1
“ 0.38, 0q, E5 “ px‚

1
“ 0.38, Kpx‚

1
qq, E6 “ px§

1
“ 2.62, 0q

and E7 “ px§
1
“ 2.62, Kpx§

1
qq. The equilibrium point E5 is unstable (as well as E4

and E6) and behaves as a source. This stands for a very low pollution state, where
the pollutants are not yet damping or at least not at an alarming level regarding
the fish population growth. The stationary point E7 is a nodal sink and is locally
asymptotically stable. It illustrates the impact of a high level of pollution on the fish
population. This leads asymptotically to the survival of the fish population after the
total disintegration of the pollutant.

The main issue that we address in this paper is to design a fishing/pollution policy that
satisfies all parties. The outcome is to have the best positioning of the stable (asymptotically
stable) stationary point for both fishermen and polluters and to be able to bring and/or
maintain the system state around this equilibrium. Before designing this stability policy,
we must determine the feasibility, i.e., the controllability issue.

3.4. Controllability

In the rest of the paper, we consider u1 and u2 as control variables and we intend
to investigate their optimal dynamics to preserve the fish population and to generate a
consistent gain for both of the players in terms of business outcomes. Here, we look at the
feasibility of designing such dynamics for u1 and u2 by investigating the controllability of
the model. The feasibility of a mutually beneficial strategy for all the players agrees with
the controllability of system (2). The first-order controllability around an equilibrium point
implies its short-term controllability. In this sense, we announce the condition for the fish
population preservation policy as a controllability result.

Proposition 11. The regulation of the total pollution u1 is a necessary and sufficient condition on
the feasibility of the stability policy.

Proof. The linear tangent system of (2) around the equilibrium point px˚, u˚q is given by:

9y “ Ay` Bu, (11)

where

A “ ∇x f |x“x˚,u“u˚ and B “ pB1, B2q “ ∇u f |x“x˚,u“u˚ .

We denote by C1, C2 and C the Kalman controllability matrices of (11) with respect to u1 , u2

and u, respectively. They are given by:

C1 “ rB1|AB1s “

¨

˚

˝

1 ´c`
2bx1
px2

1
`1q2

0 ´rx2
2

˛

‹

‚

,

C2 “ rB2|AB2s “

¨

˚

˝

0 0

´x2
2
´x2

2

´

r´
2x2

Kpx1 q
´ 2x2 u2

¯

˛

‹

‚

C “ rB|ABs “

¨

˚

˚

˝

1 0 ´c`
2bx1
px2

1
`1q2 0

0 x2
2

´rx2
2

´x2
2

´

r´
2x2

Kpx1 q
´ 2x2 u2

¯

˛

‹

‹

‚

.
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Since the state variable xi is positive at any time, then rank(C1) = rank(C) = 2 while
rank(C2) = 1. Consequently, the system (1) is, in the short term, controllable by u1 while not
being locally controllable by u2 .

The non-controllability of (1) by u2 is due to the fact that the effect of this control is
limited only to the fish population, while the control u1 acts on both dynamics, directly on
the pollution level and via the limit growth rate K of the fish population. In spite of this
evidence of regulating the pollution in the river, it will be politically difficult to attribute
full responsibility to industries and farmers. Therefore, a cooperative strategy to yield
them for the preservation of the fish population is required.

In the next sections, we investigate the evolution of the fish population as the conse-
quence of unilateral/bilateral strategies adopted by the players. The unilateral strategies
yield from a non-cooperative situation while the bilateral strategies are led by a third entity
that decides the threshold of fish stock to be harvested, the tolerated level of pollution, and
the tax to be paid by the players.

4. Non-Cooperative Regime: Quest for Profit

In the non-cooperative situation, the polluters as well as the fishermen maximize their
payoff with the constraint of preserving a certain threshold amount of fish. It is worth
noticing that the no-cooperation regime is not as bad as the lack of a third regulation entity;
it is rather the failure to take into account the fishery actions’ when defining a strategy
for the polluters and vice versa. Let J1 and J2 be the payoffs of the polluters (industries +
farmers) and of the fishermen, respectively,

Jipx0
i
, uiq “

ż T

0

“

Uipt, uiptqq ´ Cipt, uiptqq
‰

dt` gipxipTqq. (12)

The goal of the polluter (resp. of the fisher) is to maximize the payoff Ji for i “ 1
(resp. for i “ 2). The control u1 represents the amount of pollutant deposited in the river.
This chemical residual from the industrial/agricultural process generates the utility U1 .
Moreover, it governs the production upstream, so the cost process C1 depends on u1 . The
control u2 is the rate of harvesting fish so that x2 u2 is the exact amount of harvested fish.
This yields the utility U2 , which might depend also on the consumer demand. The cost C2

is associated with the fish stock of x2 u2 . It depends on x2 in the sense that the more fish
there are in the river, the lower is the cost. It is therefore suitable to deal with the following
functions:

U1 “ α1 u1 , U2 “ α2 x2 u2 ,

C1 “ γ1

u2
1

2
, C2 “ γ2p1´ x2q

u2
2

2
.

The cost function of the polluter depends on the industrial/agricultural residual as
well as on the fish population in the sense that it covers also the environmentalist tax, and
the utility function U1 would take into account also the consumer demand for the fish.
Since x2 is normalized, the cost C2 declines when x2 grows, and it grows with u2 . With
the above choice of utilities and costs, the control system objective for each player is the
optimal ui that generates the maximum gain from the business.

4.1. Optimal Control System

We seek the optimal control pu1 , u2q by applying the maximum principle of Pontryagin—
see [17]—to the problems:

pP1q

$

&

%

v1ptq “ sup
u1 ptq

J1px0
1
, u1q,

subject to p1q
and pP2q

$

&

%

v2ptq “ sup
u2 ptq

J2px0
2
, u2q,

subject to p1q.
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The set of admissible control values for the pollution is A1 “
 

u1 : 0 ď u1 ď Tumax

(

,
where umax is the maximum amount of chemical residual generated, by all the polluters,
per unit of time. As the fish population is normalized 0 ď x2 ď 1, the control set A2 for the
fish population is given by A2 “ r0, 1s.

The pseudo-Hamiltonians associated with problems pP1q and pP2q are:

H1pt, x1 , q1 , u1q “ q1

˜

u1 ´ cx1 `
bx2

1

x2
1
` 1

¸

` α1 u1 ´ γ1

u2
1

2
, (13)

H2pt, x2 , q2 , u2q “ q2

ˆ

rx2

ˆ

1´
x2

Kpx1q

˙

´ x2
2
u2

˙

` α2 x2 u2 ´ γ2p1´ x2q
u2

2

2
, (14)

respectively, where the adjoint state pq1 , q2q of the state x runs as:

$

’

’

’

&

’

’

’

%

9q1ptq “ ´q1

˜

´c`
2bx1

px2
1
` 1q2

¸

,

9q2ptq “ ´q2

ˆ

r´
2rx2

Kpx1q
´ 2x2 u2

˙

´ α2 u2 ´ γ2

u2
2

2
,

(15)

to the terminal conditions q1pt “ Tq “ g11px1pTqq and q2pt “ Tq “ g12px2pTqq. The dynamic
optimization via the Pontryagin’s maximization evolves with the necessary and sufficient
optimality conditions:

BH1

Bu1

pt, x1 , q1 , u˚
1
q “ 0 and

BH2

Bu2

pt, x2 , q2 , u˚
2
q “ 0

which give us:

q1ptq “ γ1 u1ptq ´ α1 and ´ q2ptqx
2
2
ptq ` α2 x2ptq ´ γ2p1´ x2ptqqu2ptq “ 0. (16)

Therefore, the optimal control u “ pu1 , u2q dynamics is given by:
$

’

&

’

%

9u1ptq “ ´
pγ1 u1ptq ´ α1q

γ1

˜

´c`
2bx1ptq

px2
1
ptq ` 1q2

¸

,

γ2p1´ x2ptqqu2ptq “ ´q2ptqx
2
2
ptq ` α2 x2ptq,

(17)

with the terminal conditions γ1 u1pTq “ g11px1pTqq` α1 and γ2p1´ x2pTqqu2pTq “ α2 x2pTq´
g12px2pTqqx

2
2
pTq, and where the dynamics of the co-state q2 is given at (15). A differential

form of the control u2 can be obtained by replacing 9q2ptq and 9x2ptq in the derivative of the
second optimality condition at (16) given by:

γ2p1´ x2ptqq 9u2ptq ´ γ2 9x2ptqu2ptq “ ´ 9q2ptqx
2
2
ptq ´ 2qptqx2ptq 9x2ptq ` α2 9x2ptq.

It yields the following form of the optimal control dynamics for pollution and fishery
management:

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

γ1 9u1ptq “ ´pγ1 u1ptq ´ α1q

˜

´c`
2bx1ptq

px2
1
ptq ` 1q2

¸

,

9u2ptq “
2r´ x2

2
ptqu2ptq

2p1´ x2ptqq
u2ptq ´

rx2
2
ptq

Kpx1ptqqp1´ x2ptqq
pα2{γ2 ` u2ptqq,

γ1 u1pTq “ g11px1pTqq ` α1 ,

γ2p1´ x2pTqqu2pTq “ ´g12pTqx
2
2
pTq ` α2 x2pTq.

(18)
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One important observation from the optimality system (18) is that the scaling factors
γ1 for the pollution cost and α2 for the fishery utility should be non-zero. From (18), γ1 “ 0
is an asymptotic situation with an explosive aquatic pollution characterized by u1ptq “ `8.
Small values of γ1 indicate small costs to pay for the polluters: the farmers obtain the
fertilizers almost free of charge, and industrial companies are not constrained by any regu-
lation policy for their residual chemicals. A typical case promoting this scenario is when
political decisions are biased by economical objectives that apply important subventions to
obtain fertilizer for farmers or to boost the industrial production for companies, without
supporting and controlling the implementation. The scaling factor α2 “ 0 describes a
zero-utility for fishery activities and can happen when the demand is very low compared
to the harvested fish quantity. Note that the scenario α2 “ 0 differs from the rarity of fishes,
although both situations produce the same zero rewards for the fishermen.

4.2. Numerical Results

For simulation purposes, we consider a period of 15 months, during which, we
suppose, that the fish population, with the carrying capacity K affected by the pollution
level x1 as Kpx1q “ 1{px1 ` 1q, grows according to (18), i.e., the seasonality is neglected.
We look at the system of forward–backward equations at (1) and (18) as a boundary
value problem and we deploy a fourth-order Runge–Kutta method at each step of the
convergence in the shooting method to approximate the solution x1 , x2 , u1 and u2 . The
selected values of the parameters are b “ 0.1, the desintegration rate is c “ 0.04, the natural
growth rate of the fish population is r “ 0.25, the coefficients of the utility functions are
α1 “ 0.01, α2 “ 2, and the coefficients of the cost functions are γ1 “ γ2 “ 1.0.

The control u2 is highly sensitive to the initial value of the state variables compared to
the control u1 , see Figure 2. When the pollution starts at a high level, the fish population
decreases during the first year, before starting the monotonic growth. However, for low-
level pollution, the fish population initially grows before becoming damped by the players’
activities.

By combining one fixed initial condition state with several terminal conditions for
the control variables (see Figure 3), we observe that the pollution control variable u1 is a
consistently increasing function. Moreover, we see that the pollution state grows with the
terminal condition value of u1 for the first two years but decays after. Subsequently, the
fish population takes advantage of this and starts a slight growth.

The non-cooperative outcome, presented in the current Section 4, is a dynamic Nash
equilibrium between the fishing industry and the other industries involved in pollution.
From the perspective of global performance, this non-cooperative differs from the fully co-
operative. The idea here can help to cooperate and enforce cooperation between the parties.
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Figure 2. Dynamic of the controlled model with Kpx1q “
1

x1 `1 : one terminal condition for the control

pu1pTq, u2pTqq “ p0.3, 0.2q combined with different starting states px0
1
, x0

2
q.
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Figure 3. Dynamic of the controlled model with Kpx1q “
1

x1 `1 starting at px0
1
, x0

2
q “ p4.0, 0.4q

combined with several terminal conditions for the control pu1pTq, u2pTqq.

5. Cooperative Strategies and Biodiversity

Now, we examine the cooperative optimization of the players’ profits. Instead of
a direct bilateral collaboration between the players, the cooperation is coordinated by
a third entity such as state representations or international organizations. In practice,
countries and international regulations have designed different rules, including incentive
mechanisms, taxation, control, risk, and surveillance. Below, we examine one particular
disincentive mechanism for pollution control.
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5.1. The Optimal Strategy

To preserve the fish population, the political entity defines the global payoff and, as
strategy designer, is in charge of setting the values of the parameters in the players’ utility
and the cost functions. The global payoff function is given by:

Jpx0, ûq “
ż T

0

˜

α̂1 û1ptq ´ γ̂1

û2
1
ptq
2

` α̂2 x2ptqû2ptq ´ γ̂2p1´ x2ptqq
û2

2
ptq
2

¸

dt` gpxpTqq.

The utilities of the players are similar to the non-cooperative case ones but the cost
function changes particularly for the fishermen. Although the primary objective of the
cooperation is biodiversity preservation, the fishermen take substantial benefits from it.
This is because the efficient running of the fisheries’ activities is intrinsically associated
with the level of fish population. Later on, the profit for the polluters will be discussed. We
are then concerned with the optimal control problem:

pPq

$

&

%

wptq “ sup
ûptq

Jpx0, ûq,

subject to p1q.

The pseudo-Hamiltonian is:

Hpt, x, pq̂1 , q̂2q, ûq “ pq̂1 , q̂2q ¨ f px, ûq` α̂1 û1ptq´ γ̂1

û2
1
ptq
2

` α̂2 x2ptqû2ptq´ γ̂2p1´ x2ptqq
û2

2
ptq
2

.

A maximizer of H with respect to the control û “ pû1 , û2q provides an open-loop
optimal control û˚ associated with the adjoint state pq̂1 , q̂2q given by: 9̂q1ptq “ ´

BH
Bx1

and
9̂q2ptq “ ´

BH
Bx2

. We find that:

$

’

’

’

&

’

’

’

%

9̂q1ptq “ ´q̂1

˜

´c`
2bx1

px2
1
` 1q2

¸

´ rq̂2ptqx
2
2
ptq

K1px1q

K2px1q
,

9̂q2ptq “ ´q̂2

ˆ

r´
2rx2

Kpx1q
´ 2x2 û2

˙

´ α̂2 û2 ´ γ̂2

û2
2

2

(19)

running to the terminal condition:
`

q̂1pTq, q̂2pTq
˘

“

´

Bx1
gpxpTqq, Bx2

gpxpTqq
¯

.
The pseudo-Hamiltonian H is concave in the control variable û; the first-order opti-

mality condition is then sufficient as in the non-cooperative scenario. The optimal control
û “ pû1 , û2q of the cooperative strategy is given by BH

Bû1
“ 0 and BH

Bû2
“ 0, which are written

in detail as follows:

q̂1ptq ` α̂1 ´ γ̂1 û1ptq “ 0 and γ̂2p1´ x2ptqqû2ptq “ ´q̂2ptqx
2
2
ptq ` α̂2 x2ptq.

By using the co-state Equation (19) in the differential form of the above optimality
equations, we obtain:

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

γ̂1
9̂u1ptq “ ´pγ̂1 û1ptq ´ α̂1q

˜

´c`
2bx1ptq

px2
1
ptq ` 1q2

¸

`r
´

γ̂2p1´ x2ptqqû2ptq ´ α̂2 x2ptq
¯

x2
2
ptq

K1px1q

K2px1q
,

9̂u2ptq “
2r´ x2

2
ptqû2ptq

2p1´ x2ptqq
û2ptq ´

rx2
2
ptq

Kpx1ptqqp1´ x2ptqq
pα̂2{γ̂2 ` û2ptqq,

(20)
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which has to be equipped with the terminal conditions:

γ̂1 û1pTq “ Bx1
gpxpTqq ` α̂1 and γ̂2p1´ x2ptqqû2pTq “ α̂2 x2pTq ´ Bx2

gpxpTqqptqx2
2
pTq.

In Figure 4, we illustrate the optimal dynamics of the state and control variables
for a period of 10 months. Here, the shooting method convergence is hard to achieve;
therefore, an optimization algorithm is deployed in advance in order to approximate the
initial conditions uip0q associated with the terminal conditions uipTq. The main observation
is that the dynamics of the state and control variables behave quite similarly to the non-
cooperative regime. In the next section, we investigate the benefits of the cooperative
regime.
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Figure 4. Dynamics of the state and control variables in the cooperative scenario for the terminal
condition for the control pu1pTq, u2pTqq “ p0.3, 0.2q combined with different starting states px0

1
, x0

2
q.

5.2. Taxation: Incentive Design

In this section, we investigate sufficient beneficial conditions for the implementation
of the cooperative strategy. In order to achieve efficiency of the cooperative strategy, the
decision-makers set, implement, and control the policy for the players, such that their
rewards when cooperating are greater than the total sum of the value functions in the
non-cooperative scenario. From the dynamics programming approach of Bellman in
control theory, the value functions v1 and v2 obey the followings Hamilton–Jacobi–Bellman
equations:

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Bv1

Bt
´

˜

cx1 ´
bx2

1

x2
1
` 1

¸

Bv1

Bx1

`H1

ˆ

x1 , v1 ,
Bv1

Bx1

˙

“ 0,

Bv2

Bt
` rx2

ˆ

1´
x2

Kpx1q

˙

Bv2

Bx2

`H2

ˆ

x2 , v2 ,
Bv2

Bx2

˙

“ 0,

v1px1 , Tq “ g1px1q,

v2px2 , Tq “ g2px2q,

(21)
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where:

H1

ˆ

x1 , v1 ,
Bv1

Bx1

˙

“ max
u1PA1

#

u1

Bv1

Bx1

` α1 u1 ´ γ1

u2
1

2

+

,

H2

ˆ

x2 , v2 ,
Bv2

Bx2

˙

“ max
u2PA2

#

´x2
2
u2

Bv2

Bx2

` α2 x2 u2 ´ γ2p1´ x2q
u2

2

2

+

.

Indeed, the admissible control set Ai is a compact bounded subset of R, the component
i of the drift function at (2) is Lipschitz continuous, and the running cost Ui ´ Ci is bounded
and continuous with respect to the control variable ui for i “ 1, 2. Therefore, according to
the dynamics programming, the value function vi defined in (13) is a continuous viscosity
solution of:

Bvipt, xiq

Bt
` max

uiPAi
Hi

ˆ

x, vi ,
Bvi

Bxi

, ui

˙

“ 0, (22)

where Hi, for i “ 1, 2, is given in (13) and (14). Writing the pseudo-Hamiltonians H1 and
H1 as:

H1 “ ´

˜

cx1 ´
bx2

1

x2
1
` 1

¸

Bv1

Bx1

` max
u1PA1

#

u1

Bv1

Bx1

` α1 u1 ´ γ1

u2
1

2

+

,

H2 “ rx2

ˆ

1´
x2

Kpx1q

˙

Bv2

Bx2

` max
u2PA2

#

´x2
2
u2

Bv2

Bx2

` α2 x2 u2 ´ γ2p1´ x2q
u2

2

2

+

,

we obtain the HJB equations in (21).
In the same sequel, the aggregated value function w, in the cooperative policy, exists

(the admissible control set A “ A1 ˆA2 is a compact bounded subset of R2, the drift
function is Lipschitz continuous, and the aggregated running cost is continuous and
bounded) and is governed by the following HJB equation:

$

’

’

’

&

’

’

’

%

Bw
Bt
´

˜

cx1 ´
bx2

1

x2
1
` 1

¸

Bw
Bx1

` rx2

ˆ

1´
x2

Kpx1q

˙

Bw
Bx2

`Hpx, w,∇wq “ 0,

wpx, Tq “ gpxq,

(23)

where:

Hpx, w,∇wq “

max
ûPA

#

û1

Bw
Bx1

` α̂1 û1ptq ´ γ̂1

û2
1
ptq
2

´ x2
2
û2

Bw
Bx2

` α̂2 x2ptqû2ptq ´ γ̂2p1´ x2ptqq
û2

2
ptq
2

+

.

To show the efficiency of the cooperation, under the aegis of legal authority, in terms
of biodiversity preservation and without damping the players’ outcomes, one needs to
quantify the value functions v1 , v2 , and w and perform a comparison analysis. However, the
value functions are solutions of HJB partial differential equations that require the design of
a high-order numerical method with a strong flux limiter—see [18,19]—to approximate v1 ,
v2 , and w. Next, we state a sufficient condition in the running cost definition to implement
the cooperative regime that subsequently causes the players to accept the cooperative
regime as the best.
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Proposition 12. Given the same circumstances in the non-cooperative and cooperative scenarios
(same business growth rate, same level of pollution, and same approved fish stock to be harvested),
the sufficient conditions for the players to cooperate, without trying to cheat, are:

γi ą γ̂i for i “ 1, 2. (24)

Proof. Players should accept and align with the cooperative regime if, and only if, the
aggregated rewards are greater than the sum of what they earn, as business outcomes, in
the non-cooperative case, i.e., v1 ` v2 ď w. The business growth rate is given by the time

variation of the value function: in the non-cooperative scenario, it is given by
Bvi
Bt , while in

the cooperative regime, we have the global growth rate Bw
Bt . The same business growth rate

in both regimes means that Bw
Bt “

Bv1
Bt `

Bv2
Bt . Then, it remains to compare H1 `H2 and H

with the same level of pollution and same fish stock to be harvested.
The utility function of the fishermen α2 x2 u2 in the non-cooperative regime and α̂2 x2 û2

in the cooperation scenario should remain the same to avoid rough variations of the fish
price that amplify the life cost for the population. Similarly, the gross gain of the polluters is
basically given by the level of the residual chemicals and might depend also on the market
state, but not on whether there is cooperation or not. This yields the condition α1 “ α̂1 and
the analysis is reduced to compare:

max
u1PA1

#

u1

Bv1

Bx1

´ γ1

u2
1

2

+

` max
u2PA2

#

´x2
2
u2

Bv2

Bx2

´ γ2p1´ x2q
u2

2

2

+

and

max
ûPA

#

û1

Bw
Bx1

´ γ̂1

û2
1

2
´ x2

2
û2

Bw
Bx2

´ γ̂2p1´ x2q
û2

2

2

+

.

However, the polluters expect better business growth with regard to the amount of

generated residual chemicals when cooperating, i.e.,
Bv1
Bx1

ď Bw
Bx1

. Similarly, fishermen await
a better growth of their business from the aggregated value function in terms of the fish

stock x2 . This means
Bv2
Bx2

ď Bw
Bx2

. Therefore, we find that the sufficient condition v1 ` v2 ď w
can be formulated as follows:

max
u1PA1

#

´γ1

u2
1

2

+

` max
u2PA2

#

´γ2p1´ x2q
u2

2

2

+

ď max
ûPA

#

´γ̂1

û2
1

2
´ γ̂2p1´ x2q

û2
2

2

+

. (25)

It is obvious that (25) holds for´γ1 ă ´γ̂1 and´γ2 ă ´γ̂2, which means that γ1 ą γ̂1
and γ2 ą γ̂2.

The plotted running costs in Figure 5 are obtained by taking the arithmetic mean over
10 runs for each case. Our comparison analysis matches well with the theoretical statement,
which claims that (24) is a sufficient but not a necessary condition to align all the players
with the cooperative policy. In fact, we can see clearly that the plot γi ą γ̂i for i “ 1, 2 gives
a consistent advantage to the cooperation.
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Figure 5. Comparison of the aggregated running cost in the cooperative regime (blue line) and
the sum of the two running costs in the non-cooperative regime (red dashed line) starting at
(x0

1
“ 0.5, x0

2
“ 0.2). Pollution control and fish population control after T “ 10 months are u1pTq “ 0.7

and u2pTq “ 0.9, respectively, and α2 “ 2.01 and α̂2 “ 1.0.

6. Conclusions

We introduced a system of differential equations describing the impact of the pollution
from industrial and agricultural companies in the fish population in watercourses subject to
fishery activities. The stability analysis highlights the necessity of controlling the pollution
input to preserve the fish population and, subsequently, the fishery industries. The non-
cooperative optimal control is not the worse-case scenario for fishermen as both classes
of players incorporate the fish preservation into the payoff definition. However, the
cooperative strategy under the authority of a third entity seems to be more advantageous for
fish preservation. Implementing an incentive taxation approach for setting the parameters’
values helps the third entity as it means that the players should not try to cheat.

One central aspect missed in this work is as follows: normally, it is not the pollution
caused by an individual farmer or one single industry that harms people’s health but it is
the aggregate effect of all polluting entities. This is the starting point of our future work
to introduce a mean-field approach [20,21] with the distribution of polluters and also to
quantify the pollution generated by fishermen.
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