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Abstract: In hedonic games, coalitions are created as a result of the strategic interaction of inde-
pendent players. In particular, in additively separable hedonic games, every player has valuations
for all other ones, and the utility for belonging to a coalition is given by the sum of the valuations
for all other players belonging to it. So far, non-cooperative hedonic games have been considered
in the literature only with respect to totally selfish players. Starting from the fundamental class of
additively separable hedonic games, we define and study a new model in which, given a social
graph, players also care about the happiness of their friends: we call this class of games social context
additively separable hedonic games (SCASHGs). We focus on the fundamental stability notion of Nash
equilibrium, and study the existence, convergence and performance of stable outcomes (with respect
to the classical notions of price of anarchy and price of stability) in SCASHGs. In particular, we show
that SCASHGs are potential games, and therefore Nash equilibria always exist and can be reached
after a sequence of Nash moves of the players. Finally, we provide tight or asymptotically tight
bounds on the price of anarchy and the price of stability of SCASHGs.

Keywords: coalition formation; hedonic games; nash equilibrium; price of anarchy; price of stability;
social context

1. Introduction

In many economic, social and political situations, individuals carry out activities in
groups rather than alone and on their own. In these scenarios, understanding the happiness
of each member of the group becomes of crucial importance. As examples, the utility of
an individual in a group sharing a resource depends both on the consumption level of the
resource and on the identity of the members in the group; similarly, the utility for a party
belonging to a political coalition depends both on the party trait and on the identity of its
members. Moreover, another important issue is that of investigating the dynamics that
regulates coalition formation.

Dréze and Greenberg [1] introduced hedonic games, in which players have preferences
over the set of all possible player coalitions. In particular, the utility of a player only
depends on the composition of the coalition (or group) she belongs to. Hedonic games
constitute a framework for formally studying the stability and the evolution of the process
of forming player coalitions. Given that they model natural behavioral dynamics of real-life
situations, this class of games has received great interest in the literature: in economic,
social and political environments, in fact, individuals perform activities in groups rather
than by themselves. Consider, for instance, the following scenarios: a company has
to assign its employees to different work teams so that they can profitably collaborate;
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in a social network, users want to form groups in which they can speak of and share
common interests.

Additively separable hedonic games constitute a natural and succinctly representable
class of hedonic games. In these games, each player has a value for any other player, and
the utility of a coalition to a particular player is simply the sum of the values she assigns
to the members of her coalition. Additive separability satisfies a number of desirable
axiomatic properties [2] and are the non-transferable utility generalization of graph games
studied by Deng and Papadimitriou [3]. While the standard model of additively separable
hedonic games assumes that players are totally selfish, in this paper we are interested in
analyzing the case in which players take into account also the happiness of their friends,
therefore adding to the original model a sort of altruism. Coming back to the above
described scenarios, it is likely that, among the corporate employees, several friendship
relations exist, not necessarily between people able to profitably collaborate together.
Moreover, social network users often include people coming from the same family; even if
they are of different ages and therefore are expected to gladly belong to different groups,
they are also interested in the happiness of their relatives. We call these games Social Context
Additively Separable Hedonic Games (SCASHGs) and we believe that they are able to model
in a more accurate way the phenomenon of coalition formation in many realistic scenarios.
In fact, in SCASHGs the behavior of every player also depends on the happiness of her
friends, as it is in the above described scenarios.

In SCASHGs, valuations are additive and each player i has a valuation vij for any other
player j, but there is a crucial difference with respect to the classical additively separable
hedonic games: while in the classical model the utility of a coalition to a particular player
is simply given by the sum of the valuations she assigns to the members of her coalition,
in SCASHGs there is another additive term that contributes to form the utility of a player,
that is equal to the sum of the valuations her friends assign to the members of their own
coalitions (this contribution is multiplied by a given parameter α ∈ [0, 1]). In particular,
for α = 0, SCASHGs are equivalent to the classical additively separable hedonic games
(i.e., a totally selfish setting is considered), while for α = 1 a fully altruistic setting can
be modeled.

In order to model the friendship relations, a SCASHG is also defined by a graph
representing an underlying social network: nodes are players and an edge connecting
two players expresses friendship between them. Arguably, as a first step in the study of
SCASHGs, it is natural to consider symmetric friendship relations and therefore, in this
paper, we focus on undirected graphs.

In Figure 1, for example, we can see that the utility of player 5 is equal to v1,5 + v2,5 +
α(v1,5 + v2,5 + v3,4) = 2 + 3 + α(2 + 3 + 1), where 2 + 3 is the sum of valuations of the
players in her coalition and α(2 + 3 + 1) is the sum of valuations her friends 1, 2 and 3
assign to the members of their own coalitions, multiplied by α.
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(1,3) 1
(2,5) 3
(1,5) 2
(3,4) 1

Figure 1. A social network G, a coalition structure C and the non-null valuations vi,j.

Our aim is to study the existence and performance of natural stable outcomes for
SCASHGs. We will focus on Nash stable outcomes, i.e., outcomes in which no player can
improve her utility by unilaterally changing her own coalition. In particular, we evaluate
the performance of Nash outcomes for SCASHGs by means of the widely used notions
of price of anarchy and price of stability: the former is defined as the ratio between the
social optimum value and the social value of the worst stable outcome, while the latter
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is defined as the ratio between the social optimum value and the social value of the best
stable outcome.

1.1. Our Results

First of all, we provide an exact potential function for SCASHGs, thus proving that
these games always possess a pure Nash equilibrium and also that the convergence to Nash
equilibria is guaranteed. In order to evaluate the performance of SCASHGs, we consider
two social welfare functions. The first social function, SW, is given by the summation, for
each player, of the values she assigns to the members of her coalition, while the second
social function, denoted by SW, is the summation of the players’ utilities (taking into
account, for any player, also the contribution due to the valuations of her friends multiplied
by α). In fact, we evaluate, for both of them, the performance of the Nash outcomes by
means of the notions of price of anarchy and price of stability (PoA and PoA denote the
price of anarchy with respect to SW and SW, respectively; analogously PoS and PoS denote
the price of stability with respect to SW and SW, respectively).

In presence of negative valuations, both PoS and PoS (and therefore also PoA and
PoA) can be unbounded. Furthermore, in some cases we are able to provide instances in
which the social value of any equilibrium C is negative while the optimal solution lead to a
positive outcome.

We subsequently turn our attention to the case of non-negative valuations and prove
that the price of anarchy is Θ(n), while the price of stability is 1.

1.2. Related Work

Hedonic games have been broadly studied in the literature. They have been first
considered by Dréze and Greenberg [1], who analyze them under a cooperative perspec-
tive. Bogomolnaia and Jackson [4] and Banerjee et al. [5] then have defined hedonic
games in their present form as a simple but very versatile model of coalition formation.
Feldman et al. [6] investigate some interesting subclasses of hedonic games from a non-
cooperative point of view, by characterizing Nash equilibria and providing upper and
lower bounds on both the price of stability and the price of anarchy. Peters and Elkind
[7] consider several classes of hedonic games and identify simple conditions on expressiv-
ity that are sufficient for the problem of checking whether a given game admits a stable
outcome to be computationally hard.

Additively separable hedonic games have been first considered by Bogomolnaia and
Jackson [4] who show that Nash stable outcomes are not guaranteed to exist for games
with asymmetric valuations. However, for symmetric valuations, the existence of a Nash
stable outcome is guaranteed by potential function argument [4]. Ballester [8] and Sung and
Dimitrov [9] show that the problem of checking whether an instance admit a Nash stable
outcome is NP-complete and NP-complete in the strong sense, respectively. Olsen [10] proves
that the problem of deciding whether a non-trivial Nash stable coalition exists in additively
separable hedonic games with non-negative and symmetric preferences is NP-complete.
Aziz et al. [11] show that checking the existence of a core stable outcome is NP-hard even for
symmetric valuations. Concerning the performance of Nash stable outcomes in additively
separable hedonic games with symmetric valuations, it is easy to check that the price of
anarchy is unbounded [12] and that the price of stability is 1 since an optimal outcome is
always Nash stable (it can be easily proved by using the potential function).

Fractional hedonic games are close to additively separable ones. The difference is
that the utility of each player is divided by the size of her coalition. They have been first
considered by Aziz et al. [13] (see also [14]), who prove that the core can be empty for
asymmetric valuations and that it is not empty for some special cases. Brandl et al. [15]
also study the existence of core as well as individual stability in fractional hedonic games.
Bilò et al. [16] consider Nash stable outcomes for fractional hedonic games and study their
existence and complexity. Kaklamanis et al. [17] also consider Nash stable outcomes and
provide some improved results on the price of stability. Carosi et al. [18] consider local core
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stability in fractional hedonic games with binary symmetric valuations and show that any
local core dynamics converges, which implies that a local core stable coalition structure
always exists. Finally, Aziz et al. [19] consider the computational complexity of computing
welfare maximizing partitions (not necessarily Nash stable) for fractional hedonic games
played on undirected graphs.

Modified fractional hedonic games are very similar to fractional hedonic ones. The differ-
ence is that the utility of each player is averaged over all the other members of that coalition
(i.e., excluding herself). Olsen [20] is the first to consider these games and investigates com-
putational issues about Nash stable outcomes. Monaco et al. [21,22] completely characterize
the existence of fundamental stable outcomes and show tight results on their performance.
Elkind et al. [23] study the set of Pareto optimal outcomes for modified fractional hedonic
games with symmetric valuations.

From a different perspective, strategy proof mechanisms for additively separable
hedonic and fractional hedonic games have been proposed in [24,25]. Moreover, Flammini
et al. [26] consider the problem of maximizing the social welfare in additively separable
and fractional hedonic games in the online setting. Hedonic games are being widely
investigated also under different utility definitions: For instance, in [27,28], coalition
formation games, in which player utilities are proportional to their harmonic centralities in
the respective coalitions, are considered.

In our paper, we deal with selfish players having also a certain degree of altruism.
To this respect, our work is related to social context games. These games have been
introduced in [29] and are defined by an underlying game in strategic form, and a social
context consisting of an undirected graph and an aggregation function. In [29], the authors
consider resource selection games as the underlying game and they study the existence
of pure strategy Nash equilibrium. Building on this model, Bilò et al. [30] investigate
social context games in which the underlying games are linear congestion games and
Shapley cost sharing games, while the aggregation functions are min, max and sum.
Moreover, Anagnostopoulos et al. [31] study the effects of the altruistic behavior of players
showing that the price of anarchy may increase as the players become more altruistic.
They show that this increase is modest for congestion games and min-sum scheduling
games, whereas it might be drastic for generalized second price auctions. The interests on
altruistic players have been also modeled and studied by Hoefer and Skopalik [32]: they
focus on the existence and complexity of pure Nash equilibria with altruistic players in
atomic congestion games. Chen et al. [33] study the inefficiency of equilibria for several
classes of games such as cost-sharing games, utility games and linear congestion games.
Salehi-Abari and Boutilier [34] study social choice with empathetic preferences and their
local empathetic model is related to the model presented in [35]. Finally, Brânzei and
Larson [36] study social distance games. In these games a player’s opinion on her friends
(players of distance one) has the highest weight while her opinion on players farther away
counts less.

To the best of our knowledge, few papers deal with the notion of altruism in hedonic
games. Nguyen et al. [35] define altruistic hedonic games where the satisfaction of players’
friends is taken into account according to three degrees of altruism, from being selfish
first, over aggregating opinions of a player and her friends equally, to altruistically letting
one’s friends decide first. They study both the axiomatic properties of these games and the
computational complexity of problems related to common stability concepts. In [37], Umar
and Mesbah model the problem of joint coalition formation and bandwidth allocation in
ad hoc radio networks made of selfish/altruistic nodes as a hedonic coalition formation
game with non-transferable utility. The authors study the computational complexity and
convergence properties of the proposed hedonic algorithm under selfish and altruistic
preferences, and present means to guarantee Nash stability.

Finally, it is also worth mentioning some related literature on network formation
games, in which interestingly the considered games are shown to be potential games as
in our paper: in [38], Badev deals with a setting in which the utility of the players is
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influenced by the friendship relations and vice-versa, while Kinateder and Merlino [39]
study a network creation game in which benefits are shared among neighbors. Mele [40]
proposes an empirical model of social network formation, combining strategic and random
connections among players. Bourlès et al. [41] provide an interesting analysis of altruism
in networks: agents are embedded in a fixed network and care about the well-being of
their network neighbors, i.e., they may provide financial support to their poorer friends.

1.3. Paper Organization

The paper is organized as follows. In Section 2 we formally define social context
additively separable hedonic games. The technical contributions of the paper are then
presented in Sections 3–5 which address the existence of Nash outcomes, the results on the
price of anarchy and those on the price of stability, respectively. Finally, in Section 6 we list
some interesting open problems.

2. Model

For an integer k > 0, denote by [k] the set {1, . . . , k}.
We model Social Context Additively Separable Hedonic Games (SCASHGs) by means

of a valuation function v, an undirected graph G = (N, E) and a given parameter α ∈ [0, 1].
We denote with n = |N| the number of nodes of G and with E the set of edges between
the nodes, which represent the friendship relation. v : N × N → R is the symmetric
valuation function. We do not require any dependence between v and H, thus allowing for
two friends to have a mutual negative valuation (as it is in the scenario described in the
Introduction, in which, among the corporate employees, several friendship relations may
exist, not necessarily between people able to profitably collaborate together). Nevertheless,
all obtained results also hold for the special notable case in which the valuations between
friends have to be positive: all positive results clearly hold also in this specific setting, while
all remaining ones (given in Proposition 1, Theorem 2, Theorem 5 and Theorem 6) exploit
constructions in which negative valuations exist only between players not connected by an
edge in graph G. For the sake of convenience, we adopt the notation (i, j) and vi,j to denote
the pair {i, j} ∈ N × N and its valuation v({i, j}), respectively.

Given a symmetric valuation function v, an undirected graph G = (N, E) and a value
for α, the Social Context Additively Separable Hedonic Game induced by G, v and α, denoted
as G(G, v, α), is the game in which each node i ∈ N is associated with a player. We assume
that players are numbered from 1 to n and, for every i ∈ [n], each player chooses to join
a certain coalition among n candidate ones: the strategy σi of player i is an integer j ∈ [n],
meaning that player i is selecting candidate coalition Cj.

A strategy profile (σ1, . . . , σn) directly induces an outcome C = {C1, C2, . . . , Cn}, in
which, for any j ∈ [n], Cj = {i|σi = j}. In turn, an outcome C = {C1, C2, . . . , Cn} naturally
induces a coalition structure, i.e., a partition of the set of players into k ≤ n coalitions
Ch1 , . . . , Chk

such that, for any j ∈ [k], Chj
6= ∅ (i.e., empty candidate coalitions are excluded

from the partition),
⋃

j∈[k] Chj
= N and Chi

∩ Chj
= ∅ for any i, j ∈ [k] with i 6= j. For the

sake of brevity, we denote by C also the coalition structure induced by C. If i ∈ Cj, we say
that player i is a member of the coalition Cj. We denote by C(i) the coalition in C of which
player i is a member. In an outcome C, the utility of player i is defined as

ui(C) = ui(C) + α · ∑
(i,j)∈E

uj(C),

where, for every i ∈ [n], ui(C) = ∑j∈C(i) vi,j.
Each player chooses the coalition she belongs to with the aim of maximizing her utility.

We denote by (C, i, j), the new coalition structure obtained from C by moving player i from
C(i) to Cj; formally, (C, i, j) = C \ {C(i), Cj} ∪ {C(i) \ {i}, Cj ∪ {i}}. A player deviates if she
changes the coalition she belongs to. Given an outcome C, an improving move (or simply
a move) for player i is a deviation to any coalition Cj that strictly increases her utility, i.e.,
ui((C, i, j)) > ui(C). Moreover, player i performs a best-response in coalition structure C by
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choosing a coalition providing her the highest possible utility (notice that a best-response is
also a move when there exists a coalition Cj such that ui((C, i, j)) > ui(C). A player is stable
if she cannot perform a move. An outcome is (pure) Nash stable (or a Nash equilibrium) if every
player is stable. An improving dynamics, or simply a dynamics, is a sequence of improving
moves, while a best-response dynamics is a sequence of best-responses. A game has the finite
improvement path property if it does not admit an improvement dynamics of infinite length.
Clearly, a game possessing the finite improvement path property always admits a Nash
stable outcome. We denote with N(G(G, v, α)) the set of Nash stable outcomes of G(G, v, α).

The social welfare of a coalition structure C is the summation of the players’ utilities,
i.e., SW(C) = ∑i∈N ui(C).

We define also a second social welfare function SW(C) = ∑i∈N ui(C) which is given
by the summation, for each player, of the valuations she assigns to the members of her
coalition (without considering her friends’ utilities).

Given a game G(G, v, α), an optimum coalition structure C∗(G(G, v, α)) (respectively
C∗(G(G, v, α))) is one that maximizes the social welfare SW (respectively SW) of G(G, v, α).
The price of anarchy of a social context additively separable hedonic game G(G, v, α) is
defined as the worst-case ratio between the social welfare of a socially optimum outcome
and that of a Nash equilibrium. Formally,

PoA(G(G, v, α)) = max
C∈N(G(G,v,α))

SW(C∗(G(G, v, α)))

SW(C) ,

and

PoA(G(G, v, α)) = max
C∈N(G(G,v,α))

SW(C∗(G(G, v, α)))

SW(C)
.

Analogously, the price of stability of G(G, v, α) is defined as the best-case ratio between
the social welfare of a socially optimum outcome and that of a Nash equilibrium. Formally,

PoS(G(G, v, α)) = min
C∈N(G(G,v,α))

SW(C∗(G(G, v, α)))

SW(C) ,

and

PoS(G(G, v, α)) = min
C∈N(G(G,v,α))

SW(C∗(G(G, v, α)))

SW(C)
.

3. Nash Stable Outcomes

In this section we consider Nash stable outcomes.
We first show that the social context radically modifies the notion of stability of

additively separable hedonic games. To this aim, consider the instance whose graph G and
valuations are depicted in Figure 2. On the one hand, the coalition structure {1, 2}, {3}
is Nash stable when α = 0 (i.e., without considering social effects): the utility of players
1, 2, 3 are 3, 3, 0, respectively. Player 1 is earning as much as possible, and therefore has no
incentive to deviate; player 2 would obtain a utility of 2 by joining the coalition of player 3,
while it would obtain a utility of 0 by going alone; player 3 would obtain a utility of −6 by
joining the coalition of players 1 and 2. On the other hand, the same coalition structure
is not Nash stable when α = 1, i.e., when considering the effect of social context. In fact,
in this case the utility of player 2 is again 3 + 1 · 0 = 3, while she would obtain a utility of
2 + 1 · 2 = 4 by joining the same coalition of player 3. Interestingly, it is also possible to
build an instance in which the converse does not hold: Consider the instance exploited
in the proof of Theorem 2. Here, the grand coalition is Nash stable and is such that every
player is getting a negative utility. If we do not consider social context effects on the player
utilities, the grand coalition would not be Nash stable because every player would clearly
prefer to form a new coalition alone, so getting utility 0.
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1

3

(i, j) vi,j

(1,3) −8
(1,2) 3
(2,3) 2

Figure 2. Graph G and valuations vi,j.

We now show that a stable outcome is guaranteed to exist and also that the fi-
nite improvement path property holds for SCASHGs, because these games admit the
potential function.

Φ(C) = 1
2 ∑

i∈N
ûi(C),

with ûi(C) = ∑j∈C(i) v′i,j, where, for each pair of players (i, j), we define v′i,j = vi,j · (1 + α)

if (i, j) ∈ E and v′i,j = vi,j if (i, j) 6∈ E.
Thus, we can rewrite the potential function Φ(C) as

Φ(C) = ∑
j∈C(i)

vi,j + α · ∑
j∈C(i),(i,j)∈E

vi,j.

In the following theorem, we prove that Φ(C) is an exact potential function for
our game.

Theorem 1. Φ is a potential function for SCASHGs.

Proof. Given two stable outcomes C and C ′ where C ′ is obtained from C after a player i
performs a move, we prove that the following holds:

Φ(C ′)−Φ(C) = ui(C ′)− ui(C). (1)

For the left hand side of Equation (1), by applying the definition of Φ, we obtain that:

Φ(C ′)−Φ(C) = 1
2

(
∑
j∈N

ûj(C ′)− ∑
j∈N

ûj(C)
)

=
1
2 ∑

j∈N

(
ûj(C ′)− ûj(C)

)
=

1
2
· 2

 ∑
j∈C ′(i)

v′i,j − ∑
j∈C(i)

v′i,j


= ∑

j∈C ′(i)
vi,j + α ∑

j∈C ′(i),(i,j)∈E
vi,j −∑

j∈C(i)
vi,j − α ∑

j∈C(i),(i,j)∈E
vi,j.

In the right hand side we obtain that:

ui(C ′)− ui(C) = ūi(C ′) + α ∑
(i,j)∈E

ūj(C ′)− ūi(C)− α ∑
(i,j)∈E

ūj(C)

= ūi(C ′)− ūi(C) + α ∑
(i,j)∈E

(
ūj(C ′)− ūj(C)

)
= ∑

j∈C ′(i)
vi,j + α ∑

j∈C ′(i),(i,j)∈E
vi,j −∑

j∈C(i)
vi,j − α ∑

j∈C(i),(i,j)∈E
vi,j.

Hence, the proof follows.

4. Price of Anarchy

In this section we evaluate the performance of Nash stable outcomes with respect to
the notion of price of anarchy.
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We first show that the price of anarchy is unbounded for general valuations. It is
already known that the price of anarchy of additively separable hedonic games is un-
bounded [12]. The following proposition is an easy extension to our setting with social
context. The following result holds for both the social welfare functions SW and SW.

Proposition 1. For any α ∈ [0, 1], there exists a function v (also admitting negative valuations),
such that PoA(G(G, v, α)) and PoA(G(G, v, α)) are unbounded, where G = (N, ∅).

Proof. Let vi,j be the players’ valuations as shown in Figure 3, with M� ε > 0. As E = ∅,
we can easily note that the values of the two social welfare functions SW and SW are equal
for every coalition structure.

On the one hand, there exists outcome C ′ = {{1}, {2, 3}, {4}} with SW(C ′) =
SW(C ′) = 2 and therefore SW(C∗) ≥ 2 and SW(C∗) ≥ 2. On the other hand, it can
be easily verified that outcome C = {{1, 2}, {3, 4}} with SW(C) = SW(C) = 4ε is a Nash
equilibrium. Therefore, PoA(G(G, v, α)) ≥ 1

2ε and PoA(G(G, v, α)) ≥ 1
2ε , thus proving the

claim for ε tending to 0.

1 2 3 4
(i, j) vi,j

(1,2), (3,4) ε
(1,3), (2,4) −M

(2,3) 1

Figure 3. Graph G and valuations vi,j.

For more involved social graphs, we are also able to show a stronger result, holding
even for the case of the price of stability (analyzed in Section 5): by Theorem 5, there exists a
SCASHG in which every Nash equilibrium C is such that SW(C) is negative, while SW(C∗)
is positive. We now prove a similar result for the social welfare function SW.

Theorem 2. For any α ∈ (0, 1], there exists a graph G and a function v (also admitting negative
valuations) inducing G(G, v, α), such that SW(C∗) > 0 while SW(C) < 0 for a Nash stable
outcome C of G(G, v, α).

Proof. Let G be the social graph depicted in Figure 4 and let vi,j be the valuations as
represented in Figure 4, with ε such that 0 < ε < 2α.

1

3

6

5

2 4

(i, j) vi,j

(1,2), (6, 4) 1
(1,3), (5, 6) −1
(2,3), (4, 5) 1

(2,4) −2− ε

Figure 4. Graph G and valuations vi,j.

On the one hand, coalition structure C ′ = {{1, 2, 3}, {4, 5, 6}} is such that SW(C ′) = 4,
and therefore SW(C∗) ≥ 4.

On the other hand, a Nash equilibrium C is the grand coalition, in which all players
are in the same coalition and, as can be easily checked, SW(C) = −2ε. Indeed, players
1, 3, 5 and 6 have all the same utility u1(C) = −αε when they are in the grand coalition
while, if any of them deviates, the best she can do is forming a new coalition alone, in
which she would have utility −α(1 + ε) < −αε. Moreover, players 2 and 4 have the same
utility u2(C) = −ε and if any of them deviates forming another coalition, her utility would
become −2α < −ε for ε < 2α.

The above results can be interpreted as follows: having negative valuations towards
some players can preclude the possibility to form a group with other players for which



Games 2021, 12, 71 9 of 14

the valuation is positive, when the former and the latter are already together in the same
group. It is worth noticing that such a situation also arises in the classical model of
additively separable hedonic games (notice that in Proposition 1 the social graph is without
edges). This phenomenon shows how, in social and economic scenarios, players having
difficulties to collaborate with other ones can decrease the global quality of stable outcomes.
Given these negative results, in what follows we focus on the case in which the valuation
function does not assume negative values, i.e., vi,j ≥ 0 for any i, j ∈ [n] with i 6= j.

In order to prove the upper bounds to PoA and PoA, we need some additional notation
and definitions. Given any outcome C, let δi(C) be the sum of the valuations of player i
toward her friends belonging to C(i), i.e δi(C) = ∑j∈C(i):(i,j)∈E vi,j, and, analogously, let
δ̄i(C) = ∑j∈C(i):(i,j) 6∈E vi,j be the sum of the valuations of player i toward players belonging
to C(i) and not being her friends. Finally, we denote by δmax

i the maximum valuation of
player i, i.e. δmax

i = maxj∈N vi,j.
The following theorems provide asymptotically matching upper and lower bounds to

PoA and PoA.

Theorem 3. For any α ∈ [0, 1], any graph G and any function v not admitting negative valuations,
PoA(G(G, v, α)) ≤ (n− 1)(1 + α) and PoA(G(G, v, α)) ≤ (n− 1)(1 + α).

Proof. Given a Nash stable outcome C, for every player i ∈ [n] it holds that

δi(C) + δ̄i(C) + αδi(C) ≥ δmax
i . (2)

To prove inequality 2, recall that ui(C) = ui(C) + α ·∑(i,j)∈E uj(C), where, for every i ∈ [n],
ui(C) = ∑j∈C(i) vi,j. By the definitions of δi(C) and δ̄i(C), ui(C) = δi(C) + δ̄i(C). Moreover,
let βi(C) = ∑(i,j)∈E uj(C)− δi(C): it follows that ui(C) = δi(C) + δ̄i(C) + α · (βi(C) + δi(C)).
Let j be the player such that vi,j = δmax

i . If j belongs in C to the same coalition of i,
inequality 2 trivially holds. Otherwise, notice that if player i changes her strategy by
joining the coalition containing player j, inducing in this way a new coalition structure
C ′, we obtain ui(C ′) ≥ δmax

i + αβi(C), because the contributions βi(C) of the friends of i
not connected to player i in C(i) remain unchanged in C ′. Therefore, if δmax

i + αβi(C) >
δi(C) + δ̄i(C) + α · (βi(C) + δi(C)) player i would increase her utility by changing her
strategy: a contradiction to the fact that C is Nash stable.

Moreover, it trivially holds that in all coalition structures, including the optimal
outcomes C∗ and C∗, ui is at most (n− 1) · δmax

i . Thus, ui(C∗) ≤ (n− 1) · δmax
i and ui(C∗) ≤

(n− 1) · δmax
i .

Therefore,

SW(C∗)
SW(C)

≤
(n− 1) ·∑i∈N δmax

i
∑i∈N ui(C)

.

Since, by inequality 2, ui(C) = δi(C) + δ̄i(C) ≥
δmax

i
(1+α)

, we obtain that

SW(C∗)
SW(C)

≤
(n− 1) ·∑i∈N δmax

i
∑i∈N δmax

i
1+α

= (n− 1)(1 + α).
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Analogously, for the social welfare function SW, since ui(C∗) ≤ (n− 1) · δmax
i and

ui(C) ≥
δmax

i
(1+α)

, by recalling the definition of ui, we obtain that

SW(C∗)
SW(C) ≤

∑i∈N
[
(n− 1)δmax

i + α ∑j∈N:(i,j)∈E(n− 1)δmax
j
]

∑i∈N
[
δmax

i + α ∑j∈N:(i,j)∈E δmax
j
] 1

1+α

=
(n− 1)∑i∈N

[
δmax

i + α ∑j∈N:(i,j)∈E δmax
j
]

∑i∈N
[
δmax

i + α ∑j∈N:(i,j)∈E δmax
j
] 1

1+α

≤ (n− 1)(1 + α),

thus proving the claim.

We now focus on the lower bound on PoA and PoA.

Theorem 4. For every even positive integer n and every α ∈ [0, 1], there exists a graph G with n
vertices and a valuation function v (not admitting negative valuations) such that PoA(G(G, v, α)) ≥
(1 + α) n

2 − α and PoA(G(G, v, α)) ≥ (1 + α) n
2 − α.

Proof. Consider the bipartite graph G = (A ∪ B, E) with n vertices depicted in Figure 5
(note that A = {1, 3, . . . , n− 1} and B = {2, 4, . . . , n}), and let v be the valuation function
such that

• vi,j = vj,i =
1

1+α for every (i, j) ∈ E;
• vi,j = vj,i = 1 for all pairs (i, j) 6∈ E such that i ∈ A and j ∈ B;
• vi,j = 0 for all remaining pairs.

On the one hand, as can be easily checked, the grand coalition Co is such that, for every
i ∈ [n], ui(Co) = n

2 − 1 + 1
1+α . Therefore, the optimal outcome C∗ is such that SW(C∗) ≥

n
( n

2 − 1 + 1
1+α

)
and the optimal outcome C∗ is such that SW(C∗) ≥ n(1 + α)

( n
2 − 1 + 1

1+α

)
.

On the other hand, the coalition structure C in which there are n
2 non-empty coalitions

{i, i+ 1} for i = 1, 3, . . . , n− 1 is a Nash stable outcome; in fact, for every i ∈ A, ui(C) = 1
1+α

and ui(C) = 1
1+α + α · 1

1+α = 1, while a deviation of player i to another non-empty
candidate coalition would induce a new coalition structure C ′ such that ui(C ′) = 1+ α · 0 =
1, because for player i + 1 connected in G to player i it holds ui+1(C ′) = 0. Moreover,
a deviation of player i to an empty candidate coalition would induce a new coalition
structure C ′′ such that ui(C ′′) = 0, again because for player i + 1 connected in G to player i
it holds ui+1(C ′′) = 0. A completely symmetric argument holds for every player i ∈ B.

1

3

...

n− 3

n− 1

2

4

...

n− 2

n

BA

Figure 5. The bipartite graph G.

It follows that

SW(C∗)
SW(C)

≥
n
( n

2 − 1 + 1
1+α

)
n
( 1

1+α

) = (1 + α)
n
2
− α.
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Analogously, for the social welfare function SW, it holds that

SW(C∗)
SW(C) ≥

n
( n

2 − 1 + 1
1+α

)
(1 + α)

n
(

1
1+α + α

1+α

) = (1 + α)
n
2
− α.

5. Price of Stability

In this section we present our results on the price of stability. First of all, notice that, if
all valuations are non-negative, with respect to both social welfare functions SW and SW,
the grand coalition is at the same time an optimal solution and a Nash stable outcome, thus
implying that PoS = PoS = 1.

Therefore, in the following we deal with the case of general valuations, i.e., we allow
the valuation function to assume negative values. We first show that, for the social welfare
function SW, there exists a SCASHG in which every Nash equilibrium C is such that SW(C)
is negative, while SW(C∗) is positive.

Theorem 5. For any α ∈ (0, 1], there exists a graph G and a function v (admitting also negative
valuations) inducing G(G, v, α), such that SW(C∗) > 0 while SW(C) < 0 for every Nash stable
outcome C of G(G, v, α).

Proof. Let us consider the graph G depicted in Figure 6 and the valuation function v whose
non-null values are listed in Figure 6, and in which ε < α is an arbitrary positive parameter.

Now we want to show that in every Nash stable outcome C players 1, 2 and 3 belong
to the same coalition.

First of all, notice that, for any i ≥ 4, vi,j = 0 for any j ∈ [n]; it follows that it is possible
to discard players 4, . . . , n in the following discussion. The outcome in which players 1, 2
and 3 belong to three different coalitions is not Nash stable because, for instance, player 1
would increase her utility from 0 to 1 + α by joining the coalition of player 2. The outcome
in which players 1 and 2 are in a coalition and player 3 in another one is not Nash stable
because player 3 would increase her utility from α to 2α− ε by joining the coalition of
players 1 and 2 (notice that a symmetric argument holds for the outcome in which players 2
and 3 are in a coalition and player 1 in another one). Finally, the outcome in which players 1
and 3 are in a coalition and player 2 in another one is not Nash stable because, for instance,
player 1 would increase her utility from −1− ε to 0 by forming alone a new coalition.
It follows that in any Nash equilibrium C (recall that by Theorem 1 a Nash equilibrium
always exists) players 1, 2 and 3 belong to the same coalition.

It can be easily verified that u1(C) = u3(C) = 2α− ε and u2(C) = 2− 2αε. Moreover,
since u3(C) = −ε, it follows that for any i ≥ 4, ui(C) = −αε.

Therefore,
SW(C) = 2(2α− ε) + 2− 2αε− (n− 3)αε < 0

for n approaching infinity.
In order to complete the proof, it is sufficient to note that there exists a coalition

structure (for instance the one in which players 1 and 2 belong to the same coalition and all
other players are alone in different coalitions) with positive social welfare.

1

3
...

2

n− 3 (i, j) vi,j

(1,2) 1
(1,3) −1− ε
(2,3) 1

Figure 6. Graph G and valuations vi,j.
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Now we focus our attention on the SW social welfare function and we show that PoS
is unbounded for α tending to 1.

Theorem 6. Given any M > 0, there exist a value of α, a graph G and a function v (admitting
also negative valuations) such that PoS(G(G, v, α)) > M.

Proof. Let us consider the graph G depicted in Figure 7 and the valuation function v whose
non-null values are listed in Figure 7, and in which α ∈

(
M−1

M , 1
]

and ε < α.

1

3

2

(i, j) vi,j

(1,2) 1
(1,3) −1− ε
(2,3) 1

Figure 7. Graph G and valuations vi,j.

By exploiting the same arguments used in the proof of Theorem 5, it is possible to
show that the unique Nash stable outcome C is given by the grand coalition.

It can be easily verified that u1(C) = u3(C) = −ε and u2(C) = 2. Therefore, SW(C) =
2− 2ε.

Moreover, there exists coalition structure C ′ = {{1, 2}, {3}} with social welfare
SW(C ′) = 2. Thus, it holds that SW(C∗) ≥ 2.

Therefore, for any M > 0,

SW(C∗)
SW(C)

≥ 2
2− 2ε

≥ M

for ε ≥ M−1
M . Since α ∈

(
M−1

M , 1
]
, it is possible to choose ε such that M−1

M ≤ ε < α and the
claim follows.

6. Open Problems

Starting from the fundamental class of additively separable hedonic games, we have
defined and studied a new model in which, given a social graph, players also care about
the happiness of their friends. Our work leads to many future research directions.

First of all, it would be interesting to study particular significant classes of graph
topologies, in order to obtain a reduced price of anarchy. Moreover, the study of other
stability notions such as strong Nash outcomes and core stable outcomes also deserves
further investigation.

This is a first study toward the understanding of social effects in hedonic games.
Several research directions (or their combinations) can be pursued along this line:

• the problem in which valuations can be different from zero only between players i, j
for which edge (i, j) belongs to the social graph (and not for all pairs of players);

• the setting in which the valuations are not symmetric;
• the problem in which an edge-weighted social graph is considered, with the weights

denoting how important is a player for another one;
• different combinations of the classical utilities of the friends, that in this first work

have been combined in an additive way;
• the problem defined with player-specific parameters α1, . . . , αn, in which every player

has a different degree of altruism.

Finally, it would be interesting to study social context games in the setting of fractional
hedonic games in which the utility of a player (according to the current model of additively
separable hedonic games) is divided by the number of players in the coalition she belongs
to, and modified fractional hedonic games in which the utility of a player is averaged over
all other members of that coalition, that is, excluding herself.
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