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Abstract: Weighted committees allow shareholders, party leaders, etc. to wield different numbers of
votes or voting weights as they decide between multiple candidates by a given social choice method.
We consider committees that apply scoring methods such as plurality, Borda, or antiplurality rule.
Many different weights induce the same mapping from committee members’ preferences to winning
candidates. The numbers of respective weight equivalence classes and hence of structurally distinct
plurality committees, Borda commitees, etc. differ widely. There are 6, 51, and 5 plurality, Borda, and
antiplurality committees, respectively, if three players choose between three candidates and up to 163
(229) committees for scoring rules in between plurality and Borda (Borda and antiplurality). A key
implication is that plurality, Borda, and antiplurality rule are much less sensitive to weight changes
than other scoring rules. We illustrate the geometry of weight equivalence classes, with a map of all
Borda classes, and identify minimal integer representations.

Keywords: weighted voting; weighted committee games; scoring rules; simple voting games;
collective choice

JEL Classification: D71; C71; C63

1. Introduction

Weighted voting games, i.e., simple voting games that allow weighted representations,
were first formalized by von Neumann and Morgenstern [1] (Ch. 10). A large body
of literature has since investigated the structural properties of collective decisions on
binary options. It is, for instance, well known that in a committee with three players,
all distributions w = (w1, w2, w3) of voting weights with 0 < wi < (w1 + w2 + w3)/2 for
i ∈ {1, 2, 3} give rise to the same mathematical structure, i.e., the same mapping from voter
preferences to decisions under simple majority rule, because any two players can form
a winning coalition. Following the tradition of [2,3], various authors have formalized
related observations for binary choices by arbitrarily many players, and the literature is
still thriving (see, e.g., [4,5]).

Much less is known, however, when committees choose between m > 2 options. Kurz,
Mayer, and Napel ([6], KMN in the following) define “weighted committee games” in
order to model decisions on more than two alternatives as concisely as weighted voting
games do for binary decisions. For given sets of n voters and m ≥ 2 candidates, a weighted
committee game combines voting weights w = (w1, . . . , wn) and a baseline social choice rule
r to a mapping r|w from profiles of voter preferences over the candidates to a winning
candidate. For a given voting method r, such as plurality rule or pairwise majority voting,
KMN investigate equivalence classes of weight distributions: disjoint sets E1, . . . ,Eξ of
voting weights such that r|w = r|w′ ⇔ w, w′ ∈ Ek, i.e., the collective decision coincides
irrespective of the considered preference profile whenever w and w′ come from the same
class Ek, while decisions differ for at least one preference configuration if w ∈ Ek and
w′ ∈ El , Ek.

The respective classes depend on the number m of candidates that the committee
decides on, as well as on the baseline decision rule r and the number n of voters. For
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instance, the weight distributions w = (1, 1, 1) and w′ = (4, 3, 2) for n = 3 voters are
equivalent in the binary case, where plurality and Borda rule generally coincide with
simple majority voting. But w and w′ imply different plurality winners for at least some
preference configuration for all m > 2 and then these weights pertain to different classes of
plurality committees. Similarly, they belong to different equivalence classes under Borda
rule for m > 2 since w and w′ produce different Borda winners for several combinations of
committee members’ preferences over three or more candidates.

KMN study only four rules r in detail—three scoring rules (explained below) and one
Condorcet rule, which picks the winner of all pairwise votes whenever such a (Condorcet)
winner exists. They show that the rules vary widely in the degree to which voting weights
make a difference and identify a particularly succinct representative for each equivalence
class: integer weights w̄ with minimal ‖ · ‖1-norm. The objective of this article is to extend
the analysis of KMN to the wider family of scoring rules when voters such as shareholders,
political parties, etc. decide on three or more alternatives.

A scoring rule r is generally characterized by associating scores s1 ≥ s2 ≥ . . . ≥ sm = 0
with the 1st, 2nd, . . ., mth rank in each voter’s individual preference ordering of the
candidates. It then selects the candidate who receives the highest total score (up to tie-
breaking). For instance, plurality voting on three candidates corresponds to using scores
s = (s1, s2, s3) = (1, 0, 0), i.e., counting only the number of 1st ranks attributed to each
candidate and picking the candidate who is ranked first the most often. The antiplurality
rule amounts to s = (1, 1, 0): it selects the candidate who receives the fewest last ranks
from the voters (or the fewest objections). Under the Borda rule, the score from a given
voter for a candidate reflects the number of other candidates that this voter ranks lower.
This corresponds to using s = (2, 1, 0) or, equivalently, s = (1, s, 0) for s = 1/2. KMN have
focused on these three scoring rules.

After introducing the basic notation (Section 2) and defining equivalence classes of
committee games (Section 3), we summarize the algorithmic approach proposed by KMN
(Section 4). By applying it, we find that the three scoring rules with s ∈ {0, 1/2, 1} hold a
special position in the family of all scoring rules (Section 5). Numerical computations
show that the respective numbers of equivalence classes—6 plurality committees, 51 Borda
committees, and 5 antiplurality committees for n = m = 3—are much smaller than the
respective numbers for alternative scoring rules. Rules that are “intermediate” between
plurality and Borda (i.e., based on s = (1, s, 0) with 0 < s < 1/2) or between Borda and
antiplurality (1/2 < s < 1) have a more complex geometry and are considerably more
sensitive to weight variations than these benchmarks. We show that the weight sensitivity
of intermediate scoring rules increases in m without bound (Proposition 4).

Sensitivity to weight changes can matter, e.g., for the incentives to purchase ordinary
company shares with voting rights vs. preferred shares without such rights. It also affects the
bargaining power of potential party switchers in parliaments and is relevant for international
institutions like the International Monetary Fund, which draws on asymmetric voting
weights in, e.g., the election of the fund’s Managing Director from up to three shortlisted
candidates (see, e.g., [7,8]). The IMF’s “General Review of Quotas” is currently in its 15th
round and tries to reform voting weights in response to shifts in global trade flows and
finance. It is of political and economic interest whether post-review IMF quotas actually
change how member countries’ preferences translate into decisions or if they only make
cosmetic changes by moving to a different weight distribution in the same equivalence class.

Decision making is more stable to re-weightings if rules with few equivalence classes
are used. Whether such stability is desirable or not depends on the institutional context
and one’s perspective. If, for instance, a change in IMF quotas leaves votes in the Executive
Board structurally unchanged, then this might be celebrated as a successful quota review
by members whose relative voting weight was nominally reduced. Others whose relative
voting weight increased may plausibly take the opposite view.

We provide several geometric illustrations of the equivalence classes of different scoring
rules for n = m = 3. They show how attaching greater scores s to voters’ mid-ranked
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alternatives reduces the scope for a high-weight voter to dominate others. The figures also
include a “map” of all 51 Borda equivalence classes. This map allows to easily identify the
set of equivalent weights for a given weighted Borda committee. A comprehensive list
of minimum integer sum representations of all structurally distinct scoring committees is
provided for n = m = 3 and selected values of s ∈ [0, 1] in Appendix A.

2. Notation and Definitions
2.1. Committees and Scoring Rules

We adopt KMN’s framework and consider finite sets N of n ≥ 2 players or voters such
that each player i ∈ N has strict preferences Pi : {1, . . . , m} → A over a set A = {a1, . . . , am} of
m ≥ 2 options or candidates. The set of all m! strict preference orderings on A is denoted by
P(A). A (resolute) voting rule ρ : P(A)n

→ A maps each preference profile P = (P1, . . . , Pn)
to a single winning alternative a∗ = ρ(P). The combination (N, A,ρ) of a set of voters, a set
of alternatives and a particular voting rule, is referred to as a committee (game).

For given N and A, there are m(m! n) distinct rules ρ and committees. Those which
treat all voters i ∈ N symmetrically are particularly relevant benchmarks: suppose profile
P′ results from applying a permutation π : N → N to profile P, so P′ = (Pπ(1), . . . , Pπ(n)).
Then ρ is anonymous if for all such P, P′ the winning alternative a∗ = ρ(P) = ρ(P′) is the
same. If we want to emphasize that a considered rule is anonymous, we will write r instead
of ρ.

We here focus on the family of scoring rules rs with lexicographic tie-breaking.1 For
these, winners are characterized as the lexicographically minimal maximizers of scores.
The latter are derived from the positions of the candidates in profile P = (P1, . . . , Pn) and
a fixed scoring vector s ∈ Qm

+. For given m ≥ 2, this vector s = (s1, s2, . . . , sm) consists of
rational numbers s j that satisfy s1 > sm = 0 and s j ≥ s j+1 for j ∈ {1, . . . , m− 1}.

Ballots are tallied by assigning s j points to any given voter’s j-th ranked candidate.
Specifically, let P−1

i (a) denote the position of alternative a ∈ A in voter i’s preference
ordering Pi. Then, voter i’s preferences Pi contribute sP−1

i (a) to the total score of alternative

a. The scoring winner rs(P) at profile P is the candidate with maximal total score, i.e.,

rs(P) ∈ arg max
a∈A

∑
i∈N

sP−1
i (a). (1)

If candidates ak and al with k < l have identical scores, the tie is broken in favor of ak.
The most prominent scoring rules are plurality rule, which corresponds to s = (1, 0, . . . , 0);
antiplurality rule corresponding to s = (1, 1, . . . , 1, 0), and Borda rule corresponding to
s = (m− 1, m− 2, . . . , 1, 0).

Scoring rules are particularly appealing social choice rules. Disregarding ties or
selecting the entire set of maximizers in Equation (1), they are the only rules that (i) treat all
candidates a ∈ A in a neutral way, (ii) are continuous in the sense that any decision a∗ by a
small group of voters will be replaced by a different decision a∗∗ if a sufficiently large group
of voters who would rather choose a∗∗ joins the electorate, and (iii) have the consistency
property that if disjoint groups of voters separately select the same candidate a∗ then their
union would also select a∗. See [9].2

For reasons of computational tractability, we will mostly focus on the case of m = 3
alternatives in what follows. (Re)scaling all scoring vectors s = (s1, s2, 0) to vectors
ss = (1, s, 0) with 0 ≤ s = s2

s1
≤ 1 does not affect the score maximizers but conveniently

connects plurality rule (s = 0) and antiplurality rule (s = 1) such that Borda rule lies
halfway in between (s = 1/2). In particular, letting s ∈ [0, 1] vary captures all possible
scoring rules for m = 3 (see [11]).

2.2. Weighted Scoring Committees

Real-world collective decisions are frequently generated by a non-anonymous voting
rule ρ. One reason is that the relevant players i ∈ N may be well-disciplined parties
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with different seat numbers in a legislature or because stockholders wield as many
votes as they own shares. It is then useful to perceive the corresponding rule ρ as the
combination of an anonymous baseline voting rule r with non-negative integer voting
weights w = (w1, . . . , wn) ∈ Nn

0 attached to players 1, . . . , n. We will adopt the corresponding
formalism of KMN .

Letting r denote the family of mappings from preferences to winning alternatives for
the considered baseline rule (for all n and m), the weighted voting rule r|w is defined by

r|w(P) := r(P1, . . . , P1︸     ︷︷     ︸
w1 times

, P2, . . . , P2︸     ︷︷     ︸
w2 times

, . . . , Pn, . . . , Pn︸     ︷︷     ︸
wn times

) (2)

for any given anonymous rule r and a non-negative weight vector w with
∑n

i=1 wi > 0.
A committee game (N, A,ρ) is called r-weighted for a given rule r if there exists a

weight vector w such that

ρ(P) = r|w(P) for all P = (P1, . . . , Pn) ∈ P(A)n. (3)

We then refer to (N, A, r, w) as a (weighted) representation of (N, A,ρ) and write the
corresponding weighted committee (game) as (N, A, r|w). If the anonymous baseline rule in
question is a scoring rule rs, the corresponding game will be called a (weighted) scoring
committee. When m = 3 and the respective scoring vector s equals ss, we also refer to
(N, A, rss |w) as an s-scoring committee.

Table 1 and Figure 1 illustrate that s-scoring committees may indeed induce different
mappings from preferences to outcomes for fixed voting weights w when s is varied. For the
indicated preference profile P, the winning candidate crucially depends on the scoring rule
in use.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10
Score a
Score b
Score c

Figure 1. Total scores of alternatives a, b, and c as functions of s for profile P from Table 1.



Games 2021, 12, 94 5 of 17

Table 1. Choices from A = {a, b, c} for indicated preference profile P = (P1, P2, P3) when voting
weights are w = (6, 4, 3) and respective scoring vector ss = (1, s, 0) is in use.

P1 P2 P3

b a a
c c b
a b c

⇒

rs0 |w(P) = a (a has max. plurality score 7)
rs0.1 |w(P) = a (a has max. score 7)
rs0.2 |w(P) = a (a has max. score 7)
rs0.3 |w(P) = a (a has max. score 7)
rs0.4 |w(P) = b (b has max. score 7.2)
rs0.5 |w(P) = b (b has max. Borda score 7.5)
rs0.6 |w(P) = b (b has max. score 7.8)
rs0.7 |w(P) = b (b has max. score 8.1)
rs0.8 |w(P) = b (b has max. score 8.4)
rs0.9 |w(P) = c (c has max. score 9)
rs1 |w(P) = c (c has max. antiplurality score 10)

3. Equivalence Classes of Weighted Committees
3.1. Equivalence of Committees

Weighted representations of given committee games are far from unique. Committees
(N, A, r|w) and (N, A, r′|w′) are equivalent despite r , r′ or w , w′ if the respective
mappings r|w and r′|w′ from preference profiles P to outcomes a∗ coincide, i.e., r|w(P) =
r′|w′(P) for all P ∈ P(A)n. Like KMN, we here only consider cases where r = r′ and
focus on structural equivalence. The latter means that two committees (N, A, r|w) and
(N′, A′, r|w′) reflect the same decision environment. This can hold even though the labels
of players or alternatives differ. Specifically, two r-weighted committee games (N, A, r|w)
and (N′, A′, r|w′) are called (structurally) equivalent if{

a j Pi ak ⇔ π̃(a j)P′
π(i) π̃(ak)

}
⇒ π̃

(
r|w(P)

)
= r|w′(P′) (4)

for suitable bijections π : N→ N′ and π̃ : A→ A′.
This definition covers situations where N = N′ but weights w′ are a permutation of w.

For instance, the plurality or 0-scoring committee (N, A, rs0 |w) obviously has a different
attractiveness to player 1 for w = (3, 2, 2) than for (2, 3, 2). Nevertheless, the abstract
environment is the same: there is a large player whose most-preferred alternative wins
whenever the two smaller players fail to coordinate their votes; otherwise the common
favorite of the smaller players wins.

As the number but not the labels of players and alternatives matter, one can write
(r, w) ∼m (r, w′) to denote that r-committee games with m alternatives are structurally
equivalent for weight distributions w and w′. The relation ∼m and some reference
distribution w̄ ∈ Nn

0 with w̄1 ≥ w̄2 ≥ . . . ≥ w̄n define an equivalence class

E
r
w̄,m :=

{
w ∈ Nn

0 | (r, w) ∼m (r, w̄)
}
. (5)

All weights in a given class Er
w̄,m imply the same distribution of voting power,

manipulation incentives, voting paradoxes, strategic voting equilibria, etc. when rule r is
invoked to decide on m candidates. KMN show how to explicitly characterize such an
equivalence class by linear inequalities.

As there exist at most m(m! n) distinct committees for given n and m, there are only
finitely many disjoint sets Er

w̄,m for any given baseline decision rule r, such as rs. They
constitute a finite partition {

E
r
w̄1,m,Er

w̄2,m, . . . ,Er
w̄ξ ,m

}
(6)

of the infinite set Nn
0 of weight distributions.
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We study this partition for scoring rules and will see below that the number ξ of its
elements—and hence the number of structurally distinct weighted committee games for
given rs, n, and m—varies widely.

3.2. Relationship between Equivalence Classes for Scoring Rules

Identification and enumeration of structurally distinct weighted scoring committees
are running-time-intensive computational tasks. The superexponential growth of m(m! n)

already makes the exploration of committees with a small number of players that decide
on few alternatives quite difficult. Before we turn to the details, let us recall three analytical
observations by KMN for the most prominent scoring rules (cf. the respective Propositions 3,
4, and 6 and proofs):

Proposition 1. The plurality partitions
{
E

rP

w̄1,m, . . . ,ErP

w̄ξ ,m

}
of Nn

0 coincide for all m ≥ n.

Proposition 2. The antiplurality partitions
{
E

rA

w̄1,m,ErA

w̄2,m, . . . ,ErA

w̄ξ ,m

}
of Nn

0 r {0} consist of
ξ = n equivalence classes identified by weight vectors w̄1 = (1, 0, . . . , 0), w̄2 = (1, 1, . . . , 0), . . . ,
w̄n = (1, 1, . . . , 1) for all m ≥ n + 1.

Proposition 3. For Borda rule rB and m ≥ 3, every weight vector w̃j = ( j, 1, 0, . . . , 0) with
j ∈ {1, . . . , m− 1} identifies a different class ErB

w̃j,m
.

Propositions 1 and 2 imply that, for any given number n of players, the number of
structurally different weighted scoring committees (N, A, rs

|w) with s = (1, 0, . . . , 0) and
(1, 1, . . . , 1, 0) is bounded from above as the number m of alternatives increases. By contrast,
the number ξ of structurally distinct Borda committee games—corresponding to scoring
vectors (m − 1, m − 2, . . . , 1, 0)—grows in m without bound (Proposition 3). The latter
observation turns out to generalize to all scoring committees with strictly decreasing scores:

Proposition 4. Consider a family {sm
}m∈N of vectors sm = (sm

1 , sm
2 , . . . , sm

m−1, 0) ∈ Nm
0 such that

sm
1 > sm

2 > . . . > sm
m−1 > 0 and weighted scoring committees (N, A, rsm

|w). Writing αm
j :=

sm
1 − sm

j+1 and βm := sm
1 − sm

2 , every weight vector w̃j = (αm
j , βm, 0, . . . , 0) with j ∈ {1, . . . , m− 1}

identifies a different class Ersm

w̃j,m
.

Proof. Consider k > j for otherwise arbitrary j, k ∈ {1, . . . , m} and any preference profile
P ∈ P(A)n such that a2P1a1P1a3P1a4 . . . am and a1P2a3P2a4 . . . akP2a2P2ak+1P2ak+2 . . . am. So
player 1 ranks candidate a2 first and a1 second, while player 2 ranks a1 first and a2 in
k-th place.

For weight vector w̃j, the total score of candidate a1 therefore is αm
j · s

m
2 + βm

· sm
1 ,

and that of candidate a2 is αm
j · s

m
1 + βm

· sm
k . One easily sees that a1’s score is at least as big

as a2’s score because k ≥ j + 1. Specifically, we have

αm
j · s

m
2 + βm

· sm
1 ≥ α

m
j · s

m
1 + βm

· sm
k

⇔ βm
· (sm

1 − sm
k ) ≥ α

m
j · (s

m
1 − sm

2 )

⇔ sm
1 − sm

k ≥ sm
1 − sm

j+1. (7)

Candidates a3, . . . , am are ranked strictly below a1 by both players 1 and 2. Their scores
are therefore strictly smaller and—recalling the assumption of lexicographic tie-breaking—
rsm
|w̃j(P) = a1.
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By contrast, for weight vector w̃k the total score of candidate a1 is smaller than that of
candidate a2:

αm
k · s

m
2 + βm

· sm
1 < αm

k · s
m
1 + βm

· sm
k

⇔ sm
1 − sm

k < sm
1 − sm

k+1. (8)

This implies rsm
|w̃k(P) = a2 and proves the claim. �

4. Identifying Weighted Scoring Committees

The most straightforward approach to identifying structurally distinct scoring com-
mittees for given scores s is by trial and error. One starts, e.g., with equal weights
w = (1, . . . , 1), creates a table of rs

|w(P) for all P ∈ P(A)n, and then repeats this for w′ , w.
If the tables differ, (N, A, rs

|w) and (N, A, rs
|w′) are structurally distinct and the partition{

E
rs

w̄1,m, . . . ,Ers

w̄ξ ,m

}
contains at least ξ ≥ 2 elements. This process can be reiterated for yet

more different weights w′′, w′′′, . . . in order to detect more and more distinct rs-committees.
Trying out all combinations of integers that sum to less than some cutoff wΣ in this way

is quite efficient in identifying new elements of
{
E

rs

w̄1,m, . . . ,Ers

w̄ξ ,m

}
at least initially. Alas, it

is impossible to know when the trial-and-error process can be stopped: for any tractable
weight sum wΣ, it cannot a priori be ruled out that considering some w′ with

∑
i∈N w′i > wΣ

gives rise to a table rs
|w′(P), P ∈ P(A)n, that differs from the tables for all weights w with∑

i∈N wi ≤ wΣ and hence represents a new equivalence class. The trial-and-error approach
can therefore only produce lower bounds for ξ.

A more sophisticated method, however, exists. It allows us to determine ξ exactly,
at least for small numbers n and m. The idea consists in considering all m(m! n) distinct
mappings ρ : P(A)n

→ A from preferences over a given set A = {a1, . . . , am} to a winner
and determining, for a fixed scoring vector s, if there are weights w such that rs

|w = ρ.
For a given scoring committee (N, A,ρ) = (N, A, rs

|w), we say that its representation
(N, A, rs, w) has minimum integer sum or is a minimal representation of (N, A,ρ) if

∑
i∈N w′i ≥∑

i∈N wi for all representations (N, A, rs, w′) of (N, A,ρ) that involve rule rs. If the games
in a given equivalence class Ers

w̄,m have a unique minimal integer representation, which is
usually the case, the corresponding minimal weights are a focal choice for w̄.

Both checking whether (N, A, rs, w) is minimal and finding minimal weights w from
scratch amount to solving a linear program with integer constraints. Specifically, let us write
Sk(Pi) for the unweighted s-score of alternative ak derived from its position in ordering
Pi (e.g., for m = 3 and a2, we have S2(Pi) = 0 iff a2 is ranked below a1 and a3). For any
arbitrary but fixed committee game (N, A,ρ), we denote the index of the alternative that
wins at profile P by ωρ(P) ∈ {1, . . . , m}, i.e., ρ(P) = aωρ(P) ∈ A. Then any solution to the
following integer linear program (ILP) yields a minimal representation (N, A, rs, w) of
(N, A,ρ) if that exists:3

min
w∈Nn

0

n∑
i=1

wi (9)

s.t.
n∑

i=1

Sk(Pi) ·wi ≤

n∑
i=1

Sωρ(P)(Pi) ·wi − 1 ∀P ∈ P(A)n
∀1 ≤ k ≤ ωρ(P) − 1,

n∑
i=1

Sk(Pi) ·wi ≤

n∑
i=1

Sωρ(P)(Pi) ·wi ∀P ∈ P(A)n
∀ωρ(P) + 1 ≤ k ≤ m.

Existence of a solution provides a decisive test for rs-weightedness for any given
scoring vector s: the constraints in ILP (9) characterize a non-empty and compact set if and
only if ρ is rs-weighted. Hence, to verify if weights w exist such that rs

|w = ρ for a given ρ,
it suffices to check whether the constraint set is non-empty. The latter can be done efficiently
with a standard optimization software package (such as Gurobi or IBM ILOG CPLEX).
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In principle, one can therefore identify all rs-committee games for given n, m and s by
going through all m(m!n) theoretically possible rules ρ : P(A)n

→ A and checking for each ρ
whether a solution to ILP (9) exists. Unfortunately, such brute-force approach would require
too much time even when using the highest-end computer hardware available: already,
n = m = 3 gives rise to 3216 > 10103 different mappings, which exceeds the estimated
number of atoms in our universe. We therefore utilize the branch-and-cut algorithm
proposed by KMN (see Table 3 in KMN for details). It exploits, for example, that ρ cannot
be rs-weighted if ρ(P) = a3 for one of the (m− 1)!n profiles where every player ranks a3
last; all these many ρ can then be excluded from consideration in one go.

5. Number and Geometry of Weighted Scoring Committees
5.1. Numbers of Weighted Scoring Committees

Table 2 summarizes the results of our computations. The table reports the numbers
of structurally distinct weighted scoring committees for scoring vector ss = (1, s, 0) with
s ∈ {0, 0.1, . . . , 0.9, 1}, including the results for s ∈ {0, 1/2, 1} already obtained by KMN.
We employed the Gurobi software package on eight 3.0 GHz cores with 128 GB RAM.
If the branch-and-cut algorithm did not terminate within a time frame of 1–2 months,
we interrupted the respective task and report a lower bound (indicated by “� . . .” in
the table). The bound of 33, 583 for s = 1, n = 6, m = 3 is conjectured to be tight. We
remark that results derived by [6] (Propositions 1 and 2) for specific scoring rules extend
straightforwardly to the general case: (i) all scoring rules coincide for m = 2 and (ii) the
number of distinct scoring committees for m = 2 coincides with that for binary weighted
voting games with a simple majority quota.

Figure 2 visualizes the M-shaped numbers for n = m = 3 on a yet finer grid
s ∈ {0, 0.05, 0.1, . . . , 0.95, 1}. One can see that scoring rules rss with interior s ∈ (0, 1) are
much more sensitive to voting weight changes than plurality (s = 0) and antiplurality
(s = 1) rules: starting with the 6 plurality committees at s = 0, numbers of equivalence
classes increase to about 160 committees for s ∈ (0, 1

2 ), fall to the 51 Borda committees
at s = 1/2, rise again to nearly 230 committees for s ∈ ( 1

2 , 1), and finally fall to the 5
antiplurality committees at s = 1. Respective numbers exceed the number of plurality and
antiplurality committees by a factor of more than 25; even Borda rule (s = 1/2), which was
shown to be very sensitive to voters’ weights by KMN , allows for much fewer structurally
distinct committees than rules with s ∈ (0, 1/2) ∪ (1/2, 1) do. The switch occurs directly
at s ∈ {0, 1/2, 1}: identifying all rss-committees when s = 0.01, 0.99, 0.49, and 0.51 already
produces 163, 229, 146, and 216 structurally distinct mappings rss |w.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

Figure 2. Number of s-scoring committees for n = m = 3 and s ∈ {0, 0.05, 0.1, . . . , 1}.
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Table 2. Number of structurally distinct weighted scoring committees (N, A, rs
|w) for scoring vector s = (1, s, 0) when n voters decide on m = 3 candidates.

n, m
s 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

3, 2 4
4, 2 9
5, 2 27
6, 2 138
7, 2 1663
8, 2 63,764
9, 2 9,425,479

3, 3 6 163 163 155 147 51 217 221 217 229 5

4, 3 34 �61,143 �83,416 �49,359 �83,526 5255 �56,045 �34,858 �63,930 �52,694 19

5, 3 852 �61,143 �83,416 �49,359 �83,526 �1,153,448 �56,045 �34,858 �63,930 �52,694 263

6, 3 �147,984 �61,143 �83,416 �49,359 �83,526 �1,153,448 �56,045 �34,858 �63,930 �52,694 ≥33,583
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As a byproduct of the identification strategy described in Section 4, we identify
a minimum integer sum representation (N, A, rss , w) of the committee games in each
equivalence class. For n = m = 3 and s = (1, s, 0), these representations are reported for
selected values of s in Appendix A: we enumerate 322 different weight distributions w and
mark that a given w minimally represents an equivalence class for the respective value of s
by “X”. If an entry is not ticked by “X” for a given value of s, this means that for this s the
weights w are equivalent to another entry with a smaller sum of weights. For example,
w = (3, 1, 0) is not ticked for s = 1/2 because it is equivalent to w̄ = (1, 0, 0). Hence the
number of marks in any column equals the corresponding number reported in Table 2
and Figure 2. Including minimal representations also for other values s ∈ {0, 0.1, . . . , 0.9, 1}
would require more than 1100 different entries. Additional details are available from the
authors upon email request. By contrast, an analogous list for m = 2 only comprises four
elements: (1, 0, 0), (1, 1, 0), (1, 1, 1), (2, 1, 1).

5.2. Geometry of Weighted Scoring Committees

After normalizing w to w̃ = w/(w1 + w2 + w3), any voting weight distribution
w = (w1, w2, w3) can conveniently be represented by a point in the two-dimensional
unit simplex illustrated in Figure 3. The simplex’s vertices correspond to the case of
only one of the players wielding a positive weight; the mid-point reflects equal weights
w̃1 = w̃2 = w̃3 = 1/3.

100	%100	%

100	%

w1 w2

w3

Figure 3. Projection of relative weight distributions w̃ among n = 3 voters into the unit simplex.

Figure 4 uses the simplex representation to illustrate the 51 weight equivalence classes
when s = (1, 1/2, 0), i.e., Borda rule, by different colors and with equations for the lines that
bound or define equivalence classes. The figure exhibits a great deal of symmetry. This
is because for any weight distribution w̃ = (α, β, 1 − α − β) with α > β > 1 − α − β, there
exist five more permutations of w̃—distributions (α, 1− α− β, β), (β,α, 1− α− β), etc.—that
belong to the same equivalence class.
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Figure 4. Geometry of voting weight equivalence classes and their bounding lines for n = m = 3 and
s = (1, 1/2, 0) (Borda rule).

We can therefore focus on the sixth of the simplex that is highlighted in Figure 4
by red color in order to provide a complete map of the 51 Borda equivalence classes in
Figure 5. It is in general non-trivial to determine for a given distribution w of weights
to which equivalence class it belongs. Solving ILP (9) is the main option, but geometric
depictions like Figure 5 can greatly facilitate the task: when three players decide on three
alternatives by Borda rule, one just needs to locate normalized weights in the depicted
sixth of the simplex and directly obtains the minimum integer sum representation of the
corresponding equivalence class. For instance, the weight distribution w = (4, 4, 3) is not
ticked by “X” in Appendix A for s = 1/2. Respective relative weights w̃ = (4/11, 4/11, 3/11)
lie on the line that connects the simplex’s center (1/3, 1/3, 1/3) to (1/2, 1/2, 0) at the bottom,
with w1 < 1/2 − 1/4 ·w2 = 9/22 and w2 < 1/2 − 1/4 ·w1 = 9/22. So w̃ is located in the area
coded by (3, 3, 2) in Figure 5, implying that w̄ = (3, 3, 2) is the minimal representation of
w = (4, 4, 3) for s = 1/2. Moreover, if needed, (in)equalities that describe all equivalent
voting weights can be derived from the bounding line equations in Figure 4.

The provision of similar maps for other scoring vectors s = (1, s, 0) is beyond the
scope of the present analysis. However, we can at least show analogues of the illustration in
Figure 4 to shed light on the geometry of partitions

{
E

rs

w̄1,m, . . . ,Ers

w̄ξ ,m

}
. Figure 6 depicts the

corresponding sixths of the simplex for s ∈ {0, 0.1, 0.2, . . . , 1}. One can see, for instance, how
the (dark blue) range of weight distributions for which the largest voting weight w1 makes
player 1 a dictator—i.e., this player’s first-ranked candidate wins for every P— shrinks as
s increases from 0 to 1. A political implication of this is that collective decisions become
more “inclusive”; i.e., they tend to reflect more than just one player’s preferences if the
scores that are derived from the rankings of the candidates are concentrated less on just
the top position. Note that, as illustrated for s = 1/2 in Figure 5, many equivalence classes
comprise only a short line segment or an isolated point and would require magnification
to become visible. For example, for s = 1, i.e., the antiplurality rule, weights in the large
green area are all equivalent to w = (2, 2, 1), the two equivalence classes with minimal
representation (2, 1, 1) and (1, 1, 0) appear as the triangle’s left and right boundary lines,
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and the remaining equivalence classes, which correspond to weights (1, 1, 1) and (1, 0, 0),
are points in the top left and bottom corners.

(4,2,1)

(4,3,1)

(6,5,3)

(7,5,4)

(7,5,2)

(8,5,1)

(7,5,3)

(8,5,2)

(7,6,2)

(7,6,4)

(10,8,3)

(7,4,1)

(6,5,2)

(7,5,1)

(6,3,1)

(5,4,1)

(5,3,1)

(11,8,2)

(11,9,3)

(8,6,5)

(8,6,3) (8,7,3)

(9,6,2)
(6,4,1)

(5,4,2)

(11,7,2)

(5,2,1) (13,8,2)
(10,7,2)

(12,9,7)

(1,0,0)

(1,1,1)

(1,1,0)
(2,1,0)

(2,1,1)

(2,2,1)
(3,1,1)

(3,2,0)

(4,1,1)

(3,2,1)

(3,3,1)

(3,2,2)

(3,3,2)

(6,5,4)

(5,4,3)

(4,3,3)(4,3,2)

(5,2,2)

(5,3,3)
(9,7,5)

(7,2,2)

Figure 5. Map of the 51 equivalence classes for n = m = 3 and s = (1, 1/2, 0) (Borda rule) when
w̃1 ≥ w̃2 ≥ w̃3 (red triangle highlighted in Figure 4); respective minimum integer sum representation
is underlined or boxed for classes constituting lines or areas, respectively.

1
(antiplura

lity)

s =0(plurality)

0.1

0.2

0.3

0.4

0.5
(Borda)

0.6

0.7

0.8
0.9

Figure 6. Weight equivalence classes Ers

w̄k,m when n = 3 voters decide on m = 3 candidates using
scoring rule rs with s = (1, s, 0) when w̃1 ≥ w̃2 ≥ w̃3 (highlighted in Figure 4).

6. Concluding Remarks

The (non-)equivalence of committees that involve different seat or voting weight
distributions for a given aggregation rule matters for endowing voting bodies with
designated properties. It is, for instance, not difficult to choose a superficially more
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egalitarian distribution of weights without structurally changing a given asymmetric
distribution—or to take the opposite direction—if the latter lies in the interior of an
equivalence class. Equivalences also facilitate quick assessments of players’ asymmetric
a priori voting power or expected success in institutions such as the IMF’s Executive
Board, councils of non-governmental organizations, and boards or shareholder meetings of
corporations. Whether different weight distributions translate into different mappings from
preferences to voting outcomes could also potentially make a difference for forecasting:
sampling errors in opinion poll data should matter less, for instance, when population
shares of the relevant groups fall into the middle of a big equivalence class of the applicable
election rule than for a boundary point (cf. [12]).

Among the baseline voting rules considered in this investigation, plurality, Borda,
and antiplurality are clearly focal in terms of practical prominence. We have seen here that
they are also special in terms of how they structure the space of all conceivable weight
distributions among the voters into equivalence classes and, thus, committees that differ in
the decisions they produce. Deviations from the scores associated with plurality, Borda,
and antiplurality rule are comparatively rare in practice, but they exist. For instance,
the winner of the annual Eurovision Song Contest is determined by using scoring vector
s = (12, 10, 8, 7, 6, . . . , 1, 0, . . . , 0).

Adopting vectors s such that scores satisfy particular convexity or concavity properties—
rather than being almost constant (plurality, antiplurality) or falling linearly (Borda)—
broadens the scope for institutional design. This investigation has revealed that the choice
of s interacts very significantly with the effect of asymmetric voting weights w. The latter
are sometimes a conscious design choice but often given exogenously by, e.g., party seats,
shareholdings, or the number of voters that are represented by a delegate to a meeting
or council. In the latter case, the ability to choose s (or adoption of rules beyond the
family of scoring rules) may be the only degree of freedom that is available. Knowledge of
the implications of deviating from plurality, Borda, and antiplurality can then be helpful,
for instance, to address the “inverse problem” of voting power [13], i.e., to find a voting
rule that induces a desired distribution of influence of the voters on collective decisions.

The quantitative findings reported above, such as the exact numbers of distinct scoring
committees when s = (1, s, 0) for s ∈ {0, 0.1, . . . , 1}, are unfortunately contingent on a rather
small number of voters and candidates. We hope that analogous results for n > 3 or m > 3
can be provided in future research. Preliminary computations for these cases—with an
explosive growth of running time—strongly suggest that our main qualitative observation is
robust: also when more voters or candidates are involved plurality, Borda and antiplurality
rule are much less sensitive to weight changes than scoring rules in between. Future
research may also try to address possible connections between computational findings
such as the M-shaped pattern for the number of equivalence classes or the geometry of
equivalence classes to combinatorial analysis and other branches of discrete mathematics.
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Appendix A. Weighted rs-Committees for n = m = 3 and s = (1, s, 0)

Table A1. All structurally distinct weighted scoring committees for n = m = 3 and s = (1, s, 0) with s ∈ {0, 1/4, 1/2, 3/4, 1};
“X” indicates the respective minimum integer representation.

w
s

w
s

w
s

0 1
4

1
2

3
4 1 0 1

4
1
2

3
4 1 0 1

4
1
2

3
4 1

1. (1, 0, 0) X X X X X 2. (1, 1, 0) X X X X X 3. (1, 1, 1) X X X X

4. (2, 1, 0) X X 5. (2, 1, 1) X X X X 6. (2, 2, 1) X X X X X

7. (3, 1, 0) X 8. (3, 1, 1) X X 9. (3, 2, 0) X

10. (3, 2, 1) X X X 11. (3, 2, 2) X X X 12. (3, 3, 1) X X

13. (3, 3, 2) X X 14. (4, 1, 0) X 15. (4, 1, 1) X X

16. (4, 2, 1) X X X 17. (4, 3, 0) X 18. (4, 3, 1) X X

19. (4, 3, 2) X X 20. (4, 3, 3) X X 21. (4, 4, 1) X

22. (4, 4, 3) X 23. (5, 1, 1) X 24. (5, 2, 1) X X

25. (5, 2, 2) X X 26. (5, 3, 1) X X X 27. (5, 3, 2) X

28. (5, 3, 3) X X 29. (5, 4, 0) X 30. (5, 4, 1) X X

31. (5, 4, 2) X X X 32. (5, 4, 3) X X 33. (5, 4, 4) X

34. (5, 5, 1) X 35. (6, 1, 1) X 36. (6, 2, 1) X

37. (6, 3, 1) X X 38. (6, 3, 2) X 39. (6, 4, 1) X X

40. (6, 5, 1) X 41. (6, 5, 2) X X 42. (6, 5, 3) X X

43. (6, 5, 4) X X 44. (7, 1, 1) X 45. (7, 2, 0) X

46. (7, 2, 1) X 47. (7, 2, 2) X X 48. (7, 3, 1) X

49. (7, 3, 2) X 50. (7, 3, 3) X 51. (7, 4, 1) X

52. (7, 4, 2) X 53. (7, 4, 4) X 54. (7, 5, 1) X X

55. (7, 5, 2) X X 56. (7, 5, 3) X X X 57. (7, 5, 4) X X

58. (7, 5, 5) X 59. (7, 6, 1) X 60. (7, 6, 2) X X

61. (7, 6, 3) X 62. (7, 6, 4) X 63. (7, 6, 5) X

64. (7, 7, 2) X 65. (8, 1, 1) X 66. (8, 2, 1) X

67. (8, 3, 1) X 68. (8, 3, 2) X 69. (8, 4, 1) X

70. (8, 4, 3) X X 71. (8, 5, 1) X 72. (8, 5, 2) X X

73. (8, 5, 3) X 74. (8, 5, 4) X 75. (8, 5, 5) X

76. (8, 6, 1) X 77. (8, 6, 3) X 78. (8, 6, 5) X

79. (8, 7, 1) X 80. (8, 7, 3) X X 81. (8, 7, 4) X

82. (9, 2, 1) X 83. (9, 2, 2) X 84. (9, 3, 1) X

85. (9, 3, 2) X 86. (9, 4, 1) X 87. (9, 4, 2) X

88. (9, 4, 4) X 89. (9, 5, 1) X 90. (9, 5, 2) X

91. (9, 5, 5) X 92. (9, 6, 2) X 93. (9, 6, 4) X

94. (9, 7, 1) X 95. (9, 7, 3) X 96. (9, 7, 4) X

97. (9, 7, 5) X X 98. (9, 8, 1) X 99. (9, 8, 3) X

100. (9, 8, 4) X 101. (9, 8, 5) X 102. (10, 2, 1) X

103. (10, 3, 1) X 104. (10, 3, 2) X 105. (10, 4, 1) X
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Table A1. Cont.

w
s

w
s

w
s

0 1
4

1
2

3
4 1 0 1

4
1
2

3
4 1 0 1

4
1
2

3
4 1

106. (10, 7, 2) X 107. (10, 7, 3) X 108. (10, 7, 4) X

109. (10, 8, 1) X 110. (10, 8, 3) X 111. (10, 9, 2) X

112. (10, 9, 3) X 113. (10, 9, 4) X 114. (10, 9, 6) X

115. (11, 2, 1) X 116. (11, 2, 2) X 117. (11, 3, 1) X

118. (11, 3, 2) X 119. (11, 4, 1) X 120. (11, 4, 2) X

121. (11, 5, 1) X 122. (11, 5, 2) X 123. (11, 5, 4) X

124. (11, 7, 2) X 125. (11, 7, 4) X 126. (11, 7, 5) X

127. (11, 8, 2) X 128. (11, 9, 1) X 129. (11, 9, 3) X

130. (11, 9, 5) X 131. (11, 9, 6) X 132. (11, 10, 2) X

133. (12, 3, 1) X 134. (12, 4, 1) X 135. (12, 5, 2) X

136. (12, 7, 7) X 137. (12, 8, 5) X X 138. (12, 9, 5) X

139. (12, 9, 7) X 140. (12, 10, 1) X 141. (12, 11, 2) X

142. (12, 11, 5) X 143. (12, 11, 7) X 144. (13, 2, 2) X

145. (13, 3, 1) X 146. (13, 4, 1) X 147. (13, 4, 2) X

148. (13, 4, 3) X 149. (13, 5, 2) X 150. (13, 6, 2) X

151. (13, 6, 4) X 152. (13, 7, 2) X 153. (13, 7, 5) X

154. (13, 8, 2) X 155. (13, 8, 5) X 156. (13, 8, 7) X

157. (13, 9, 3) X 158. (13, 11, 5) X 159. (13, 11, 6) X

160. (13, 11, 7) X 161. (13, 12, 2) X 162. (13, 12, 3) X

163. (13, 12, 4) X 164. (13, 12, 5) X 165. (13, 12, 8) X

166. (13, 12, 9) X 167. (14, 3, 1) X 168. (14, 3, 2) X

169. (14, 4, 1) X 170. (14, 4, 3) X 171. (14, 6, 5) X

172. (14, 7, 2) X 173. (14, 10, 3) X 174. (14, 12, 5) X

175. (14, 12, 7) X 176. (14, 13, 3) X 177. (14, 13, 4) X

178. (14, 13, 10) X 179. (15, 2, 2) X 180. (15, 4, 1) X

181. (15, 4, 3) X 182. (15, 5, 1) X 183. (15, 7, 2) X

184. (15, 9, 8) X 185. (15, 12, 8) X 186. (15, 13, 2) X

187. (15, 13, 7) X 188. (15, 13, 8) X 189. (16, 4, 1) X

190. (16, 4, 3) X 191 (16, 5, 1) X 192. (16, 5, 4) X

193. (16, 7, 3) X 194. (16, 11, 4) X 195. (16, 13, 4) X

196. (16, 14, 7) X 197. (16, 15, 3) X 198. (16, 15, 4) X

199. (16, 15, 11) X 200. (17, 4, 1) X 201. (17, 5, 1) X

202. (17, 5, 3) X 203. (17, 5, 4) X 204. (17, 6, 2) X

205. (17, 7, 3) X 206. (17, 8, 2) X 207. (17, 11, 7) X

208. (17, 12, 4) X 209. (17, 14, 4) X 210. (17, 14, 9) X

211. (17, 15, 8) X 212. (17, 15, 9) X 213. (17, 16, 3) X

214. (17, 16, 4) X 215. (17, 16, 5) X 216. (18, 5, 1) X
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Table A1. Cont.

w
s

w
s

w
s

0 1
4

1
2

3
4 1 0 1

4
1
2

3
4 1 0 1

4
1
2

3
4 1

217. (18, 5, 3) X 218. (18, 7, 3) X 219. (18, 10, 7) X

220. (18, 11, 10) X 221. (18, 17, 5) X 222. (19, 5, 1) X

223. (19, 6, 1) X 224. (19, 7, 3) X 225. (19, 10, 3) X

226. (19, 15, 3) X 227. (19, 16, 2) X 228. (19, 16, 7) X

229. (19, 18, 5) X 230. (20, 5, 1) X 231. (20, 6, 1) X

232. (20, 8, 3) X 233. (20, 12, 11) X 234. (20, 13, 8) X

235. (20, 16, 3) X 236. (20, 16, 11) X 237. (20, 19, 4) X

238. (20, 19, 5) X 239. (21, 6, 1) X 240. (21, 8, 3) X

241. (21, 9, 4) X 242. (21, 10, 3) X 243. (21, 11, 3) X

244. (21, 13, 11) X 245. (21, 17, 5) X 246. (21, 18, 8) X

247. (21, 18, 10) X 248. (21, 20, 4) X 249. (22, 5, 2) X

250. (22, 6, 1) X 251. (22, 18, 5) X 252. (22, 19, 10) X

253. (22, 20, 7) X 254. (23, 6, 1) X 255. (23, 7, 1) X

256. (23, 11, 3) X 257. (23, 20, 11) X 258. (23, 20, 12) X

259. (23, 21, 7) X 260. (24, 7, 1) X 261. (24, 7, 4) X

262. (24, 9, 4) X 263. (24, 19, 4) X 264. (24, 21, 4) X

265. (24, 21, 11) X 266. (24, 21, 13) X 267. (24, 23, 5) X

268. (25, 6, 2) X 269. (25, 7, 1) X 270. (25, 16, 10) X

271. (25, 20, 4) X 272. (25, 21, 3) X 273. (25, 22, 4) X

274. (25, 24, 7) X 275. (26, 7, 1) X 276. (26, 21, 14) X

277. (26, 22, 3) X 278. (27, 8, 1) X 279. (28, 8, 1) X

280. (28, 8, 5) X 281. (28, 11, 4) X 282. (28, 17, 15) X

283. (28, 24, 3) X 284. (28, 24, 13) X 285. (28, 25, 4) X

286. (28, 27, 8) X 287. (29, 8, 1) X 288. (29, 9, 2) X

289. (29, 25, 3) X 290. (29, 26, 4) X 291. (29, 27, 7) X

292. (29, 28, 8) X 293. (30, 28, 7) X 294. (31, 9, 1) X

295. (31, 27, 5) X 296. (32, 9, 1) X 297. (32, 12, 5) X

298. (32, 27, 4) X 299. (32, 28, 5) X 300. (32, 28, 15) X

301. (32, 28, 17) X 302. (33, 10, 2) X 303. (33, 13, 5) X

304. (33, 28, 4) X 305. (34, 9, 2) X 306. (35, 10, 6) X

307. (36, 31, 4) X 308. (36, 32, 5) X 309. (36, 34, 7) X

310. (37, 10, 2) X 311. (37, 14, 6) X 312. (37, 32, 4) X

313. (37, 33, 5) X 314. (37, 35, 7) X 315. (41, 16, 6) X

316. (45, 13, 2) X 317. (46, 13, 2) X 318. (49, 14, 2) X

319. (52, 15, 2) X 320. (53, 15, 2) X 321. (55, 16, 2) X

322. (57, 16, 2) X
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Notes
1 Working with resolute instead of set-valued voting rules has computational advantages while entailing no loss of structural

information. See [6] (p. 973) for details.
2 See also [10] on yet more general axiomatic analysis of scoring rules.
3 The inequality constraints in ILP (9) differ for non-winning alternatives ak , aωρ(P) according to the lexicograpic tie-breaking

criterion. If a given representation (N, A, rs, w′) is conjectured to be minimal, adding constraint
∑n

i=1 wi ≤
∑n

i=1 w′i can speed up
finding a solution to ILP (9).
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