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Abstract: This paper presents a simple adaptive model of demand adjustment in cooperative games
and analyzes this model in weighted majority games. In the model, a randomly chosen player sets
her demand to the highest possible value subject to the demands of other coalition members being
satisfied. This basic process converges to the aspiration set. By introducing some perturbations into
the process, we show that the set of separating aspirations, i.e., demand vectors in which no player
is indispensable in order for other players to achieve their demands, is the one most resistant to
mutations. We then apply the process to weighted majority games. We show that in symmetric
majority games and in apex games, the unique separating aspiration is the unique stochastically
stable one.

Keywords: demand adjustment; aspirations; stochastic stability

1. Introduction

Consider a situation in which there are three players, any pair of players can cooperate
and generate 30 money units but the addition of the third player to the pair does not bring
additional benefits. The situation can be seen as a weighted majority game with three
symmetric players dividing a budget: two are enough to form a coalition and agree on a
division; the third player’s participation does not increase the budget. Each of the three
players may formulate a payoff demand, with the understanding that the player is willing
to join any coalition that satisfies the demand. A coalition can only form if the demands of
its members are satisfied. Clearly, not all demand combinations are equally stable. If the
first two players make a demand of 15 and the third player makes a demand of 20, the third
player will find that no coalition can satisfy her demand and may reduce it. Similarly, if
the first two players make a demand of 15 and the third player makes a demand of 10, the
third player may realize that it is possible to increase her demand and still find coalitions
that can satisfy it. Demand combinations such that each player makes the highest demand
that can still be satisfied are called aspirations in the literature on cooperative games. (The
terminology comes from Bennett [1]; earlier papers on aspirations include [2,3].)

Even if we restrict ourselves to the set of aspirations, not all demand combinations
appear equally stable. For example, suppose the first two players demand 20 each whereas
the third player demands 10. There are two feasible coalitions, both of which contain the
third player. Because the third player is indispensable, we expect her to be able to increase
the demand. There are several solution concepts defined on the space of aspirations, all of
which assume that competition for scarce players will drive their price (demand) up. The
main ones are the set of partnered aspirations [1,3] and the set of balanced aspirations, also
known as the aspiration core [2].

The research agenda of making connections between cooperative solution concepts
and noncooperative games is known as the Nash [4] program. Our paper contributes to
this approach by explicitly modeling the process of adjustment of players’ demands in
a multilateral Nash demand game with the aim of providing foundations for one of the
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aspiration solution concepts. The game is played repeatedly, but players are myopic and
do not take into account the effect of their decisions on future periods. The way in which
we model demand adjustment is that, at every period, a player is randomly chosen and
“selects from the whole set of feasible coalitions that one which will give him the highest
possible return given the demands or payoff expectations of the necessary allies” (Cross [2],
p. 185). In doing so, the player’s demand is adjusted to the residual value after paying the
coalition partners’ demands. This type of myopic best-response adjustment in cooperative
games is analyzed in Bennett et al. [5], who show that processes of this kind converge to
the set of aspirations.

To be able to select a subset of the set of aspirations, we introduce small mutations into
the process. In particular, we assume that with a small probability, a player experiments
with a different demand, which is most likely to be a higher demand than the original
one. We look for the set of aspirations that is stochastically stable (see, e.g., [6]) under such
mutations. If a set of aspirations is stochastically stable, the process spends most of the time
in this set as the probability of mutations becomes small. Intuitively, if getting out of the set
requires more mutations than reaching the set from outside, the set is stochastically stable.
We find that the set of aspirations that is robust to the mutation of one player coincides
with the set of separating aspirations (a subset of partnered aspirations). In a separating
aspiration, no player is indispensable to another player; each player’s demand can be
satisfied by several coalitions. Thus, separating aspirations are the prime candidates for
being stochastically stable.

The literature on demand adjustment in cooperative games (reviewed in Section 6
of [7] and discussed further in Section 2) uses similar adaptive processes but focuses on
games with a nonempty core. In contrast, we study a particular class of games with an
empty core, weighted majority games (the example at the beginning of the introduction is
an example of such a game). Unlike the core, aspiration solution concepts are non-empty
in these games, thus allowing predictions to be made about possible outcomes. Within
this class, we show that in symmetric majority games and in apex games, there is a unique
stochastically stable aspiration, which coincides with the unique separating aspiration.

The next section discusses the related literature. In Section 3, we describe the concept
of aspirations and its variants in (transferable utility) cooperative games and define our
dynamic process of demand adjustment. We also state useful auxiliary results about the
process. In Section 4, we focus on weighted majority games, stating our main results about
the stochastic stability of separating aspirations in symmetric majority games and in apex
games. We conclude the section with examples of other weighted majority games in which
there are sets of aspirations among which the process can move with mutations of one
player, never reaching a separating one. Section 5 provides overall conclusions.

2. Related Literature

The starting point of our model is Cross [2], who presents a first attempt to formalize
the competition for players whose “price” (as represented by their demand) is too low. This
competition can be thought of as driving prices up for players that are indispensable for
others to satisfy their demand. This concept underlies the approach used in Maschler and
Peleg [8] for payoff vectors feasible for the grand coalition and in Albers [3] and Bennett [1]
for more general payoff vectors.

Treating players’ behavior as setting a demand has an obvious connection with
Nash’s [4] demand game that models two-player bargaining. Young [9] is the first who
considers a process of best responding (to finite samples of past observations) in this game.
He also introduces mutations into the process and finds that the payoff division related
to the Nash bargaining solution is the unique stochastically stable one. Bennett et al. [5]
apply a similar best-response process to general cooperative games, although they do not
allow mutations. Their process converges to the whole set of aspirations. Since then, other
papers have analyzed dynamic processes in cooperative games, as reviewed in Section 6 of
the survey paper [7]. The most relevant of these papers are also discussed below.
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Several papers in this literature study demand adjustment processes in cooperative
games (from [10,11] to more recent [12–18]). While these papers differ in the details of the
process (such as whether adjustment by coalitions is allowed, whether players only set a
demand or also specify coalition partners, or which (if any) mutations are more likely),
they all focus on games with a non-empty core. Payoff allocations in the core are obtained
by the adjustment process, with the possibility of mutations allowing in some cases further
selection within the core, as in [13,15,17]. Other papers, such as [19–23] obtain similar
results for assignment games and matching problems with non-empty core.

The one paper that has a result for games with an empty core is Nax [18], whose process
cycles through all coalition structures (including the one with all players being singletons)
in such games. (In Nax [18], players’ individual demands are called their “aspirations”, not
the whole demand vectors, as in Bennett [1] and in our paper.) The mechanism relies on
joint deviations by coalitions: in the process, with a positive probability, any (potentially
profitable) coalition can be selected to adjust demands jointly, but demands are made
individually and may be incompatible, in which case the players split into singletons. In
contrast, in the (basic) process used in this paper (which is based on [5]), only one player
makes adjustments at a time, and a coalition always forms. We find that in important
classes of weighted majority games, only minimal winning coalitions form in stochastically
stable states.

Our model is closely related in spirit to the above-mentioned models. In common
with those models, players adjust myopically, taking into account the current demands
of other players. Furthermore, in common with the above models, we have that not all
players adjust simultaneously (in our case only one player adjusts at a time, while some
of the other papers allow adjustment by larger coalitions of players). In contrast with the
literature, the adjusting player can guarantee himself a place in a coalition, by satisfying
the demands of the other coalition members. We further allow for mutations, which are
more likely to be demand increases (in the spirit of “intentional mistakes” in [24]). Also
in contrast to the literature, we focus on weighted majority games, which have an empty
core. For some classes of such games, our model allows quite a sharp prediction, selecting
among aspirations those that are separating.

3. The Model
3.1. Aspirations in Cooperative Games

Let (N, v) be a transferable-utility cooperative game, where N = {1, 2, ..., n} is the set
of players and v : 2N → R with v(∅) = 0 is the characteristic function. Any subset S of the
player set N is called a coalition. We assume that the game is zero-normalized, v({i}) = 0
for all i ∈ N. A demand vector is an n-tuple x = (x1, . . . , xn) ∈ Rn

+. Let x(S) := ∑i∈S xi. The
following concepts will be useful:

Definition 1. A demand vector x is an aspiration if it is maximal (x(S) ≥ v(S) for all S) and
feasible (for all i, there exists S 3 i such that x(S) ≤ v(S)).

Definition 2. For given aspiration x, the generating collection GC(x) = {S : x(S) = v(S)}
is the set of coalitions that can satisfy the demands of their members.

With some demand vectors (aspirations), one player, i, may be able to satisfy his
demand only if coalitions that satisfy this demand also include one particular another
player, j, while player j can satisfy her demand without player i. The following defines
aspirations where this cannot happen. Let C be a collection of coalitions. For each i ∈ N, let
Ci = {S ∈ C : i ∈ S}.

Definition 3. A collection C of coalitions is partnered if Ci is nonempty for all i and for any i, j
in N:

Ci ⊆ Cj ⇒ Cj ⊆ Ci.
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Definition 4. An aspiration x is partnered if GC(x) is partnered.

There are two ways in which an aspiration can be partnered: either both i and j need
each other (in which case Ci = Cj) or none of the two players need each other (in which
case Ci\Cj and Cj\Ci are both nonempty). The latter of these conditions will be important
in our analysis.

Definition 5. A collection C of coalitions is separating if Ci\Cj and Cj\Ci are both nonempty for
any i, j.

Definition 6. An aspiration x is separating if GC(x) is separating.

In a separating aspiration, any pair i, j of players are “separated” in the sense that
each of them can find a coalition to satisfy their demand without the other player. Clearly,
being separating is a stronger concept for an aspiration than being partnered (indeed,
unlike the set of partnered aspirations, the set of separating aspirations can be empty in
general games). The term “partnered” comes from Bennett [1]. Payoff vectors that we call
“separating” are called “completely separating” in Maschler and Peleg [8] but are referred
to as “minimally partnered” in Reny et al. [25] (in both these papers the focus is on demand
vectors feasible for the grand coalition N of all players, whereas we consider aspirations,
which are not necessarily feasible for N.) We think that “separating” is a better term,
emphasizing that any pair of players do not depend on each other, i.e., can be separated.

Another concept that will be useful is the following:

Definition 7. An aspiration x is balanced if x solves the problem

minx ∑i∈N xi
s.t. x(S) ≥ v(S) for all S ⊆ N.

The term “balanced” is from Bennett [1], although the concept itself is introduced in
Cross [2]. It is particularly useful for the weighted majority games that we study.

3.2. The Basic Demand Adjustment Process

The process works as follows. Time is discrete: t = 1, 2, . . .. At the beginning of any
period t, there is a vector of demands xt−1 = (xt−1

1 , . . . , xt−1
n ); we will drop the superscript

when no confusion arises. At t = 1, vector x0 is exogenously given; at t > 1, xt−1

emerges from the previous period as described below. One of the players is randomly
chosen to adjust his demand. We assume that all players have a non-zero probability to
be chosen. We can think of the chosen player as proposing a coalition; the assumption of
one randomly chosen proposer is common in the coalition formation literature (see Baron
and Ferejohn [26]). The chosen player searches for the coalition that leaves him the highest
payoff, provided that the demands of all other players in the coalition are satisfied. That is,
the player solves

max
S:i∈S
{v(S)− x(S\i)}. (1)

Denote the maximum value for the above problem by yi. Note that yi ≥ 0, since player
i can always choose S = {i}, in which case v(S)− x(S\i) = 0. Player i proposes one of the
coalitions that solve the maximization problem, say coalition Q, and sets a demand equal
to yi. (In particular, if no coalition involving other players is feasible given their demands,
player i forms a singleton coalition and sets yi = v({i}) = 0.) Hence the new vector of
demands is xt = (xt

1, . . . , xt
n), where xt

i = yi and xt
j = xt−1

j for j 6= i. We assume that all
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coalitions that solve the maximization problem are proposed with a positive probability.
The actual payoffs to the players at period t are

ut
j =

{
xt

j for j ∈ Q,
0 for j /∈ Q,

(2)

i.e., players in Q get their demands, while players outside Q receive nothing. The state of
the process at the end of period t is described by the demand vector xt = (xt

1, . . . , xt
n). We

refer to a state as an aspiration state if xt is aspiration.
Player i’s behavior can be described as adaptive in that i plays a best response to the

other players’ past choices. Since the other players are not able to change their demands
in the current period, we can also view i’s decision as rational (though myopic, since the
effect of actions on future periods is not taken into account). We interpret coalition Q as a
transitory arrangement that exists for period t only; it plays no role in subsequent decisions
of the players.

We will denote by Ψ the correspondence that, for a given state xt at time t, assigns
the set of states that can result at time t + 1 with positive probability according to the
process described above, so that Ψ(x) denotes the set of states that can be reached from x
in one step.

Let S be the set of all possible states of the process. Given A ⊆ S , Ψ(A) := ∪x∈AΨ(x)
is the set of states that can be reached in one step from a state in the set A.

Definition 8. A set of states A ⊆ S is absorbing if Ψ(A) = A. An absorbing set A is minimal
if no strict subset of A is absorbing.

Definition 9. The absorbing set solution is the union of all minimal absorbing sets.

A set of states is absorbing if, starting from a state in this set, the process cannot get
out of the set. The absorbing set solution contains all the long-run outcomes of the process
since the process will eventually reach one of the minimal absorbing sets starting from
outside the absorbing set solution (if this was not the case, the complement of the absorbing
set solution would also be absorbing; therefore, it would contain a minimal absorbing set
that would have to be included in the absorbing set solution, a contradiction). We have
taken the term absorbing set solution from Inarra et al. [27]; this concept also appears in [28]
as dynamic solution.

We now show that the absorbing set solution for this process coincides with the set of
all aspirations. Given a demand vector x, player i’s demand is not feasible if x(S) > v(S)
for all S 3 i. Player i’s demand is not maximal if there exists S 3 i such that x(S) < v(S).

Lemma 1. Let xt−1 be the demand vector at t− 1. Suppose i is randomly selected at time t to
adjust his demand. Then:

(i) If player i’s demand xt−1
i is not feasible, xt

i < xt−1
i .

(ii) If player i’s demand xt−1
i is not maximal, xt

i > xt−1
i .

Proof. Player i always sets xt
i = maxS:i∈S{v(S)− xt−1(S\i)} (recall that this value is always

nonnegative because i can always choose S = {i}).
(i) Because maxS:i∈S{v(S)− xt−1(S\i)} < xt−1

i (given that xt−1
i is not feasible), it follows

that xt
i < xt−1

i .
(ii) Because maxS:i∈S{v(S)− xt−1(S\i)} > xt−1

i (given that xt−1
i is not maximal), it follows

that xt
i > xt−1

i .

Our process is therefore a variant of the process of Bennett et al. [5], since the demand
adjustment part of it satisfies their three assumptions:
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(i) only one player adjusts at a time;
(ii) a player will increase his demand if some coalition can support the larger demand,

given the demands of others;
(iii) a player will decrease his demand if no coalition can support his current demand,

given the demands of others.

Note that Bennett et al. [5] assume that demands adjust in this way, but they do not
make any explicit assumptions about coalition formation. Since our demand adjustment
satisfies their three assumptions, the results of [5] that demands converge to the set of
aspirations also hold in our model. That only one player adjusts at a time justifies the
underlying myopic rationality of choosing the coalition with the maximum available
surplus, which simplifies proofs considerably. (It is sufficient for the results of this section
that the players have independent positive probability of adjustment in each period, which
implies inertia in the process, as, e.g., in [16]. On the other hand, if all players adjust
simultaneously, then the process can cycle, never reaching an aspiration because all players
simultaneously lower or raise their demands.)

Proposition 1. If xt is an aspiration, xt+1 = xt.

Proof. Consider any state xt that is an aspiration. Suppose player i is randomly cho-
sen at period t + 1 to adjust his demand. By feasibility, there exists S 3 i such that
xt(S) = v(S), or equivalently v(S) − xt(S\i) = xt

i . By maximality, any coalition Q 3 i
satisfies v(Q)− xt(Q) ≤ 0, which implies v(Q)− xt(Q\i) ≤ xt

i . From these two conditions
it follows that yi = xt

i . Then player i proposes some coalition S that leaves xt
i to him, thus

xt+1
i = xt

i . The demands of the other players do not change, and therefore xt+1 = xt.

It follows that the set of aspirations is absorbing. Indeed, each aspiration vector x is a
minimal absorbing set. The following proposition shows that there are no other minimal
absorbing sets, and hence the absorbing set solution is precisely the set of aspirations.

Proposition 2. For any initial demand vector x0, there exists a period T such that there is a positive
probability that xT is an aspiration.

Proof. Let Ht denote the set of players whose demands are not feasible given xt, and let Lt

denote the set of players whose demands are not maximal given xt.
Let x0 be the vector of demands at the beginning of period 1. Player i in H0 is selected

with a positive probability to adjust his demand. Since maxS:i∈S{v(S)− x(S\i)} ≥ 0 (e.g.,
S = {i}), the adjusted demand x1

i of player i will be feasible. Hence, |H1| < |H0| and
|L1| ≤ |L0|, since player i chooses a maximal coalition. Repeating the argument for players
in H1, H2, . . . with a non-zero probability the process moves to a state with Ht = ∅.

Suppose now that player j ∈ Lt is selected. For such a player, it holds that yj > xt
j .

Player j increases her demand to claim the maximal surplus available, and thus |Lt+1| <
|Lt|. This increase may turn some previously feasible demands unfeasible. However, from
the previous paragraph, when such players are selected, the process can reach a period
with H = ∅ without increasing |L|. Thus, with a positive probability, a situation with
Hr = ∅, |Lr| < |Lt| is reached. Continuing in this fashion, a period T with HT = ∅ and
LT = ∅ is reached.

Thus, an aspiration can be reached from any demand vector x0 (or, more generally,
xt) in a finite number of steps. Since once an aspiration is reached, then xt = xT for all
subsequent t > T (Proposition 1), it follows that

Corollary 1. The process converges to an aspiration with probability 1.

The aspiration approach can be criticized because players are assumed to increase
their demands whenever they are not maximal, irrespective of the probability of getting
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those demands. Note that in our model this probability is 1 by construction, since the
player who is selected to adjust also forms a coalition that is able to satisfy the demands of
its members.

Which aspiration the process converges to depends on the initial state x0 (together
with which players are selected to adjust). To select among aspirations, the next subsection
allows certain perturbations in the process.

3.3. The Demand Adjustment Process with Mutations

We will assume from now on that the values v(S) are rational numbers. Let m be a
common denominator of these numbers, and let δ = 1

lm . The number l controls how fine
the grid is. We assume that the demands of the players belong to a finite grid Γδ = {kδ : k ∈
{0, . . . , K}} where K is a sufficiently large number (e.g., K = V

δ , where V = maxS v(S)). We
consider only demand vectors belonging to the grid. Note that the grid is chosen in such a
way that for all x ∈ Γδ × . . .× Γδ, if x(S) < v(S), any player i ∈ S can increase the demand
to a point yi ∈ Γδ so that x(S) = v(S). The state space S of the demand adjustment process
consists of demand vectors x on the grid. With this finite grid, the demand adjustment
process is a finite Markov chain. For a sufficiently fine grid, the set of aspirations restricted
to the grid is non-empty (an irrational δ with all v(S) rational would make x(S) = v(S)
impossible to achieve and thus lead to an empty set of aspirations on the grid). The finite
grid also contains some partnered aspirations.

Lemma 2. If v(S) is a rational number for all S ⊆ N, there is at least one partnered aspiration
with rational coordinates.

Proof. See Appendix A.1.

The restriction to the finite grid thus retains some aspirations with desirable properties.
Given the state space S , let M be the matrix such that Mab specifies the probability

of moving from state a to state b in one step according to the demand adjustment process.
Matrix M is the transition matrix of the Markov chain on this state space. A probability
distribution on the (finite) state space S is a 1× |S| vector µ, where µa is the probability of
state a. The vector µ is a stationary distribution of the Markov chain M if µM = µ. Note
that M may have more than one stationary distribution.

The concept of absorbing sets can be naturally applied to Markov chains. A set of
states A ⊆ S is absorbing if for any distribution µ such that the support of µ is in A, it
holds that the support of µM is also in A. Because the process cannot permanently stay
out of the absorbing set solution, the support of any stationary distribution of the Markov
chain must be contained in the support of the absorbing set solution.

From the previous subsection, the absorbing set solution is precisely the set of aspira-
tions (Propositions 1 and 2). Therefore, the support of any stationary distribution consists
only of aspiration states. Note that for each particular aspiration x, there is a stationary
distribution whose support only includes x. Hence there are many stationary distributions.

We extend the basic process to allow for the possibility of rare occasions in which the
players’ behavior differs from the one described before. We will refer to such an event as a
“mutation”. Mutations make the process move between aspirations and may help to select
among them. The set of separating aspirations is important because such aspirations will
be robust against a mutation by one player, while other aspirations are not.

The basic model assumes that the adjusting player selects the demand that solves the
maximization problem (1). We now allow the possibility that this player “mutates”. We
assume that the player more likely mutates to a higher demand than to a lower demand.
That is, with probability 1− ε, there is no mutation (and the player adjusts in the usual way),
and with probability ε there is a mutation. Conditional on a mutation having occurred,
the new demand is within the set {xt−1

i , . . . , V} with probability 1− ε, and it is within the
set {0, . . . , xt−1

i } with probability ε. (The conditional probability could be a different value
ν 6= ε, but we can assume that ν = O(ε) without changing the results. Setting ν = ε allows
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us to summarize the likelihood of various mutations with one parameter.) Note that if
xt−1

i = V, then the most likely “mutation” is xt
i = xt−1

i . This model of mutations is similar
to intentional idiosyncratic play in [24]: players most likely “experiment” with demands
that can give them a higher payoff (if the other players adjust). Note that when ε = 0, the
process is the same as our basic process. We will consider the case where ε goes to 0.

We denote the transition matrix of the Markov chain of the process with mutation
probability ε by Mε. A Markov chain is irreducible if there is a positive probability of
moving from any state to any other state in a finite number of periods. The introduction of
mutations makes the process irreducible, since any vector of demands can arise as a result
of n consecutive mutations, one by each player. This implies that the Markov chain Mε has
a unique stationary distribution for ε > 0 (see, e.g., [6], pp. 48–49). The states that have
a positive probability in the limit of this stationary distribution as ε goes to 0 are much
more likely to be visited in the long run. The limit stationary distribution, denoted by
µ0 = limε→0 µε, exists (see [6], p. 56).

Definition 10. A state x is stochastically stable if it has a positive probability in the limit
stationary distribution as ε goes to 0, that is, µ0

x > 0.

For our model of mutations, the set of separating aspirations is robust to the introduc-
tion of one mutation of the most likely type, i.e., from xi to a higher demand.

Lemma 3. Consider state x where x is a separating aspiration. Suppose player i mutates, from xi
to a higher demand. Then the adjustment process without mutations will return to state x.

Proof. Suppose xt
i > xt−1

i . If player i is selected to adjust his demand at t + 1, because of
maximality of the original xt−1, he will form a coalition and get xt−1

i , in which case his
demand returns to its original value. If another player j is selected to update her demand,
she will form a coalition without i and get xt

j = xt−1
j . Since none of the players needed i

to achieve their demands, no demands will change until player i is selected to adjust his
demand, in which case xi will return to its original value.

On the other hand, if an aspiration is not separating, then a mutation by one player
can lead to a different aspiration.

Lemma 4. Consider state x where x is an aspiration that is not separating. There exists a player i
such that, if player i mutates from xi to xi + δ, the adjustment process without mutations converges
to a different aspiration with a positive probability.

Proof. Since x is not a separating aspiration, there exist two players, i and j, such that either
j needs i to achieve her demand but i does not need j, or i and j both need each other. Now
suppose i mutates to xi + δ. If player j is selected next, she can no longer find a coalition
that supports her demand and has to settle for yj = xj − δ, supported for example by a
coalition Q such that i, j ∈ Q and Q is in the generating collection of the previous aspiration
x. The new state is y = (x1, . . . , xi + δ, . . . , xj − δ, . . . , xn), with Q ∈ CG(y), i, j ∈ Q. This
state is not necessarily an aspiration since some of the other players’ demands may become
unfeasible after an increase in player i’s demand. Such players will lower their demands
in the next periods with a positive probability, but player i will never lower his demand,
since coalition Q has become feasible for i after j’s adjustment. Another aspiration will be
reached with player i demanding a bit more, and some players, e.g., player j demanding a
bit less.

That some states are resistant to one (most likely) mutation and other states are
not can be helpful in identifying what states can be stochastically stable. If there are
sets of states that can be disturbed only with multiple mutations, only such sets can be
stochastically stable.
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Definition 11. We call a set of states B locally stable if (i) all states in B are in an absorbing set;
(ii) for any S ⊆ B, after a mutation of one player to a higher demand the basic process converges to
a state in B; (iii) there is no proper subset of B that has this property.

This definition is based on the definition in Nöldeke and Samuelson [29]. It implies
that there is a sequence of mutations, one at a time, that allows to move between any
two states in B (otherwise a subset of B would be locally stable). It is also related to the
“one-deviation” property of Newton and Sawa [20], although they define this property for
more general mutation structures.

Proposition 3. If state x is stochastically stable, then x ∈ B, where B is in a locally stable set
of states.

The proposition is a restatement of Proposition 1 in Nöldeke and Samuelson [29] and
their proof applies. Intuitively, the “cost” (in terms of the number of most likely mutations)
of moving away from a locally stable set B is more than 1. From states not in a locally stable
set, the cost of moving away is 1. If the probability of mutations goes to zero, the process
spends almost all the time in those states that are part of a locally stable set.

Lemma 3 shows that each separating aspiration is in a locally stable set, but there may
be other (non-singleton and consisting of aspirations that are not separating) locally stable
sets. Below we analyze the stochastic stability of aspirations in a class of weighted majority
games. We show that in important subclasses of these games separating aspirations are
indeed the only ones that are locally, and thus stochastically, stable. However, in other
weighted majority games, there exist non-singleton locally stable sets; thus aspirations that
are not separating can still be stochastically stable.

4. Demand Adjustment in Weighted Majority Games
4.1. Weighted Majority Games

A simple voting game is a transferable utility game (N, v) such that v(S) = 0 or 1 for
all S ⊆ N. We will assume that v(S) = 1 implies v(T) = 1 for all T ⊇ S (monotonicity). A
coalition S is called winning if v(S) = 1, and losing if v(S) = 0. The set of winning coalitions
is denoted by W. A minimal winning coalition S is a coalition that is just large enough to
win, that is, S is winning but no T  S is winning. The set of minimal winning coalitions is
denoted by Wm.

We only consider simple voting games that are proper, that is, if S, T ∈ W, then
S ∩ T 6= ∅. If a simple game is proper, it is not possible for two disjoint coalitions to be
winning. A stronger condition is the following:

Definition 12. A simple voting game is constant-sum if v(S) + v(N\S) = 1.

In a constant-sum game, the partition of the set of players into two sets always results
in one winning coalition and one losing coalition.

A veto player is a player who is in all winning coalitions. A null player is a player such
that v(S) = v(S ∪ {i}) for any S; such a player does not belong to any coalition in Wm. We
assume henceforth that there are no null players, that is, each player belongs to at least one
coalition in Wm.

A simple voting game is weighted if it is possible to assign a number of votes (weight)
wi ≥ 0 to each player and to set a threshold q such that S is winning if and only if
∑i∈S wi ≥ q. The combination [q; w1, ..., wn] is a representation of the voting game. There are
many representations [q; w1, ..., wn] that are equivalent in that they produce the same set of
winning coalitions.

Definition 13. A representation [q; w1, ..., wn] is called homogeneous if all minimal winning
coalitions have the same total weight q.
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Definition 14. A game that admits a homogeneous representation is a homogeneous game.

For example, [3; 2, 1, 1, 1] is a homogeneous game because each minimal winning
coalition has exactly three votes. In contrast, [5; 2, 2, 2, 1, 1, 1] is not a homogeneous game.
Coalition {1, 2, 3} is minimal winning but has six votes, while other minimal winning
coalitions (such as {1, 2, 4}) have five votes. Moreover, it is not possible to find an alternative
representation of this game that would be homogeneous.

Two players, i and j, are of the same type if v(S ∪ {i}) = v(S ∪ {j}) for all S ⊂ N,
i, j /∈ S. If wi = wj, i and j are of the same type, though the converse is not necessarily
true. It will sometimes be useful to refer to coalition types by listing the player types that
form the coalition, as in [3; 2, 1, 1, 1] having two types of minimal winning coalition, [21]
and [111].

Weighted majority games have an empty core unless there are veto players. Constant-
sum games have no veto players, except for the trivial case in which there is one veto player
who is also a dictator, that is, {i} ∈W.

4.2. Aspirations in Weighted Majority Games

We focus on constant-sum homogeneous games. For games in this class, there is an
aspiration vector with desirable properties.

Remark 1. Let (N, v) be a constant-sum homogeneous game and [q; w1, ..., wn] a homogeneous
representation of this game. The aspiration vector

(
wi
q

)
i∈N

is balanced and separating and has
rational coordinates.

For constant-sum homogeneous games, Peleg [30] (Theorem 3.5) shows that the
nucleolus [31] is the only homogeneous representation that has ∑i∈N wi = 1 (hence the
homogeneous representation is unique up to a multiplicative constant in this class of
games). Given that the nucleolus is a representation, the vector

(
wi
q

)
i∈N

, where w is the

nucleolus and q is ∑i∈S wi for any minimal winning coalition S, is an aspiration vector and
the generating collection for this aspiration vector is Wm. The nucleolus is proportional to
a representation with integer weights (see [30]); hence

(
wi
q

)
i∈N

has rational coordinates.

This aspiration is separating, since for any i and j there is a feasible coalition that contains
i but not j. To see this, consider S ∈ Wm such that S 3 i. If j /∈ S, the result follows.
Suppose j ∈ S. Since the game is constant-sum, N\S is losing and {i} ∪ N\S is winning.
Furthermore, since the game is homogeneous, there exists a coalition T ⊆ {i} ∪ N\S such
that i ∈ T and w(T) = q; this coalition is feasible for i and does not involve j. That this
aspiration vector is also balanced follows from [32]. It is the only balanced aspiration vector
(see [33], Remark 10).

That the balanced aspiration has rational coordinates allows us to select the grid size
δ in such a way that the grid contains the balanced aspiration. Peleg [30] shows that a
constant-sum homogeneous game has a unique integer representation [q; w1, . . . , wn] with
mini∈N wi = 1. If δ = 1

lq , then the balanced aspiration is on the grid.
For constant-sum homogeneous games, we have established that there is a unique

balanced aspiration vector, which is also a separating aspiration vector and has rational
coordinates. There may be many other separating aspirations, as the example below illus-
trates.

Example 1. (Aspirations that are separating but not balanced.) Consider the game [4; 2, 2, 1, 1, 1].
All demand vectors of the form x = (a, a, 1−a

2 , 1−a
2 , 1−a

2 ), where 1
2 ≤ a ≤ 1 are separating

aspirations for this game. If a > 1
2 , the only coalitions in GC(x) are of the form [211]. No player

depends on any other; in particular, players with two votes do not depend on any particular player
with one vote to obtain their demands. Aspirations with a > 1

2 are separating but not balanced,
since the aspiration ( 1

2 , 1
2 , 1

4 , 1
4 , 1

4 ) has a smaller total sum.
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The example also shows that separating aspirations can result in a very unequal
distribution between types, as in the case of x = (1, 1, 0, 0, 0).

If we relax the assumption that the game is constant-sum and homogeneous, it is
possible for an aspiration vector to be balanced but not partnered (and therefore not
separating; see Appendix A.2).

4.3. Symmetric Majority Games

The simplest class of games to which we can apply our adjustment process is the
following. Consider the symmetric majority game with n players and wi = 1 for all players:

[q; 1, . . . , 1].

If q = n, then the game is a unanimity game (all players are needed to form a winning
coalition; all players are veto players). In this game, there are no separating aspirations
and all demand vectors with x1 + . . . + xn = 1 are in the core. Therefore, we consider
n
2 < q < n. The three-player simple majority example in the introduction is the symmetric
majority game with n = 3 and q = 2.

The balanced aspiration is
(

1
q , . . . , 1

q

)
, which is also separating. Other aspirations

include, for example (0, . . . , 0, 1, . . . , 1), with q − 1 players demanding 0. There, aspira-
tions are clearly non-partnered, with players with demand 1 depending on players with
demand 0.

Proposition 4. The unique stochastically stable state for a symmetric majority game with n
2 < q < n

is the balanced aspiration
(

1
q , . . . , 1

q

)
.

Proof. Consider an aspiration x = (x1, . . . , xn)with xm = mini=1,...,n xi < xM = maxi=1,...,n xi.
Since 1

q is on the grid, xm ≤ 1
q − δ (otherwise there are players whose demands are not

feasible) and xM ≥ 1
q + δ (otherwise there are coalitions that are not maximal).

In any coalition in GC(x), players with demand xm are included, and any excluded
players demand xM. Let xi = xm and xj = xM. Suppose player i mutates to xm + δ. If
player j is selected to adjust, she sets her demand to xM − δ. Other players with demand
xM may need to adjust downwards by δ, but in a new aspiration y, ym ≥ xm and if ym = xm,
then the number of players with demand xm is smaller in y than in x. Continuing the
mutations in this fashion, aspiration with xm = 1

q is reached. Then xM = 1
q , and the

balanced aspiration is reached.
Since the balanced aspiration is separating, it constitutes a locally stable set. The

previous argument shows that there are no other locally stable sets. By Proposition 3, the
balanced aspiration is stochastically stable.

4.4. Apex Games

Apex games are weighted majority games with one major player (the apex player)
and n− 1 ≥ 2 minor players (or base players). They can be described as

[n− 1; n− 2, 1, . . . , 1],

with the apex player having n− 2 votes, each of the n− 1 minor players having 1 vote,
and n − 1 (out of total 2n − 3) votes are needed to win. In terms of the characteristic
function, an apex game is given by v(S) = 1 if 1 ∈ S and |S| > 1, or if S = {2, . . . , n}, and
v(S) = 0 otherwise. Player 1 needs only one minor player to form a winning coalition,
whereas the only way to win in the absence of the apex player is if all minor players form a
coalition. Apex games have received a lot of attention in the literature since von Neumann
and Morgenstern [34] from both theoretical and experimental perspectives (see [35–39] for
theoretical developments and [39–43] for experimental studies).
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The set of aspirations in apex games can be divided into several subsets. If x1 < n−2
n−1 ,

then in an aspiration, every xi >
1

n−1 , and x({2, . . . , n}) > 1. This implies that xi = 1− x1
for all i = 2, . . . , n, with GC(x) = {{1, i}i=2,...,n} if x1 > 0 and GC(x) = {{1}, {1, i}i=2,...,n}
if x1 = 0. If x1 > n−2

n−1 , in an aspiration min{2,...,n} xi = 1− x1 < 1
n−1 , max{2,...,n} xi >

1
n−1 ,

and ∑n
i=2 xi = 1. The generating collection of such aspirations consists of the coalition of

minor players {2, . . . , n}, and one or more coalitions {1, i}. If x1 = 1, also some singleton
coalitions are feasible. Finally, there is aspiration x =

(
n−2
n−1 , 1

n−1 , . . . , 1
n−1

)
with GC(x) =

{{2, . . . , n}, {1, i}i=2,...,n} = Wm. This aspiration is the unique balanced aspiration, and it
is separating.

For our demand adjustment process with mutations, the following proposition holds:

Proposition 5. The unique stochastically stable state for apex games is the balanced aspiration(
n−2
n−1 , 1

n−1 , . . . , 1
n−1

)
.

Proof. Consider an aspiration x with x1 > n−2
n−1 . If there is only one coalition {1, i} in

GC(x), player 1 needs player i. If player i mutates to xi + δ and player 1 is then selected to
adjust her demand, player 1 is forced to reduce her demand. Other players may need to
lower their demands as well, but in the new aspiration y, it holds that y1 < x1.

If there is more than one coalition {1, i} in GC(x), player 1 does not depend on any
player, but there is a player k with xk = max{2,...,n} xi >

1
n−1 that does depend on player i.

Suppose player i mutates to xi + δ and player k is selected to adjust. Player k will propose
coalition {2, . . . , n} with probability 1 (since x1 ≥ n−2

n−1 + δ and xk ≥ 1
n−1 + δ, it cannot be

optimal for k to propose {1, k}) so that player i receives xi + δ and player k receives xk − δ.
No other player needs to adjust, but coalition {1, i} is not feasible for the new aspiration
vector. Repeating the reasoning if necessary, a chain of mutations, happening one at a time,
leads to an aspiration x in which only one coalition {1, i} is in GC(x).

Repeating the steps of the last two paragraphs, from any aspiration x with x1 > n−2
n−1

there is a chain of mutations, happening one at a time, and possible adjustment of demands
according to the basic process, leading to the aspiration

(
n−2
n−1 , 1

n−1 , . . . , 1
n−1

)
.

Consider now aspiration x with x1 < n−2
n−1 . Since {2, . . . , n} is not feasible, any minor

player i needs player 1. Suppose player 1 mutates to x1 + δ and player j 6= 1 is selected to
adjust. Player j proposes coalition {1, j}, giving a payoff x1 + δ to player 1 and lowering her
own demand to xj− δ. Furthermore, all other minor players also lower their demands when
selected because the coalitions with player 1 became unfeasible. When a new aspiration
y is reached, it holds that y1 > x1. Repeating the step if necessary, there is a chain of
mutations (happening one at a time) and subsequent adjustment according to the basic
process, leading to the partnered aspiration

(
n−2
n−1 , 1

n−1 , . . . , 1
n−1

)
.

The balanced aspiration itself cannot be upset by one mutation according to Lemma 3;
thus it is locally stable. The previous reasoning shows that there are no other locally stable
sets. According to Proposition 3, this implies the result.

4.5. Stochastic Stability in Other Weighted Majority Games

Allowing intentional “mutations” works to select the unique separating aspiration in
the classes of symmetric majority games and apex games. The players that demand too little
can start demanding a bit more, and, since other players depend on them to satisfy their de-
mands, the competition for scarce players drives the demands to the separating aspiration.

However, we will see below that the process does not always lead to this strong result.
While for some games, only separating aspirations are stochastically stable (Example 1),
we show that for other games there exist locally stable sets that do not contain separating
aspirations (Examples 2 and 3). Thus, the strong result for symmetric game and apex games
from the previous subsections does not easily generalize to other weighted majority games.
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Example 1 (continued). Consider the game [4; 2, 2, 1, 1, 1]. Recall that in this game, separating
aspirations are of the form (a, a, 1−a

2 , 1−a
2 , 1−a

2 ) for 1
2 ≤ a ≤ 1 (this set includes the unique balanced

aspiration ( 1
2 , 1

2 , 1
4 , 1

4 , 1
4 ).)

Consider an aspiration x with x1 + x2 = 1 and x1 < x2 (the case x1 > x2 can
be analyzed analogously). In x, player 2 depends on player 1: if there was a coali-
tion S ∈ GC(x), 2 ∈ S, 1 /∈ S, then coalition S\{2} ∪ {1} would not be maximal. Since
x1 + x2 = 1 and 1

2 is on the grid, then x1 ≤ 1
2 − δ and x2 ≥ 1

2 + δ. If player 1 mutates to
x1 + δ and player 2 adjusts to x2 − δ, then a new aspiration y is eventually reached with
y1 > x1 and y1 + y2 = 1. Continuing if necessary, an aspiration with x1 = x2 = 1

2 can be
reached by a sequence of mutations, one player (player 1) at a time.

Consider now aspiration x with x1 = x2 = 1
2 . Such aspirations are of the form

( 1
2 , 1

2 , b, 1
2 − b, 1

2 − b), ( 1
2 , 1

2 , 1
2 − b, b, 1

2 − b) or ( 1
2 , 1

2 , 1
2 − b, 1

2 − b, b), with b ≤ 1
4 . If b = 1

4 ,
then we have the balanced aspiration. Suppose b < 1

4 and let xi = b and xj = xk =
1
2 − b.

Since xi < xj = xk, players j and k both depend on player i. Suppose player i mutates and
players j and k are selected to adjust. Then a new aspiration y is reached, with yi > xi and
yj < xj, yk < xk. Continuing if necessary, the balanced aspiration

(
1
2 , 1

2 , 1
4 , 1

4 , 1
4

)
is reached.

Consider now an aspiration x with x1 + x2 > 1. Such aspirations are of the form
(a, a, b, 1− a− b, 1− a− b), (a, a, 1− a− b, b, 1− a− b), or (a, a, 1− a− b, 1− a− b, b) with
a > 1

2 and b ≤ 1 − a − b (equivalently, b ≤ 1−a
2 ). If b = 1−a

2 , then x is a separating
aspiration. Otherwise, let xi = b < xj = xk = 1− a− b. Since the only feasible coalitions
are [211], a maximal such coalition has to include player i, and therefore players 1 and 2
depend on player i. Suppose player i mutates to xi + δ. If players 1 and 2 are subsequently
selected to adjust, they both lower their demand. If then x1 + x2 = 1, then we are in one of
the cases in the previous paragraphs. Continuing if necessary, either an aspiration with
x1 + x2 = 1 is reached or an aspiration with x3 = x4 = x5. If the former, the process
continues as described in the previous paragraphs. If the latter, a separating aspiration(

a, a, 1−a
2 , 1−a

2 , 1−a
2

)
with 1

2 ≤ a ≤ 1 has been reached. Therefore from any aspiration, a
sequence of mutations, one player at a time, can reach the set of separating aspirations(

a, a, 1−a
2 , 1−a

2 , 1−a
2

)
with 1

2 ≤ a ≤ 1. This set is the unique locally stable set. Therefore,
stochastically stable states are within this set of separating aspirations.

The previous example shows that there are games other than apex games in which
only the separating aspirations are stochastically stable in the demand adjustment process
with mutations (even if the set is larger than the unique balanced aspiration), because
locally stable sets contain only separating aspirations. However, in other games, there are
locally stable sets that contain other aspirations (including non-partnered ones).

Example 2. Consider the game [7; 5, 2, 2, 1, 1, 1, 1]. Consider aspiration x = (0.8, a, 0.7 − a,
0.1, 0.1, 0.1, 0.1) with 0.2 < a < 0.5. In x, no player depends on any other player, except players 2
and 3, who depend on each other. Thus, it is partnered but not separating.

Suppose that the process is at x. If a player other than player 2 or 3 mutates upwards,
then no other player would need to adjust; the process will return to x. Suppose player
2 mutates upwards to y2 (mutations by player 3 can be analyzed analogously). The
only other player who would need to adjust is player 3. If y2 < 0.5, player 3 adjusts to
y3 = 0.7− y2, and in the new aspiration players 2 and 3 still depend on each other and
there are no other dependencies among the players. If y2 ≥ 0.5, then player 3 adjusts
to y3 = 0.2 (with coalition {1, 3}). If y2 = 0.5, then y is an aspiration. If y2 > 0.5,
player 2’s demand is unfeasible and he has to lower the demand to 0.5. In either case,
aspiration y = (0.8, 0.5, 0.2, 0.1, 0.1, 0.1, 0.1) is reached. This aspiration is not partnered,
since player 2 depends on player 3 but not vice versa. If player 3 now mutates upwards,
then player 2 would need to adjust, but the adjustment would lead either to aspiration
z = (0.8, 0.2, 0.5, 0.1, 0.1, 0.1, 0.1) or to an aspiration like x.
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Therefore, the set of aspirations (0.8, a, 0.7− a, 0.1, 0.1, 0.1, 0.1) with 0.2 ≤ a ≤ 0.5
is a locally stable set. The set contains non-partnered aspirations (a = 0.2 or a = 0.5).
Aspirations in the set can be reached one from another by a series of mutations, one at
a time, but no aspiration outside of the set (including the unique balanced aspiration(

5
7 , 2

7 , 2
7 , 1

7 , 1
7 , 1

7 , 1
7

)
) can be reached from it by one mutation.

Example 3. Consider the game [8; 2, 2, 2, 2, 2, 2, 1, 1, 1], with nine players; players 1–6 have two
votes each and players 7–9 have one vote each. Minimal winning coalitions in this game can be
either four players with two votes ([2222]) or three players with two votes and two players with one
vote ([22211]).

In this game, the unique balanced aspiration is
(

2
8 , . . . , 2

8 , 1
8 , 1

8 , 1
8

)
. Consider aspiration

x =
(

2
8 , 2

8 + δ, . . . , 2
8 + δ, 1

8 − δ, 1
8 − δ, 1

8 − δ
)

, in which only one player with two votes de-

mands 2
8 , while other such players demand δ more. It is non-partnered, with all players

depending on player 1. Mutations of players other than player 1 will result in the process
going back to x. Suppose player 1 mutates upwards. If any of players 2-6 adjust, the adjust-
ment is to 2

8 . Player 1 then adjusts to 2
8 + δ, leading to an aspiration that is a permutation of

x (within types of players). If player 7 adjusts, the adjustment is to 1
8 − 2δ. Player 1 then

adjusts to 2
8 + δ and the new aspiration is y =

(
2
8 + δ, . . . , 2

8 + δ, 1
8 − 2δ, 1

8 − δ, 1
8 − δ

)
(if

players 8 or 9 adjusts, the new aspiration is a permutation of y). In y, all players depend on
player 7. If player 7 mutates upwards, then either players 8 or 9 adjust to 1

8 − 2δ, leading to
an aspiration that is a permutation of y, or any of the players 1–6 adjust to 2

8 , leading to an
aspiration that is a permutation of x. The process thus can move between aspirations such
as x and y with one mutation but cannot reach any other aspiration with one mutation. The
set of aspirations that are permutations of x and y is locally stable, even though none of
these aspirations is partnered.

Note that the reasoning in the previous paragraph does not depend (much) on the
size of δ: if, for example, δ′ = δ/2, the same reasoning applies. There is also nothing
special about it being only δ away from the balanced aspiration. Consider aspiration
x′ = ( 2

8 + aδ, 2
8 + (a + 1)δ, . . . , 2

8 + (a + 1)δ, 1
8 − ( 3

2 a + 1)δ, . . . , 1
8 − ( 3

2 a + 1)δ), with integer
a divisible by 2 and 0 ≤ a ≤ 1

12δ −
4
3 (the example in the previous paragraph is obtained

by setting a = 0). In x′, all players depend on player 1. Similarly to the discussion in the
previous paragraph, mutations of one player can move between permutations of x′ and
y′ = ( 2

8 + (a + 1)δ, . . . , 2
8 + (a + 1)δ, 1

8 − ( 3
2 a + 2)δ, 1

8 − ( 3
2 a + 1)δ, 1

8 − ( 3
2 a + 1)δ). The set

of aspirations which are permutations of x′ and y′ is again locally stable.

These last two examples show that it is not necessarily the case that only separating
aspirations are contained in a locally stable set. The analysis of stochastic stability in these
games then requires going beyond locally stable sets, looking also at mutations that are not
the most likely ones. We leave this analysis for future research.

5. Conclusions

This paper presented a simple best-reply adaptive model of demand adjustment in
cooperative games. Our basic process without mutations converges to the set of aspirations;
by introducing certain mutations in the process, we are able to select a plausible subset of
the set of aspirations.

In particular, our model of mutations, based on the intuitive desire to try to achieve a
higher payoff, allows players to experiment with higher demands more often than with
lower ones. This model identifies the set of separating aspirations, in which no player is
indispensable in order for other players to achieve their demands, as the set that is most
resistant to change.

For two particular classes of weighted majority games, namely symmetric games
and apex games, we show that, with such infrequent mutations, the unique separating
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aspiration in each game is stochastically stable. In this way we provide sharp predictions
for these important classes of games with an empty core.
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Appendix A.

Appendix A.1. Proof of Lemma 2

Lemma A1. If v(S) is a rational number for all S ⊆ N, there is at least one partnered aspiration
with rational coordinates.

Proof. Recall that the set of balanced aspirations is defined as the solution to the following
linear programming problem:

minx ∑i∈N xi
s.t. x(S) ≥ v(S) for all S ⊆ N.

This problem can be solved by the simplex method to obtain a balanced aspiration
with rational coordinates. If this balanced aspiration is also partnered, we have found
a partnered aspiration with rational coordinates. If not, we can use the method of Ben-
nett [1] (Theorem 6.5) to find a partnered aspiration. This procedure uses the dual linear
programming problem

maxλ ∑S⊂N v(S)λS
s.t. ∑S3i λS ≤ 1

λS ≥ 0 for all S ⊂ N.

Let x be the balanced aspiration we found by solving the primal. By complementary
slackness, any coalition that has λS > 0 in the corresponding solution of the dual has
x(S) = v(S); that is, it belongs to GC(x). Furthermore, any player with xi > 0 in the
balanced aspiration under consideration has ∑S3i λS = 1. Other players may in principle
have ∑S3i λS < 1, but these players must be getting xi = 0, so that {i} is in the generating
collection of x. We can then take λ{i} to be as large as needed so that ∑S3i λS = 1 holds for
all players, while still keeping the property that only coalitions in GC(x) can have positive
values for λS. Some coalitions may be in GC(x) and have λS = 0, and, as Bennett [1] shows
and we discuss below, this is the reason why balanced aspirations are not always partnered.

Denote by C(x) the collection of coalitions with λS > 0. A crucial step of Bennett’s [1]
argument is that, if these were the only coalitions in the generating collection, the aspiration
x would be partnered since the partnership condition holds for C(x); that is, for all i and j,

∃S′ ∈ C(x), i ∈ S′, j /∈ S′ =⇒ ∃S′′ ∈ C(x), j ∈ S′′, i /∈ S′′.

This is because, if all S ∈ G(x) that contain i also contain j, but not the reverse, we would
have ∑S3i λS < ∑S3j λS, and hence it would not be possible for both sums to equal 1.

Hence, if x is not partnered, this must be because of a coalition S such that S ∈ GC(x),
S /∈ C(x), j ∈ S, i /∈ S. We now modify x slightly so that S stops being in GC(x) without any
other coalition being added to GC(x). Let y be such that yk = xk for all k 6= i, j; yi = xi − δ,
yj = xj + δ. If δ is sufficiently small, none of the coalitions involving i that were previously
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unfeasible will become feasible; also, if δ is chosen to be a rational number, the new vector
y will still have rational coordinates.

The vector y is an aspiration and, since all coalitions involving j but not i have become
unfeasible, i and j now satisfy the partnership condition. There may be other players that
were unpartnered in x and are still unpartnered, and there may even be some previously
partnered players that have become unpartnered (this would be the case if player k can
form a coalition without player l under both x and y, but all coalitions player l could form
without k under x have become unfeasible because they all involved j and excluded i).
However, since the partnership condition holds for C(x), the coalition in GC(y) containing
k but not l must have a weight of 0, and the same process can be applied to make that
coalition unfeasible so that k and l become partners.

The process can be repeated until a partnered aspiration is reached. Coalitions in C(x)
are not affected by the process; hence, the demand vectors remain partnered aspirations
when restricted to C(x). Every time an adjustment is made some coalitions leave GC(x),
and no coalitions are added to GC(x). Since GC(x) is a finite set, the process eventually
terminates, and the resulting aspiration is partnered (and incidentally still balanced, since
the total sum of the demands is not altered).

Appendix A.2. An Aspiration Vector That Is Balanced But not Partnered

In a constant-sum homogeneous game there is a unique balanced aspiration that is
also partnered; see Remark 1. The following example shows that, for games outside this
class, it is possible for an aspiration to be balanced but not partnered.

Example A1. (An aspiration vector that is balanced but not partnered.) Consider the game
[42; 11, 11, 9, 7, 7, 7, 5, 5, 1], which appears in [44]. The aspiration vector x =

(
wi
q

)
i∈N

is balanced
but not partnered.

Note that the above game is neither constant-sum nor homogeneous. It is not constant-
sum because the majority is 42 out of a total of 58 votes, so for example coalition {1, 2} and
its complement are both losing. It is not homogeneous because there are minimal winning
coalitions such as coalitions of type [11 11 9 7 5], which have more than 42 votes. Note that
the only coalitions in GC(x) are the ones that have exactly 42 votes. It can be shown that
the aspiration vector x is balanced, but it is not partnered because the player with 9 votes
needs the player with 1 vote, but the player with 1 vote can form a coalition of type [11 11 7
7 5 1] without the player with 9 votes.
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