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Abstract: The experimental evidence on contests often reports overspending of contest participants
compared to the theoretical Nash equilibrium outcome. We show that a standard level-k model may
rationalize overspending in contests. This result complements the existing literature on overspending
in contests, and it bridges an open gap between the contest and auction literature. In fact, the
literature on auctions often runs parallel to that on contests.Overbidding in auctions has also been
documented empirically, and it has been shown that, in private-value auctions, such overbidding
can be rationalized by level-k reasoning. We bridge the existing gap between the auction and contest
literature by showing that overbidding may also be true in a theoretical contest environment with
level-k reasoning.
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1. Introduction

The experimental literature on contests often reports significant overspending of
subjects compared to the Nash equilibrium—see, [1–4], among others, and [5] for a survey
of experimental research on contests. We propose a theoretical rationale for overspending
in Tullock contests ([6]) which is based on the standard level-k model.

We adopt a standard level-k model, which works as follows. A player of depth of
reasoning k, or a level-k player (henceforth, in short, “an Lk-player”), believes that the other
players are Lk− 1, and thus “best responds” to this belief. In particular, L1-players best
respond to all other players playing the strategy of L0-players, L2-players best respond
to all other players playing the strategy of L1-players, and so on. (Some alternatives of
behavior of types L2 and higher have been proposed. For instance, in [7,8] while L1-players
best respond to uniformly playing L0-players, L2-players best respond to a mixture of
L0-players and L1-players, and so on. Another alternative is [9], where Lk-players best
respond to an estimated mixture of players of lower k, via a one-parameter Poisson distri-
bution. In the present paper, we choose the most simple and common approach that Lk
best responds to all others being Lk− 1).

L0-players are nonstrategic in that they form no beliefs over the opponents’ actions
and rather play an instinctive reaction to the game. It is common in the literature to assume
that L0-players uniformly mix over all possible actions ([7–14]) and this is backed up by
empirical findings. An alternative approach is that L0-players choose a salient or intuitive
action, also known as a “focal point”. However, as reported by [13], “the evidence [. . . ]
generally supports level-k models in which players anchor beliefs in a uniform random L0”.

Furthermore, the literature on auctions often runs parallel to that on contests. Over-
bidding in auctions has also been documented empirically/experimentally (see, [15] for
an overview) and can in private-value auctions be rationalized by level-k models ([12]).
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We bridge the existing gap between the auction and contest literature by showing that
overbidding can also be true in a contest environment due to level-k reasoning.

In general, there are two main branches of theoretical models that have been proposed
to explain overspending. The first branch of models drops the standard specification of the
expected utility function of subjects, e.g., assuming an extra non-monetary utility derived
either from winning (see [16] for the case of contests and [17,18] for the case of auctions) or
from relative payoff (e.g., [19]), or assuming that subjects assign a distorted value to the
probability of winning (e.g., [20]).

The second branch of models to which this paper belongs suggests that players do
not work out all the necessary steps to compute the Nash equilibrium, i.e., subjects are
boundedly rational. Two approaches to bounded rationality models are common in the
literature. The first is through quantal response equilibrium (QRE) models (see [21]),
where the probability of a certain action is increased with the expected payoff of that action.
Applications of QRE models to contests can be found in [22–24]. For auctions, overspending
based on QRE is shown by [25]. The second is through level-k models; for auctions, [12]
show that level-k models can rationalize overbidding. We provide the missing link that
shows that a similar result can be obtained in the realm of contests.

To our knowledge, the only paper applying level-k models to contests is [26]. He
studied a two-player symmetric Tullock contest and showed that overspending compared
to the Nash equilibrium did not occur. This creates a divide between the auction and
contest literature where the results are not the same from one literature to the other. We
argue that [26] is a special case and that extending the framework to either more players
or allowing for asymmetric players may yield an overspending result in line with the
aforementioned parallelism between the literature on auctions and contests. A summary of
the link between the contest and auction literature that we contribute to is summarized in
Table 1.

Table 1. Does bounded rationality rationalize overspending. . .

QRE Level-k

. . . in Auctions? Yes: [25] Yes: [12]

. . . in Contests? Yes: [22–24] No: [26]
Yes: present paper

Our main argument relies on the observation that, in a two-player symmetric Tullock
contest, the Nash equilibrium is situated at the peak of both players’ best response functions.
In such a situation, there is no scope for overspending since the Nash equilibrium is already
at the maximum of the players’ best response functions, and hence there is no belief for a
best-responding player about the rival’s behavior that would make them exert more effort
than their Nash equilibrium one.

In turn, there is no assumption on the behavior of L0-players that would make an
Lk ≥ 1 player exert strictly more effort than in the Nash equilibrium, even if one were to
cherry-pick the actions of the L0-players. As noted by [27] among others, one could always
find an arbitrarily cherry-picked behavior of L0-players so as to rationalize any individually
rational action of L1-players, if no further restrictions are imposed. However, in the present
paper, we tie our hands by imposing that L0-players randomize uniformly over the space of
positive efforts with a given upper-bound. Thus, our exercise of rationalizing overspending
for any given such upper-bound is non-trivial.

However, we show that it is sufficient to drop one of the main two assumptions
in [26]—namely, symmetry or having two players—to find overspending already for
L1-players; the intuition relies on the Nash equilibrium no longer being at the peak of
the best response function. In particular, we find that overspending occurs in two-player,
sufficiently asymmetric contests and in three-player symmetric contests; see, respectively,
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Propositions 2 and 3. Note that a minimal level of asymmetry is required; otherwise, the
Nash equilibrium would be too close to the peak of the best response function.

Hence, despite the level-k model failing to provide a unifying explanation for the
phenomenon of overspending in contests, we show that the level-k model can rationalize
overspending when departing from the two-player symmetric setting. Therefore, we see
our results as a step toward a robust hybrid model of player thinking, including other
behavioral models, which could well explain overbidding across different contest settings.

Our theoretical results are also consistent with empirical evidence other than the
possibility of overspending. First, the fact that overspending increases with the number
of bidders (e.g., [28]) is consistent with our result that moving from two to three players
makes overspending strictly positive for some parameter values. Second, the heterogene-
ity of contestants’ behavior facing identical contests (e.g., [4]) is consistent with the fact
that the depth of reasoning and the realization of the L0’s random behavior may differ
across players.

The structure of the paper is as follows. In Section 2, we introduce the standard model
of Tullock contest. In Section 3, we provide benchmark results for the Nash equilibrium
as well as level-k results in the case of a two-player symmetric contest—thus, paralleling
the results of [26]. In Section 4, we show that overspending may occur in two-player
asymmetric contests, and in Section 5, in three-player symmetric contests. Section 6
discusses the results and briefly mentions the level-2 case. Proofs that do not follow directly
from the main text are relegated to Appendix A.

2. Model

Consider a complete information Tullock-contest with n risk-neutral players indexed
by i ∈ {1, . . . , n}. Players compete for a prize whose value, without loss of generality,
normalizes to 1. Each player i chooses effort level ei and has a probability of winning the

prize equal to pi(e1, . . . , en) = ei/E, where E =
n
∑

j=1
ej and ei ≥ 0 ∀i ∈ {1, . . . , n}. If all efforts

are 0, the prize is awarded with a fixed probability strictly less than 1 to each player. (This
situation is never reached in equilibrium.) The cost of effort is linear, and the marginal cost
equals ci > 0 for player i. Hence, player i chooses ei to maximize

ei
n
∑

j=1
ej

− ciei. (1)

Throughout the paper, we denote, by eNE, the Nash equilibrium of such a game, and
by eLi, the effort of Li-players in the level-k version of such a game. In level-k models,
the most frequently observed types are typically L1 and L2, and higher levels are seldom
observed. (For estimations of the distribution of subjects’ levels of reasoning see for
instance [11,29,30].) Since our ultimate goal is to test whether, at some k, overspending is
rationalizable, and we find that at k = 1, a player already overspends, we only characterize
the L0 and L1 here, and we briefly discuss the evolution of behavior of higher types in the
final discussion.

While, in games with compact action space, the support over which L0-players ran-
domly choose their action is unambiguously defined, in contests the strategy space is,
potentially, the whole positive real line. Thus, we assume that L0-players randomize
uniformly over the interval [0, ē] with ē > 0. Note that we take an agnostic view on ē,
which we allow to be lower, but also greater, than the valuation of the prize. In fact, some
experimental evidence shows that subjects may bid more than the prize they might win,
e.g., [2,4,31,32]. ē can be interpreted as the initial endowment of money that subjects are
often given in experiments, and the fact that L0-players choose randomly between 0 and
their endowment is consistent with the empirical finding that overspending increases with
the endowment (see the meta-study by [28]).
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3. Benchmark: Nash Equilibrium and Two-Player Symmetric Contests with
Level-k Reasoning

Before presenting our results, we present the main benchmark, the Nash equilibrium
with fully rational players, as well as a generalization of the result for two-player symmetric
contests with level-k reasoning in [26]. These are the two outcomes that we contrast our
results with.

Nash equilibrium under full rationality. With two possibly heterogeneous players,
the well-known unique Nash equilibrium of the full rationality model for the two players is

eNE
1 =

a

(1 + a)2c1
and eNE

2 =
1

(1 + a)2c1
, (2)

where we define a = c2/c1, which is thus the asymmetry between contestants. With
n homogeneous players with cost parameter ci = c, ∀i ∈ {1, . . . , n}, the unique Nash
equilibrium of the full rationality model is

eNE =
n− 1
n2c

. (3)

A full characterization of the equilibrium with n players and asymmetry is, for in-
stance, in [33]. Even with just three asymmetric players, there are parameter constellations
for which not all contestants exert positive effort, and these endogenous participation
issues would confound the results of our paper. In fact, our ultimate goal is to verify
the rationalizability of overspending in Tullock contests, and the special cases of three
symmetric players and two asymmetric players suffice for this goal.

Two-player symmetric contests with level-k reasoning. We now consider the sym-
metric two-player contest with level-k reasoning and prove the impossibility of overspend-
ing result. This benchmark thus generalizes the impossibility found in [26] to any (c, ē),
where c is the marginal cost of effort for a player, as he studied the special case of c = ē = 1.

An L1-player believes that their rival is L0 and thus plays uniformly over [0, ē]. There-
fore, the first-order condition (FOC) of L1-players of (1), when they believe that their rival’s
effort is uniformly distributed over [0, ē], reads

ē∫
0

z

ē(eB + z)2 dz = c

⇐⇒
eB +

(
z + eB) ln z + eB

z + eB

∣∣∣∣∣
z=ē

z=0

= cē

⇐⇒ eB

eB + ē
+ log[eB + ē]− 1− log[eB] = cē

⇐⇒ log
[

eB + ē
eB

]
− ē

eB + ē
= cē, (4)

where eB denotes the equilibrium strategy of L1 players in the generalized Bernard model.
Note that the left-hand side (LHS) of (4) is strictly decreasing in eB, tends to ∞ as eB → 0,
and tends to 0 as eB → ∞. Thus, a unique interior equilibrium eB exists and solves (4).
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Since the LHS of (4) decreases in eB, we obtain

eB > eNE

⇐⇒ log
[

eNE + ē
eNE

]
− ē

eNE + ē
> cē,

⇐⇒ log[1 + 4cē]− 4cē
1 + 4cē

> cē,

⇐⇒ log[1 + 4cē]− 5cē + 4(cē)2

1 + 4cē
> 0, (5)

where the third line follows by the definition of eNE in (3) for the n = 2 case.
[26] assumes that c = ē = 1, for which the above condition is violated, yielding their

result of impossibility of overspending. Routine algebra shows that the LHS of (5) decreases
in cē, and its value is 0 when cē = 0; thus, (5) never holds for any c, ē > 0. Hence, we
have proven the following generalization of impossibility of overspending in a symmetric
two-player contest from [26].

Proposition 1. Consider a symmetric Tullock contest with n = 2. Then, there is no pair (c, ē)
such that the L1 level of effort is greater than the effort level at the fully rational Nash equilibrium.
That is, eB ≤ eNE.

This impossibility result is a direct consequence of the fact that in a two-player sym-
metric contest the fully rational Nash equilbrium is at the peak of the players’ best response
functions. Thus, overspending as opposed to the effort level at the fully rational Nash
equilibrium is impossible in such a setting, as already proven by [26] in the special case of
c = ē = 1.

However, this result relies on two important assumptions, namely n = 2 and c1 = c2 = c.
In the next two sections, we show that dropping either of these two assumptions may yield
overspending relative to the Nash equilibrium.

4. Overspending in Two-Players Asymmetric Contest

The main point of this section is that introducing asymmetry in players’ costs of
effort rationalizes overspending. Without loss of generality, we focus on player 1 and thus
consider an L1-player having marginal cost c1.

An L1-player believes that their rival is L0 playing uniformly over [0, ē]. Therefore, it
is straightforward to see that c2 does not enter into the condition of optimal eL1, and the
FOC of L1-players writes

ē∫
0

z

ē(eL1 + z)2 dz = c1

⇐⇒ eL1

eL1 + ē
+ log[eL1 + ē]− 1− log[eL1] = c1 ē

⇐⇒ log
[

eL1 + ē
eL1

]
− ē

eL1 + ē
= c1 ē. (6)

As in the benchmark case with symmetric costs (note the similarity between (6) and (4)),
a unique interior equilibrium eL1 exists and solves (6).
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Since the LHS of (6) decreases in eL1, using the definition of eNE
1 in (2), we obtain

eL1 > eNE

⇐⇒ log
[

eNE + ē
eNE

]
− ē

eNE + ē
> c1 ē

⇐⇒ log
[

1 +
(a + 1)2c1 ē

a

]
− (a + 1)2c1 ē

a + (a + 1)2c1 ē
> c1 ē. (7)

We plot, in Figure 1, condition (7) in two dimensions, namely (c1 ē, a). The shaded area
represents combinations (c1 ē, a) such that the L1 level of effort is greater than the Nash
equilibrium level.

Figure 1. Region in the (c1 ē, a)−space where in a two-player contest eL1 > eNE—that is, the L1-level
of effort is greater than the Nash equilibrium level.

If a→ ∞, the LHS of (7) tends to ∞, and thus for any finite value of c1 ē, ∃a sufficiently
large, (7) holds and overspending occurs. Proving the opposite, namely that for any finite
value of a ≥ ā, ∃c1 ē makes (7) hold, is more subtle, and we prove it in Lemma A1 in the
Appendix A, which also characterizes ā (i.e., ā ≈ 2.16258). As a measures the ratio between
c2 and c1 (recall that a = c2/c1), by symmetry, we also find a lower bound a below which
this is true. Thus, we have proven the following.

Proposition 2. Consider a Tullock contest with n = 2. Out of the three parameters (c1, c2, ē),
fixing the value of two of these parameters, there exists a value of the remaining parameter such that
the L1 level of effort is greater than the Nash equilibrium level, i.e., eL1 > eNE. If c1 and c2 are the
chosen parameters, it also has to be that c2/c1 6∈ (a

¯
,ā) with a

¯
≈ 0.4624 and ā ≈ 2.1626.

Note that a minimum level of asymmetry between players is needed to rationalize
overspending because, if instead costs were close enough (the white region of Figure 1), the
Nash equilibrium would be too close to the peak of the best response function, and thus
we would not be able to obtain the overspending result. Overspending in the asymmetric
level-k Tullock contest can happen both by a weak or strong player who has sufficiently
low or high cost compared to their competitor.

One remark is in order. Within the family of two-players asymmetric contests, we
provided a characterization for when an L1-player overspends as opposed to the Nash
equilibrium. It is not clear whether it could be that, if both players are L1, they both
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overspend. In other words, fixing for simplicity ē = 1, is there a pair (c1, c2) such that,
if both players 1 and 2 were L1, they both overspend? This question boils down to
verifying whether condition (7) and its mirror image, where c1 and c2 (which enters
through a) are swapped can simultaneously hold. The answer is positive, and an example
is (c1, c2) = (1, 1/10) as one can readily verify.

5. Overspending in Three-Players Symmetric Contest

The main point of this section is that introducing a third player in a symmetric contest
rationalizes overspending. An L1-player believes that their two rivals are L0-players mixing
uniformly over [0, ē]. A Tullock contest is an aggregative game, as pioneered by [34], in
that (1) depends only on e1 and on the sum of the rival’s efforts e2 + e3. For this reason,
L1-players who are up against two rivals behave as if up against one rival whose effort
follows a triangular distribution Z in [0, 2ē]—that is, the distribution of the sum of the two
uniform random variables both in [0, ē], namely:

fZ(z) =

{
z
ē2 if z ∈ [0, ē],

2ē−z
ē2 if z ∈ [ē, 2ē].

(8)

Therefore, the FOC of the L1-players writes

ē∫
0

z2

ē2(eL1 + z)2 dz +
2ē∫
ē

(2ē− z)z

ē2(eL1 + z)2 dz = c, (9)

where the first integral accounts for the part of (8) where z ∈ [0, ē] and the second integral
accounts for the part of (8) where z ∈ [ē, 2ē]. Routine algebra relegated to Lemma A2 in the
Appendix A shows that (9) is equivalent to

eL1 log[eL1]− (ē + 2eL1) log[ē + eL1] + (ē + eL1) log[2ē + eL1] =
ē2c
2

. (10)

As we prove in Lemma A3 in the Appendix A, the LHS of (10) decreases in eL1. Second,
as eL1 → 0, the LHS of (10) approaches ē log 2 > 0, and as eL1 → ∞, it approaches 0. Thus,
there exists a unique equilibrium. Such an equilibrium is interior by 2 log 2 > ēc.

Since the LHS of (10) decreases in eL1, eL1 > eNE if and only if the LHS of (10) with
eNE instead of eL1 is greater than the RHS.

We next show that ∀ē > 0, there exists a c > 0 such that eL1 > eNE, and vice versa,
∀c > 0 there is an ē > 0 such that eL1 > eNE. An easy way to do so is to consider

ēc =
1
4

, (11)

in condition (10) above since for any ē or c this pins down the value of the other parameter.
Note that (11) satisfies the condition for an interior solution 2 log 2 > ēc found above.
The intuition behind condition (11) is that in order to rationalize overspending one has
to trade-off ē and c. In fact, high expected effort from L0-players (i.e., high ē) discourages
L1-players and thus has to be compensated by low marginal cost of effort c to guarantee
that she still exerts high effort. Similarly, costly effort (i.e., high c) discourages L1-players;
however, this is compensated when L0-players exert sufficiently low effort (i.e., low ē).
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As stated above, eL1 > eNE, if and only if the LHS of (10) with eNE instead of eL1 is
greater than the RHS, and thus, under condition (11) and using the definition of eNE in (3)
for the special case of n = 3, we obtain that

eL1 > eNE

⇐⇒ 8ē
9

log
[

8ē
9

]
− (ē +

16ē
9

) log
[

ē +
8ē
9

]
+ (ē +

8ē
9
) log

[
2ē +

8ē
9

]
>

ē
8

⇐⇒ 8
9

log
[

8ē
9

]
− 25

9
log
[

17ē
9

]
+

17
9

log
[

26ē
9

]
>

1
8

⇐⇒ 8
9

log
[

8ē
9

]
− 8

9
log
[

17ē
9

]
− 17

9
log
[

17ē
9

]
+

17
9

log
[

26ē
9

]
>

1
8

⇐⇒ 8
9

log
[

8
17

]
+

17
9

log
[

26
17

]
>

1
8

,

which holds true. Thus, we have proven the following:

Proposition 3. Consider a symmetric Tullock contest with n = 3. Out of the two parameters
(c, ē), fixing the value of one of these parameters, there exists a value of the remaining parameter
such that the L1 level of effort is greater than the Nash Equilibrium level, i.e., eL1 > eNE.

Note that having three players as opposed to two players shifts the Nash equilibrium
sufficiently far from the peak of the best response function, and this may yield per se
sufficient asymmetry to rationalize overspending. In other words, we do not need further
assumptions on sufficient asymmetry, such as a ≥ ā or a ≤a

¯
in Proposition 2.

In Figure 2, we plot in the (c, ē)-space the region where eL1 > eNE. The dashed line is
condition (11), which we used to prove Proposition 3.

Figure 2. Region in the (c, ē)−space where in a three-player contest eL1 > eNE—that is, the L1 level
of effort is greater than the Nash equilibrium level. The dashed line is condition ēc = 1

4 .

6. Discussion and L2

Overbidding in auctions as opposed to the Nash equilibrium has been documented
empirically/experimentally and can, in private-value auctions, be rationalized by level-k
models ([12]). Overspending in contests as opposed to the Nash equilibrium has also been
documented empirically/experimentally. We show that level-k models can rationalize such
overspending in Tullock contests. We thus bridge the existing gap between the auction
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and contest literature, two types of literature that usually work in parallel, by showing that
overbidding can also be true in a contest environment due to level-k reasoning.

The main analysis conducted in the present paper focused on the L1 level of effort
since this was found to be sufficient to rationalize overspending. However, one might
wonder about the level of effort of Lk-players with k > 1. In particular, since we know from
empirical evidence that the most frequently observed types are typically L1 and L2, it is
important to focus also on k = 2, as we do in the remainder of the paper.

An L2 player believes that their opponent is an L1 player, and thus “best responds” to
this belief. Such a best response, which maps the effort of the L1 into the effort of the L2, is
a strictly concave function with a unique maximum emax. More precisely, the best response
function of Lk-players to a certain effort of Lk− 1-players is

eLk
1 = BR1

(
eLk−1

2

)
≡ −(n− 1)eLk−1

2 +

√
(n− 1)eLk−1

2
c1

. (12)

In fact, this characterizes the behavior of any level-k type. Note that BR1(·) reaches
its maximum when eLk−1

2 = 1
4c1(n−1) ≡ emax

2 . Overspending remains possible at L2 in both
cases of interest to our analysis, as we explain in what follows, and it may also be possible
that both the L1- and L2- players overspend.

First, if there are two asymmetric players, calling 2 the L1-player and 1 the L2-player,
then the condition for overspending of the L1-player is eL1

2 > c1/(c1 + c2)
2 = eNE

2 , and
the condition for overspending of the L2-player is eL2

1 = BR1
(
eL1

2
)
> c2/(c1 + c2)

2 = eNE
1 .

Using the definition of BR1(·) in (12), we can rewrite this last condition as

eL1
2 ∈

[
c1

(c1 + c2)
2 ,

c2
2

c1(c1 + c2)
2

]
if c1 < c2, (13)

eL1
2 ∈

[
c2

2

c1(c1 + c2)
2 ,

c1

(c1 + c2)
2

]
if c1 > c2. (14)

It is clear that, if we want to rationalize both L1- and L2-players’ overspending, the
condition for overspending of the L1-player (eL1

2 > eNE
2 ) is compatible only with the c1 < c2

case of the above condition—that is, (13). In other words, it is possible that both L1- and
L2-players overspend only if the L1-player is weaker than the L2-player. Conversely, if
instead the L1-player is stronger than the L2-player (c1 > c2), then the overspending
condition of the L2-player (14) implies that the L1-player underspends (eL1

2 < eNE
2 ).

Second, if there are three symmetric players, dropping the player-specific subscripts
from the notation, we obtain that eNE = 2/(9c) and emax = 1/(8c), and therefore
BR(emax) = 1/(4c), and, similarly to the two asymmetric player case, eNE ≤ BR(emax)—an
L2 overspends. It is also interesting to know how eLk with k ≥ 2 evolves if eL1 > eNE.
Normalizing marginal costs to 1, one can show that

BR
(

eLk−1
)
≥ eNE ⇐⇒ eLk−1 ∈

[
1

n2(n− 1)
,

n− 1
n2

]
,

eLk−1 ≥ eNE ⇐⇒ eLk−1 ≥ n− 1
n2 .

Hence, eLk−1 ≥ eNE implies eLk ≤ eNE, but that the converse is not necessarily true;
if eLk−1 ≤ eNE, then we could obtain eLk ≤ eNE or eLk ≥ eNE. For instance, consider
the n = 3 case. If eLk−1 ≥ eNE = 2/9, then eLk ≤ eNE. If instead eLk−1 ≤ eNE, then
eLk T eNE ⇐⇒ eLk−1 S 1/

(
n2(n− 1)

)
. Hence, a general analysis of the evolution of

Lk is found not to be characterized by simple rules (such as alternations of overspending
and underspending) and, importantly, beyond the scope of the paper, which is to verify
the rationalizability of overspending in Tullock contests. Extending the two-symmetric-
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player setup of [26] to the cases of three symmetric and two asymmetric L1-players proved
sufficient for this goal.
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Appendix A

Lemma A1. ∀a ≥ ā and ∀a ≤a
¯

, ∃c1 ē such that (7) holds. In particular, ā ≈ 2.1626 and
a
¯
= 0.4624.

Proof of Lemma A1. Consider Figure 1. We characterize the unique minimum ā of the
function in the LHS of (7). The minimum is where

0 =
∂

∂c1 ē

(
log
(

1 +
(a + 1)2c1 ē

a

)
− (a + 1)2c1 ē

a + (a + 1)2c1 ē
− c1 ē

)
⇐⇒ 0 =

a(a + 1)2

a + (a + 1)2c1 ē
− (a + 1)2

(a + (a + 1)2c1 ē)2 − 1

⇐⇒ 0 =
(

a + (a + 1)2c1 ē
)2
− a(a + 1)2

(
a + (a + 1)2c1 ē

)
+ (a + 1)2

Furthermore, the solution of the above together with (7) characterizes the unique
minimum. Namely, (c1e, ā) ≈ (0.467586, 2.1626). Swapping players’ indexes, one can find
the maximum of the bottom shaded area of Figure 1, a

¯
= 1/ā = 0.4624.

Lemma A2. Equation (9) is equivalent to (10).

Proof of Lemma A2. Note that (9) can be written as

ē∫
0

(
1−

2eL1z +
(
eL1)2

(eL1 + z)2

)
dz−

2ē∫
ē

(
1−

2eL1z +
(
eL1)2

(eL1 + z)2

)
dz +

2ē∫
ē

2ēz

(eL1 + z)2 dz = ē2c,

or, calculating the values of the integrals,

−eL1
(
−ē

eL1 + ē
+ 2 log

eL1 + ē
eL1

)
+ eL1

(
eL1

eL1 + 2ē
− eL1

eL1 + ē
+ 2 log

eL1 + 2ē
eL1 + ē

)
+ 2ē

eL1

eL1 + 2ē
− eL1

eL1 + ē
+ log

eL1 + 2ē
eL1 + ē

= ē2c.
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Collecting the terms in the above expression, we obtain

eL1
(

2ē2

(eL1 + 2ē)(eL1 + ē)
+ 2 log

eL1 + 2ē
eL1 + ē

− 2 log
eL1 + ē

eL1

)
+2ē

(
− eL1 ē
(eL1 + 2ē)(eL1 + ē)

+ log
eL1 + 2ē
eL1 + ē

)
= ē2c

or

eL1
(

log
eL1 + 2ē
eL1 + ē

− log
eL1 + ē

eL1

)
+ ē
(

log
eL1 + 2ē
eL1 + ē

)
=

ē2c
2

,

which is equivalent to (10).

Lemma A3. The LHS of (10) decreases in eL1.

Proof of Lemma A3. The statement of the lemma is equivalent to

∂

∂eL1

(
eL1 log

(
eL1
)
− (a + 2eL1) log

(
a + eL1

)
+ (a + eL1) log

(
2a + eL1

))
< 0

⇐⇒ log
(

eL1
)
+ 1− 2 log

(
a + eL1

)
− a + 2eL1

a + eL1 + log
(

2a + eL1
)
+

a + eL1

2a + eL1 < 0

⇐⇒ log
(

eL1
)
+ 1− 2 log

(
a + eL1

)
− 1 +

eL1

a + eL1 + log
(

2a + eL1
)
+ 1− a

2a + eL1 < 0

⇐⇒ 1 +
eL1

a + eL1 −
a

2a + eL1 + log
((

eL1

a + eL1

)(
2a + eL1

a + eL1

))
< 0

⇐⇒ a2

(a + eL1)(2a + eL1)
+ log

((
1− ē

a + eL1

)(
1 +

a
a + eL1

))
< 0

⇐⇒ a2

(a + eL1)(2a + eL1)
+ log

(
1−

(
a

a + eL1

)2
)

< 0

for which it suffices, using the logarithm inequality log(1− x) ≤ −x with x ∈ [0, 1), that

a2

(a + eL1)(2a + eL1)
−
(

a
a + eL1

)2
< 0,

which trivially holds.
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