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Abstract: A qualitative game describes a situation in which antagonistic players strive to keep the
evolutions of their state variables in predetermined constraint sets. We argue that a qualitative game
model is a suitable mathematical representation of the struggle between a domestic central bank of
a small open economy and a foreign central bank of a large economy to maintain their respective
state variables within an acceptable band regardless of the other player’s choices. The actions of the
foreign central bank affect the domestic exchange rate and, hence, domestic inflation, output gap and
interest rate. However, these actions do not necessarily aim to destabilise the small open economy,
nor do they take into account the state of the latter. The domestic bank’s problem, therefore, is similar
to that of a game against nature. We refer to this type of qualitative game as a nuisance-agent game
(or NA-game). We use viability theory to derive satisficing rules (in the sense of Simon) of nominal
interest-rate adjustments for the domestic central bank of a small open economy in a qualitative
NA-game against the foreign central bank.
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1. Introduction

The aim of this paper is to build and explore a qualitative monetary policy game between
central banks, and draw conclusions about the interest rate adjustment strategy of the
central bank of a small open economy1.

A qualitative game is a mathematical model of a problem in which antagonistic players
do not maximise their respective utility functions (see [2]), but, instead, each of them
strives to keep his2 own state variables in a constraint set, using his available instruments.
Our model features two players: a domestic (or “local”) central bank and a foreign central
bank. The actions of the latter impact former through the exchange rate between these
countries’ currencies. We assume that the domestic economy is small, while the foreign
economy is large. The central bank of the domestic economy will be trying to keep the
country’s inflation (and, possibly, other key economic indicators such as output gap) in a
predetermined set, allowing for the other country’s monetary policy. Problems of that class
were introduced in the set-valued analysis literature, of which [2] is a leading example, in
an abstract and general context. In that literature, the foreign player would actively seek to
push the local competitor outside his constraint set. In our game, the foreign central bank
does not intend to destabilise the local economy or to keep it in a specific set. The foreign
bank could therefore be called a nuisance agent (rather than evil, as the players in [2] or
adversary agents in other strands of economic literature tend to be called). Therefore, our
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qualitative game is effectively a game-against-nature (See e.g., [3] or [4].), and for brevity in
this paper will be referred to as a “nuisance agent game” (or “NA-game”).

We note that the monetary policy problem of a small open economy, when a foreign
country’s monetary strategy has to be allowed for, can be framed as a robust control
problem as in, e.g., [5–7]. It could also be formulated as a minimax problem à la [8].
The main difference between those approaches and ours is that the robust and minimax
control problems yield a sole robust strategy, while our qualitative game approach delivers
a whole array of satisfying policies that the central bank’s governor can pick from according
to his priorities (compare [9,10]). Moreover, our qualitative game framework does not
require the specification of a utility function, so the underlying game model involves fewer
parameters than optimisation-based models. Consequently, it is less vulnerable to the
Lucas critique.

The central bank in a country such as New Zealand is in charge of maintaining price
stability and supporting sustainable employment (with the latter being closely related to
the output gap). This suggests that a sole optimal solution is not a priority for the bank:
its mission can be accomplished with multiple combinations of inflation and output gap
values, and adjustment paths leading to one of these. Indeed, even if some central banks
compute an optimal interest rate policy that minimises a loss function, they do not always
follow this policy in reality. Instead, they may implement it in a modified form (e.g., because
of some exogenous considerations), they might utilise a Taylor-like rule, or apply an ad hoc
strategy. In any case, they take into consideration the future states of the economy that can
be reached from the present state using acceptable interest-rate adjustments. This sort of
reasoning can be modelled rigorously with the help of viability theory, and in particular as
a qualitative game.

To better justify the viability-theory framework within which we study the monetary
policy problem, we invoke the idea of Herbert A. Simon (1978 Economics Nobel Prize
laureate) that many economic agents use satisficing (his neologism), rather than optimising,
strategies. In our view, the central bank’s behaviour is consistent with this class of strategies.
Specifically, the bank seeks a satisfying policy that will keep inflation in check and will
preclude major social problems such as high unemployment or an exchange rate crisis.
We believe that an economic theory that follows Simon’s prescription provides a more
accurate description of agents’ behaviour in the real world. We also think that viability
theory (in the spirit of [11,12]) rigorously captures the essence of satisficing. Its usefulness in
macroeconomics has been demonstrated by [13], who solve the monetary policy problem
of a central bank in a stylised closed economy, and by [10] who study its open economy
counterpart. The present paper extends their analysis by incorporating a link between the
exchange rate and the foreign central bank’s actions.

In 2022, many economies experienced a significant spike in inflation. A recent article
in [14]) alleges that the Federal Reserve “has made a historic mistake on inflation”. We see
merit in this claim and contend that many other central banks also have erred in their
approach to the inflation problem. We propose that the qualitative NA-game model
examined in this paper may be of assistance to central banks. In particular, it may help the
central bank of a small open economy formulate a policy of timely interest rate adjustments
that could allow it to control inflation. In our model, such a policy is a function of the
distance between the current state of the economy and the viability kernel boundary (see [15]).
In the present paper, we show, among other things, how to compute the viability kernel for
a small open economy.

In the next section, we provide a brief introduction to viability theory. In Section 3,
we construct a monetary policy game model of a small open economy that interacts with a
“nuisance” agent (or a NA-game). In Sections 5 and 6 we use a viability analysis to solve
the qualitative NA-game at hand. The paper ends with concluding remarks.
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2. What Are Viability Problems and Their Solutions?
2.1. The Meaning of Viability

Viability theory is an area of mathematics concerned with viable evolutions of dynamic
systems that are subjected to constraints on states. For controlled dynamic systems, this
definition extends to allow for constraints on controls.

A system’s evolution is considered viable if the system’s trajectory remains, for the
entire time of the evolution, within a prescribed region of the state space, referred to later as
the constraint set K. A viability domain D is a subset of this set such that, given a constrained
control set U, evolutions that originate at any point of the domain can be controlled to
remain within K. The basic problem that viability theory attempts to solve is to determine
whether a non-empty domain exists, and if so, what its boundaries are. The viability kernel
VK

F is the largest viability domain, where F denotes the system’s dynamics i.e., the collection
of equations and inclusions of motion of the dynamic system (see (3) below).

In other words, the viability kernel is the set of all initial conditions for which a control
strategy exists such that each trajectory originating in the kernel remains in the constraint
set while the controls stay in U.

Environmental policy design has so far been the most popular social sciences problem
solved by viability-theory methods. Here we cite [9,16–19] among others. Viability theory
applications in other economic areas include: finance—[20]; managerial economics—[21];
macroeconomics—[10,13,15,22–28]; and microeconomics—[29]. Notwithstanding the economic
applications, of which we address one in this paper, the viability theory has been applied
to other problems where the uniqueness or optimality of the control strategy is not of
major concern.

The viability kernel is the solution to a viability problem. Establishing it, will enable
us to analyse the system’s transition trajectory at some distance from a steady-state rather
than toward the steady-state, as in the classical analysis. We believe that an evolutionary
analysis enabled by viability theory gives us a better insight into the system’s economics
than just an equilibrium analysis.

We reproduce Figure 1 from [30] for an illustration of the viability idea.

Figure 1. The viable and non viable trajectories for a time-invariant dynamic system.

The state constraint set K is represented by the yellow (or light shaded) round contour
contained in state-space X. The solid and dashed lines symbolise system evolutions, which
converge to where the arrows end.



Games 2022, 13, 58 4 of 24

The brown (darker) shaded contour is the viability kernel VK
F . The trajectories that

start in the kernel remain in K, hence are viable. The viability property is not satisfied by
the other trajectories which start outside the kernel and leave K in finite time.

A rigorous introduction to viability theory can be found in [11,31,32], Veliov [33]. For
a basic introduction to applications of viability theory see [30]. Here, we will present only
these notions of viability theory that are essential to the understanding of our treatment of
the monetary policy model with a “nuisance” agent (see later in Sections 3 and 5).

2.2. Mathematical Formulation

Consider a dynamic system on the horizon Θ, where Θ can be infinite or finite, with
n state variables x(t) ∈ Rn and m control variables u(t) ∈ Rm. Let F be a set-valued map
from system’s states to the set of possible state velocities ẋ ∈ Rn.

In control theory, the multivalued map F has the form F(x) = f (x, U) = { f (x, u);u ∈ U},
where f : Rn ×U → Rn is a continuous vector-function composed of the right-hand sides of
the system’s equations of motion and U is a compact set in Rm. The control choices u(t) can
depend on the state x(t) at which the system occurs to be. If so, the set of controls is U(x(t))
and the dynamic system is described as

ẋ(t) = f (x(t), u(t)) (1)

u(t) ∈ U(x(t)) . (2)

In viability theory, the differential inclusion,

ẋ(t) ∈ F(x(t)) , (3)

is the basic tool of equivalent description of the dynamic system (1) and (2). It states that at
x(t) the change in the system’s state—its velocity—will be a member of F(x(t)), where F is,
as above, the set-valued map from system states to sets of possible velocities.3

Many economic systems can be formulated in such terms. For example, in the fishery-
management problem considered in the subject literature (commented on above), the
immediate future fish biomass will be in a cone determined by the apex at the present state
and rays corresponding to different fishing strategies. In a monetary policy problem, the
next point in time inflation will be in a cone with the apex where the current inflation is
and whose rays depend on the change in the nominal interest rate.

Let K represent the closed set of constraints that state x(t) must satisfy for all t. The set
K is an abstraction of all relevant state constraints for the problem. Given a set-valued
map F : K  X, we say that x0 ∈ K ⊂ X is viable in K under F if at least one solution to
the system:

∀t ∈ Θ
{

x(t) ∈ K,
ẋ(t) ∈ F(x(t)),

(4)

originates at x(0) = x0 and remains in K forever, i.e., Θ ≡ [0, ∞).4 A philosophical
interpretation can be attributed to the above model: an evolution that starts at a viable
point follows a path that satisfies fate F and desire (or craving) K.

Formulation (4) allows us to talk about the viability of an individual system’s state.
Comments on viable areas are provided in Appendix A.

We can say that a viable strategy is a realisation of a satisficing policy postulated
in [34]—so long as viability is not threatened, any control is “good enough”. It is our belief
that such characterisations of economic states provide a good description of the decision-
making behaviour of managers in the “real world”. In particular, inflation-targeting central
banks will often avoid changing interest rates for as long as they can.

It might be argued the current inflation in many countries is due to the central banks’
unawareness of their respective viability kernel boundaries. Would policy-makers have
been aware that the economic states are approaching a viability kernel boundary whose
crossing makes it impossible to contain inflation through a smooth interest rate adjustment,
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they would have acted earlier. It seems plausible that central banks would want to know
the kernel’s boundary (to avoid a crisis management control à la see [35,36]), at which the
pace of interest rate adjustment would have to be accelerated. We contend that central bank
management strategies based on viability analysis will be closer to how managers actually
want to deal with their problems.

We also want to stress that there is a crucial difference between the optimisation
approach and the viability approach to modelling dynamic systems. A viability-theory
problem formulation does not include a utility, or loss, function, and explicitly defines the
set of acceptable states K. A solution to the viability problem consists of a multiplicity
of satisficing controls. In the optimisation approach, the constraints that represent K are
usually implicit in the loss function and the resulting solution is typically a unique control
strategy. A concise discussion on this rather orthogonal relationship between viability
and optimality can be found in [30]. In [37], also in [13], optimal and viable solutions to a
pedagogical 2D problem are juxtaposed.

2.3. A Qualitative Game

As explained in the Introduction, a qualitative game is a mathematical problem in
which players do not maximise their respective utility functions, but, instead, each of them
strives to keep his own state variables in a constraint set, using his instruments.

The authors of [2] trace down their work on qualitative differential games to the
seminal book by [38]. They propose a model for a “target problem”, in which one of two
players with coupled dynamics aims at reaching an open set O and, at the same time,
avoid a closed set E . The other player seeks to avoid O until he reaches E . This game
is an abstraction of a pursuit-and-evasion problem typically played on a finite horizon.
A solution to such a game consists of the characterisation of the set of initial positions from
which a player may win, whatever his adversary plays.

In our model, there are also two players with coupled dynamics. The first player is the
domestic bank of a small open economy, whose objective is to keep the domestic economy in
the closed set K (i.e., avoid being in K’s complement for all t ∈ Θ). The other player is the
bank of a large foreign economy, which pursues its own target that is unrelated to K. The
dynamics are coupled through the actions of the foreign bank, which affect the domestic
economy’s position. Hence, in seeking to remain in K, the domestic player must react to the
foreign player’s actions.

The foreign player’s impact is filtered through the given system’s dynamics and, in our
model, the domestic player will need to hedge against only one of the foreign player’s state
variables. This makes our qualitative game less antagonistic than a pursuit-and-evasion
problem. So, this is a qualitative NA-game (“nuisance-agent game”), as opposed to the
pursuit-and-evasion problem, which is a genuine qualitative game. A solution to our game
will consist of the characterisation of the viability kernel i.e., the set of the domestic player’s
initial conditions, from which he may keep his states in K.

We will use a specialised piece of software VIKAASA to obtain a numerical char-
acterisation of the viability kernel. A brief description of the software is provided in
Appendix C.

3. A Macroeconomic Model
3.1. A Viability Theory Problem

In reality, central banks are often tasked to maintain a few key macroeconomic vari-
ables within predetermined bounds. Some of these bounds may result from a welfare
maximisation problem solved by a social planner. Others may be exogenously imposed
and politically or socially motivated. The bank can achieve these targets using an optimising
solution that minimises a loss function. Typically, the central bank’s loss function will
include penalties for violating allowable bands on inflation and output gap, as well as a
punishment term for excessive interest rate adjustments. In a standard linear-quadratic
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framework, the solution that minimises the loss function is unique for a given selection of
parameters. Hence, this approach does not allow for a multiplicity of strategies.

Our paper takes an alternative approach. We apply viability theory methodology to
a central bank that wants to maintain economic variables of concern in a constrained set.
The bank’s problem is similar to the viability theory problem (4), illustrated in Figure 1.
We will characterise the set of economic states VF(K) that enables the central bank to keep
the economy within the prescribed set K, given the set of available instruments U. The set
VF(K) is the viability kernel.

VF(K) ≡ {x(0) : s. t. ∃ x(t) starting from x(0), satisfying (1) and (2) and constraints K ∀ t ∈ Θ}. (5)

In the next section we will examine a stylised monetary policy model (inspired by [39];
also, by [40,41]). We will then show that the solutions obtained through viability theory do
not suffer from the common drawbacks of their optimisation-based counterparts.

3.2. The Central Bank’s Problem

Suppose that a central bank in charge of a small open economy such as New Zealand’s
is using the nominal interest rate i(t) as an instrument to control inflation π(t) and output
gap y(t), and the real exchange rate q(t).

Following [39], we adopt the notation as below.

I. Output gap y(t) is the log deviation of actual output from “natural” output. Since
this is a log deviation, it is interpreted as a fraction of natural output.

II. Inflation is defined as the CPI inflation rate. The symbol π(t) denotes the deviation
of CPI inflation from a reference value of inflation.

III. Interest rate is the short-term nominal interest rate that is used by the central bank
as the policy instrument. We denote the deviation of the nominal interest rate from
its reference value by i(t).
Both rates are expressed as fractions rather than percentages. We also follow
the convention in this literature by considering annualised rates. The reference
values can be steady-state values (if available) or some typical long-term averages.
In this paper, we assume that the reference values of inflation and nominal interest
rate are 0.02 and 0.04, respectively. Hence, the level inflation and interest rates
will be π(t) + 0.02 and i(t) + 0.04, respectively. We will use I to denote the level
interest rate.

IV. Exchange rate q(t) is the log ratio of

nominal exchange rate × foreign price index
domestic price index

.

It can be viewed as an aggregate measure of the strength of a country’s currency.
If the local currency weakens, then q(t) increases. That is, a larger value of q(t)
implies real depreciation: the domestic goods become relatively cheaper when
q(t) is large. Conversely, if q(t) decreases, the local currency strengthens, hence the
domestic goods become relatively more expensive.

Furthermore, we assume that interest rate adjustments u(t) are selected from a closed
set U. Specifically, U is an interval [−u, u], where u, u ∈ R+. That is, −u and u are the
fastest downward and upwards interest rate adjustments, respectively. The values of u, u
will depend on the bank’s view on how smooth the interest rate adjustments should be.

In the parlance of optimal control and dynamic games, the vector [y(t), π(t), i(t), q(t)],
t ∈ Θ is the state vector for the domestic central bank. The vector’s domain is R4 ⊃ K.
The control variable in this model is u(t) ∈ U ⊂ R. The noise (disturbance) input into this
model is the real interest rate of the large (foreign) economy, which is controlled by the
foreign central bank. This input will be introduced in (11).
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The authors of [10] examined a continuous-time state-space representation of an open
economy with the following system’s dynamics:

dy
dt

= −ay− d2(i− π) + d3q (6)

dπ

dt
= 2py (7)

dq
dt

= (i− π)− ρu (8)

di
dt

= u ∈ U, (9)

where all variables are in expectation. We note that this system is a differential inclusion
because of (9). The parameters a, d2, d3, p, ρ are nonnegative.5 The time-dependent variables
y, π, q, i, u are as defined above (to simplify the notation, we have dropped the time index
t). We claim that the above model is easier to comprehend, and captures the underlying
economic dynamics more succinctly than its discrete-time analogues i.e., [39–41]. We
refer the readers to [10] for the algebra of the transition from discrete-time to continuous-
time dynamics.

Equations (6)–(9) define the expected output gap (see (6)) as a (zero) mean-reverting
process that is driven by the real interest rate and the exchange rate. The exchange rate
determines the competitiveness of domestic goods in the world market and, as a result,
affects the change in the output gap. If the domestic currency appreciates (i.e., q(t) di-
minishes), foreign goods become cheaper relative to domestic goods and the output gap
shrinks. A positive deviation in the real interest rate depresses output by incentivising
agents to save more and consume less, thus causing the output gap to shrink. Conversely,
a negative deviation in the real interest rates stimulates output, so the output gap grows.

The expected speed of inflation (see (7)) is proportional to the expected output gap.
The reason is that, in the discrete-time model of [39], inflation depends on the current
as well as on the delayed output gap. In our continuous-time setting, these effects add
up to the coefficient 2p. Furthermore, in contrast to the discrete-time model of [39], the
continuous-time (short-term) expected change in inflation does not depend on the exchange
rate. The reason is that in [39] inflation is a function of the exchange rate difference, which
tends to zero for short intervals. Therefore, q(t) disappears from differential Equation (7).

Equation (8) captures the process of currency adjustment to changes in the domestic
real interest rate when the foreign real interest rate level remains unchanged. As explained
earlier, q is the log transformation of the real exchange rate. Therefore, the derivative dq/dt
is the rate of change of the real exchange rate. If the right-hand side of this equation con-
tained only the bracketed term (i.e., the real interest rate), this would be a straightforward
continuous-time version of the real interest parity condition (see [42]). Indeed, if we denote
the log transformation of the nominal exchange rate by s, then by definition

dq
dt

=
ds
dt

+ “foreign inflation”− “domestic inflation”.

After combining this relationship with the classical interest parity condition in continuous
time, see ibid., we obtain the real interest parity as formulated in (10), apart from the last
term whose inclusion is explained below.

If the domestic real interest rate goes up, then local bonds will earn more in domestic
currency. Foreign demand for these bonds will increase, which causes the currency to
appreciate. In our model, this effect is captured by the second term of the right-hand side
of (8). Indeed, for u > 0, dq/dt diminishes, so the currency appreciates (or depreciates
more slowly). However, bond returns in all countries will be equalised in the long run due
to arbitrage. If there is little effect on π, a higher i would imply a higher real interest rate, so
possibly i− π > 0 and q will grow. This means that the currency will depreciate over time,
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so the domestic bond yields for a foreign investor will eventually decrease to compensate
for the interest rate differential.

At this stage, we need to remark that the real interest rate i−π in (8) could be preceded
by a coefficient that determines the speed with which the exchange rate moves up or down,
given the changes on the right hand side of (8). In the above formulation, this coefficient
is set to 1. Since i and π are annualised, this corresponds to q depreciating by 1 per cent
annually, provided that the real interest rate is 1 per cent and there are no central bank
interventions. However, as we will see in Section 4, the parameters a, d2, d3, p, ρ (borrowed
from [39]) define dy/dt and dπ/dt as quarterly velocities. For consistency, we define u as an
admissible interest-rate adjustment per quarter, and divide the domestic and the foreign real
interest rates in (10) by 4. We will revisit this issue in Section 4, where we calibrate (6)–(9).

If the expected deviation of the foreign real interest rate is zero, then it can be ignored,
as in Equation (8). However, since we are explicitly interested in the interaction between
foreign and domestic monetary policies, our model must account for changes in the foreign
real interest rate. To allow for such changes, we modify Equation (8) as follows:

dq
dt

=
1
4
(
i(t)− π(t)

)
− 1

4
(
i∗(t)− π∗(t)

)
− ρu(t) , (10)

where the foreign economy’s variables are denoted with an asterisk ∗.
The movements in the foreign real interest rate are a “nuisance” for the domestic bank,

as they are transmitted to inflation in (7) via Equations (10) and (6).6 These movements
complicate the domestic bank’s monetary policy problem, as compared to a model in which
the foreign country’s real interest rate remains unchanged. From the domestic bank’s point
of view, varying foreign real interest rates is a shock that needs to be hedged or attenuated.

If we assume that the foreign central bank also wants to keep its economy inside a
viability kernel, then the domestic bank can expect a limited variation of the foreign real
interest rate:

v(t) ≡ i∗(t)− π∗(t) ∈ V, (11)

where V is a closed interval [v, v], with v, v denoting the lowest and highest foreign real
interest rates, respectively, expressed as deviations from a reference level. The allowance
for the foreign real interest rate shocks transforms Equation (10) into the following differen-
tial inclusion:

dq
dt
∈ 1

4
(
i(t)− π(t)

)
− 1

4
[v, v]− ρu(t) . (12)

The system’s dynamics (i.e., the mapping F) of the domestic bank’s monetary policy
problem will then be given by:

dy
dt

= −ay− d2(i− π) + d3q (13)

dπ

dt
= 2py (14)

dq
dt

∈ 1
4
(i− π)− 1

4
[v, v]− ρu (15)

di
dt
∈ [u, u] . (16)

Assume that the domestic central bank must keep inflation in a predetermined region
[π, π]. Moreover, the bank wants to maintain some boundaries on the output gap, [y, y], the
interest rate [i, i ] and exchange rate [q, q], all expressed as deviations. Limiting the interest
rate adjustment velocity u = di/dt to the interval U would yield a smooth time profile of
i(t). Additionally, setting a (tight) band will help the private sector form expectations about
the economy’s future.

As explained earlier, the motivation for the bounds on the state variables can be
social (e.g., a large negative output gap and high-interest rates are associated with high
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unemployment), or political (e.g., exporters will not vote for a government under which
the domestic currency has appreciated a lot).

Since the bank communicates its policies using the levels of inflation and interest rate,
we define the constraint set K (see (4)) in the central bank’s problem as follows:

K = [y, y]× [π + 0.02, π + 0.02]× [i + 0.04, i + 0.04 ]× [q, q] ∈ R4 , (17)

where 0.02 and 0.04 are the respective reference levels of inflation and interest rate.

3.3. How Can the Viability Kernel Be Used by the Domestic Central Bank?

Here we elaborate on the information structure within which the domestic bank
operates, and explain how the computed viability kernel can help this bank conduct its
policy making.

Any state inside the viability kernel VK
F can be controlled with u(t) ∈ U, t ∈ Θ, to stay

inside VK
F , but no state outside VK

F can. The domestic central bank knows the set of states
that will allow it to keep its economy in the desired set K. The kernel is computed for the
calibrated system’s dynamics (i.e., for specified values of the coefficients a, d2, d3, etc.), the
interest rates adjustment speed range U and the range for the foreign real interest rate V.
The ranges U and V can be assumed or inferred, and are often politically motivated.

At time t, the domestic bank observes the state vector x(t) = [y(t), pi(t), q(t), i(t)].
If x(t) is outside the viability kernel, then some crisis control could be implemented (e.g.,
u(t) can be selected a larger set U′, where U′ ⊃ U). If x(t) is inside the viability kernel,
then the bank implements a viable control. By definition, each state in VK

F is associated
with at least one viable control, and the central bank’s governor knows that control.

4. Calibrated Qualitative Monetary Policy NA-Game

The domestic bank’s viability problem is to determine the viability kernel VK
F , where

K is defined by (17) and F is the point-to-set mapping (13)–(16). The kernel contains all
initial positions of y, π, q and i such that at least one evolution originating from any of
these positions does not leave K in finite time. This evolution must involve interest-rate
adjustments u from U and foreign real interest levels v from V. If at least one such evolution
exists, then the kernel is non-empty. The interest rate adjustments u that generate such an
evolution constitute satisficing strategies of the domestic bank.

The viability kernel VK
F ⊂ K ⊂ R4 will be computed in Section 5. First, however, we

need to calibrate the model (13)–(17) .
We adopt the following parameter values reported by [39,43], calibrated from UK data:

a = −0.2 , d2 = 0.5 , d3 = 0.2 , p = 0.2 .

These papers use a quarter (i.e., 3 months) as a period of observation. Substituting these
parameters in (13)–(16) gives us a calibrated model (see (20)–(23)). The values of these
parameters determine the speed of evolution of our small open economy. E.g., if the output
gap is kept constant at 0.01 for three months, inflation would rise by 0.004 during this time.
We note that in a large closed economy inflation would have risen slower (compare [13]).
This may be because a large closed economy is more inertial than a small open economy.

There is no universally accepted value for ρ, the exchange rate responsiveness to
domestic bank interest rate adjustments (see inclusion (15)). In this paper, we assume that
ρ = 4. We refer the readers to Appendix B, and also to [10], for a discussion on how the
value of ρ was chosen.

In recent times, interest rate adjustments have been made in an environment of high
inflation that is outside the acceptable set K. Such an environment requires a crisis control
strategy, see [35,36]. This would amount to widening the set U and/or shortening the
interval between adjustments. Hence, the current breadth of U is probably bigger than
what it would typically be. Since our model aims to show how to avoid a crisis before the
economy gets stressed, we will assume that nominal interest rate adjustments are made
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quarterly. In the past, a typical change in the interest rate was either 0.25 per cent or nil. We
will assume a “generous” interval for the possible adjustments of the domestic interest rate,

di
dt

= u ∈ [−0.005, 0.005] ≡ U . (18)

Within this interval, the interest rate i can drop or increase between 0 and 0.5 percent per quarter.
The other input into the model is the foreign real interest rate, see (11). Historical data

on real-interest rate level fluctuations in the US suggest that it moves between −6% and 6%
per year. Assuming 2% as the reference level, the annual deviations can be between -8%
and 4%. Since all velocities in (13)–(16) are quarterly, we will assume that the variability of
v per quarter is

v ∈ [−0.02, 0.01] ≡ V . (19)

Taking into account the discussion regarding the velocity of q in Section 3.2, the our
calibration exercise yields the following macroeconomic model:

dy
dt

= −0.2y− 0.5(i− π) + 0.2q (20)

dπ

dt
= 0.4y (21)

dq
dt

∈ 1
4
(i− π)− 4u− [−0.02, 0.01] . (22)

di
dt
∈ [−0.005, 0.005] . (23)

Next, we need to specify the constraint set K. In the past, the politically desired
bounds for New Zealand’s level inflation were set by legislation to [0.01, 0.03]. There is
less consensus on what the desired output gap should be. We will assume that y(t) ∈
[−0.04, 0.04]. This rather wide interval for the output gap reflects a lesser concern of the
central bank for y(t). The acceptable range of the real exchange rate is even more debatable.
We will assume an interval of [−0.1, 0.1] as a tolerable range for q(t). Finally, we need to
set a range for the interest rate. We assume that i(t) ∈ [0, 0.07].

Allowing for the reference levels of inflation and interest rate (see item I, page 6) yields:

K ≡ {(y, π, q, i) : −0.04 ≤ y ≤ 0.04, 0.01 ≤ π + 0.02 ≤ 0.03, (24)

−0.1 ≤ q ≤ 0.1, 0 ≤ i + 0.04 ≤ 0.07} .

In Section 5, we compute the viability kernel for the the calibrated dynamics (20)–(23) and
the constraint set (24). Note that this is a particular specification of the general viability
model (4) (on page 4).

5. Viability Analysis: Parameter-Specific Solutions
5.1. A Method for the Determination of Viability Kernels

In [44] we can find a base for how to approximate VK
F using the solutions to the

differential inclusion (3). In broad terms, they say that if a constrained optimal control
problem, with dynamics F(·) and the constraint set K, can be solved for x ∈ K and
x(t) ∈ K ∀t, then x is viable.

VIKAASA (See [45,46]; also [9].), is a computational tool that computes viability kernel
approximations (actually, domains) for the class of viability problems introduced in this
paper, using a user-selected algorithm (there are two algorithms to choose from). In this
paper, we have selected one that solves a truncated optimal stabilisation problem, rather
than a general optimal control problem, for each xh ∈ Kh ⊂ K where Kh is a suitably
discretised K.

For each xh ∈ Kh, VIKAASA assesses whether a dynamic evolution originating at xh

can be controlled to a (nearly) steady-state without leaving the constraint set in finite time.
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Those points that can be brought close enough to such a state are included in the kernel by
the algorithm, whilst those that are not are excluded.7

In Appendix C, we provide a short description of the use of VIKAASA. For extended
comments on several kernel computation algorithms, we refer the reader to [9,30].

5.2. Analysing Monetary Policy in Four Dimensions

In Section 3.3, we explained the merit of using viability kernel methodology to analyse
domestic interest rate adjustments. The remainder of this paper aims to illustrate this
merit. Our analysis will be parameter-specific. We do not claim that our results are universal.
Nevertheless, we contend that our graphical examination of the multidimensional viability
kernels provides a pedagogical explanation for how the domestic bank’s reactions u ∈ U to
the foreign bank’s actions v ∈ V are able to keep the state variables

(
y(t), π(t), q(t), i(t)

)
in

the desired set K ⊃ VK
F .

Our model yields a four-dimensional viability kernel that is not amenable to direct
graphical representation. To help understand our policy analysis, we now show how to
interpret 3D “slices” of this 4D kernel.

5.3. How to Interpret a 3D Projection of a 4D Kernel

Imagine that the domestic central bank surmises that the change in the foreign real
interest rate is zero, i.e., v = 0. Using VIKAASA see Appendix C, we have computed the
4D viability kernel VK

F ⊂ K ⊂ R4 for v = 0, given the equations of motion (20)–(23) and the
constraint set (24), as per the definition (5). In Figure 2, we show several rows of the array
that contains the viable points.8

Figure 2. Viable points (fragment).

To study the bank’s monetary policy problem, we will use time profiles of key variables
(see Figure 3) and 3D slices of the 4D viability kernel VK

F (see Figure 4). The axes of the
resulting figures are scaled in the real-life units. Inflation and interest rates are expressed in
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level terms. Among other things, we will show that v = 0 does not imply stationarity of
the domestic exchange rate.

Now we select a point from the viability kernel (i.e., a viable point) and examine how
the interest rate adjustments u(t) ∈ U, t ∈ [0, Θ] drive the evolution of this economy. In
particular, we consider

[y1(0), π(0), q(0), i(0)] = [0.0057, 0.006,−0.0714, 0.002].

When translated to level terms, this point is:

x1(0) = [y1(0), π(0) + 0.02, q(0), i(0) + 0.04] = [0.0057, 0.026, −0.0714, 0.042].

This point corresponds to an economy in “good shape”: output gap is mildly positive,
inflation (in level terms) is not far from 2 per cent, the currency is rather overvalued and the
interest rate is close to its reference value. In essence, x1(0) might characterise a developed
economy in the time before the COVID pandemic.

We also select a point from the complement of the viability kernel (which is thus non-
viable). This point is:

[y2(0), π(0), q(0), i(0)] = [0.016, 0.006, −0.0714, 0.002].

It translates to the following level terms:

x2(0) = [y1(0), π(0) + 0.02, q(0), i(0) + 0.04] = [0.0016, 0.026, −0.0714, 0.042].

The difference with the previous illustration point is in the value of the output gap (shown
in bold font).

We contend that x2(0) might describe a developed economy near the end of the
pandemic, when unemployment is very low, but the other key variables have not yet
changed from their pre-pandemic levels. We believe that comparing the evolutions of two
economies that differ only in their output gaps will help the reader appreciate the benefits
of using viability theory for monetary policy.

Consider Figure 3. The viable evolution originating from x1(0) is represented by solid
lines, while the non-viable evolution originating from x2(0) is shown with dash-dotted
lines. The figure has eight subplots. The first four track the state variables. Subplots plots 5
and 6 are the same as 2 and 3, respectively, but are scaled in level terms. Subplot 7 depicts
the economy’s overall velocity9. Finally, subplot 8 shows the interest rate adjustments that
keep x(t), t ∈ [0, Θ] in VK

F ⊂ K.
The bank reacts to the mildly positive output gap (see the solid lines) by lowering

the interest rate (see subplot 8, as well as subplots 3 and 6). This interest-rate adjustment
prevents a sharp decline in the output gap. Over time, inflation goes down and the exchange
rate decreases (q grows, hence the local currency weakens). This helps the output gap
recover, and it stays mildly negative. Subsequently, the economy stabilises without further
intervention. This evolution is also visible in 3D in Figure 4, which is discussed below.
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Figure 3. Time profiles of economy evolutions.

The “boulders” in Figure 4 (and also in the subsequent figures) are 3D slices of the
VK

F ∈ R4, whereby the 3D space is spanned on the axes {output gap, level inflation, level
interest rate}. The cuboids represent the projections of the constraint set K onto 3D space. In
the left panel, the boulder is the slice of VK

F through q(0) = −0.0714. We see that x1(0), the
starting point of the solid line, is a boundary point of the boulder (and also of the viability
kernel). The trajectory starting at this point is clearly viable, as it remains in K. It confirms
the observations we made when examining the time profiles in Figure 3: the interest rate
drops, and inflation and the output gap stabilise. The boulder in the right panel is the slice
of VK

F ∈ R4 through inflation of 0.006 (level inflation of 0.026).
The large positive output gap in x2(0) threatens to cause a spike in inflation (see the

dash-dotted lines). Because of the delay (“inertia”) between interest rate adjustments and
their effects on the output gap and inflation, no interest rate adjustment can prevent the
inflation spike in our calibrated model. Inflation will exceed the allowed upper bound, so
the starting point x2(0) is non-viable.

If the bank stays inactive and keeps the interest rate adjustments at zero for some
time, then the currency remains overvalued and the output gap diminishes rather quickly.
Inflation would eventually decrease, but only after it has breached the upper bound (see
subplots 2 and 5).



Games 2022, 13, 58 14 of 24

Figure 4. Economy evolutions shown in 3D spaces.

The above evolution and the resulting breach of the inflation bound might explain
the current spike in inflation experienced by many countries. As already discussed, we do
not claim that the specific times and magnitudes reported in our figures can be directly
translated into real-life data. However, we argue that our model correctly captures the
implications of a large output gap and overvalued currency for the economy.

The developments after the period of rising inflation and diminishing output gap (see
the dash-dotted lines) reflect the bank’s attempt at stabilising the economy. Lowering the
interest rates at that stage is by and large ineffective, because the output gap is already
very negative, causing inflation to drop below the lower bound. The currency remains
overvalued, and thus continues to depress output.

Our model and the software that computes the viable points (see Appendix C) have
not produced a successful interest-rate adjustment policy for fighting a larger output gap.

The conclusion we can draw from the above discussion is that a mildly positive output
gap and overvalued currency, such as at x1(0), should be taken seriously. In particular,
the banks should consider the proximity of the output gap to the boundary of the viability
kernel (see the right panel in Figure 4). In our example, the value of the output gap in x1(0)
is close to being critical: a slightly larger output gap would make the economy non-viable.

This proximity is evident in the right panel of Figure 4. Here the viability kernel
is sliced at inflation of 0.006 (level inflation of 0.026). The boulder depicts the kernel
projection onto R3 with dimensions {output gap, exchange rate, level interest rate}. We see that
the evolution of the solid line starts at a boundary of the viability kernel. This line goes
through a region of the negative output gap and stabilises close to the neutral output gap.
On the other hand, the dash-dotted line, which shows an evolution from x2(0), breaches
the lower bound of the output gap.

To summarise, an evolution that begins inside the viability kernel will not leave it in
finite time. If, on the other hand, it originates from outside the kernel, it will eventually
leave the constraint set K (the cuboid “box” in the figure).

We believe that analysing the viability kernel slices is instructive for understanding the
topology of the multidimensional process of interest rate adjustment. A caveat of using 3D
slices is that, while a viable evolution never leaves the viability kernel VK

F ⊂ K, it does not
need to remain in the “slice”. This is because each 4D line represented in 3D is parametrised
in the fourth dimension. That is, each line segment corresponds to a different value of the
fourth dimension.
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6. Impact of Foreign Real Interest Rate on the Domestic Economy

We now consider three scenarios concerning the foreign country’s real interest rate:
when it is negative, neutral and positive. We model these scenarios numerically with
v = −0.005, v = 0 and v = 0.005 (i.e., −0.5%, 0% and 0.5%). Each of these values will
have a different impact on the exchange rate, through which the foreign economy affects
the domestic economy.

6.1. Neutral Exchange Rate

First, we examine the impact the foreign real interest rate will have on the domestic
economy when the exchange rate is neutral, i.e., when q = 0.

Figure 5 shows slices through q = 0 of the three kernels computed for foreign real
interest rates of 0.5%, 0% and −0.5%. Each cuboid represents the constraint set K projected
onto the space of output gap, inflation and domestic interest rates. We will refer to these
cuboids as K0.

All three slices in Figure 5 are of commensurable volumes, i.e., they have a comparable
number of viable economic states. However, these slices are located in different parts of
the state space. In particular, they are (almost) vertically separated along the dimension of
the domestic interest rate. The slices are also shifted horizontally relative to the centres of
output gap and inflation. Therefore, the domestic economy needs to be in different areas of
the state space to cope with different foreign real interest rates.

If the foreign real interest rate is negative (v = −0.005, top panel), then the viability
kernel’s slice for q = 0 is situated in the upper part of K0, where the domestic interest rates
are high and the output gap and inflation are slightly above their middle values. When
the foreign real interest rate is neutral (v = 0, middle panel), the slice is in the centre of K0.
Finally, when v is positive, the slice is in the lower part of K0, where the domestic interest
rates are low and the output gap and inflation are slightly below their middle values.

We can provide the following intuition for why the domestic economy with a neutral
exchange rate might not have a viable evolution.

Overall, a neutral exchange rate (q = 0) means that the output gap and inflation are
not affected by the foreign economy for as long as the exchange rate remains neutral. This
may change due to domestic interest rate adjustments (see (22)).

When the foreign real interest is negative and the domestic economy is close to the
upper bound on y, inflation is rather high (see the top panel) and π may go beyond its
upper bound. Equation (20) suggests that high domestic interest rates are necessary to bring
the output gap down, instead of just relying on a fall due to mean reversion. Increasing i
requires an interest rate adjustment, u > 0. However, this adjustment may be neutralised
by v < 0, as per (22).

In the bottom panel, we have v = 0.005. Here, the output gap is negative and requires
a stimulus to increase. This might be achieved by lowering the domestic interest rate
through a negative adjustment, u < 0. To keep the exchange rate neutral (so that q = 0
in (20)), a negative interest rate adjustment may be offset by v > 0.

The economy in the middle panel appears not to require adjustments, so v = 0 will
help keep it that way.

In summary, when v < 0 and the domestic bank chooses u > 0 or, conversely, when
v > 0 and the domestic bank chooses u < 0, domestic interest rate adjustments will have
little effect on the exchange rate.
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Figure 5. Slices of the viability kernel for neutral exchange rate when v = −0.005, v = 0 and
v = 0.005.
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We notice that no points belong to all three slices in Figure 5. However, the top slice and
the bottom slice intersect individually with the central one. We can therefore recommend
to the domestic central bank that, in an environment of few domestic inflationary and
output-gap pressures:

a. the bank should keep the domestic interest rate close to the upper limit when the
foreign real interest rate is negative;

b. the bank should keep the domestic interest rate close to the lower limit when the
foreign real interest rate is positive.

In the case when the foreign real interest rate is zero, the domestic interest rate should
obviously be kept in the middle of the range.

6.2. Undervalued and Overvalued Currency

Next, we study the slices through q = 0.04 (undervalued local currency) and q = −0.04
(overvalued local currency) of the computed viability kernels for v = −0.005, v = 0 and
for v = 0.005. These are shown in Figures 6 and 7, respectively. We conclude this section
with a policy suggestion that the domestic bank should follow in its qualitative NA-game
against the foreign bank.

The kernel slices contain all states that would enable the economy to stay in K with
interest rate adjustments u ∈ U. The top panels are constructed for a negative foreign real
interest rate, the middle panels are constructed a foreign real interest rate of zero, and the
bottom panels are constructed for a positive foreign real interest rate. We notice that, in
contrast with Figure 5, now the sizes of the boulders differ: for undervalued local currency
(q = 0.04, left figure) the kernel slice is largest for the negative foreign real interest rate
(v = −0.005, top panel); for overvalued local currency (q = −0.04, right figure) the kernel
slice is largest for the positive foreign real interest rate (v = 0.005, bottom panel). The larger
sizes indicate that the economy is viable for a bigger set of states. Therefore, the domestic
bank will find it easier to cope with a negative foreign real interest rate when the exchange
rate is undervalued. Correspondingly, it will be easier for the domestic bank to cope with
a positive foreign real interest rate when the exchange rate is overvalued. A positive v
expands the viability kernel for an overvalued currency and diminishes the kernel when
the domestic currency is undervalued.

As expected, a large positive output gap is nonviable for undervalued currency, and a
large negative output gap is nonviable for overvalued currency (see the middle panels).
This result is consistent with the empirical observation that overvalued domestic currency
depresses output.

Figures 6 and 7 also give visibility to two unfavourable situations. There are few or
no viable states if the domestic currency is overvalued and the foreign real interest rate
is negative (see top right panel). Correspondingly, there are few or no viable states if the
domestic currency is undervalued and the foreign real interest rate is positive (see bottom
left panel). Although the nominal real interest rate in the US is now rising, the real interest
rate is likely negative because inflation is already high. The currencies of countries such as
Australia or New Zealand are probably undervalued relative to the US dollar. Therefore,
these economies might be in the situation captured by the large kernel slice in the top left
panel of Figure 6.

Furthermore, when examining the slices from top to bottom, we see that an increase in
the foreign real interest rate pushes the slices lower. In other words, the available ranges of
the domestic interest rate needed to keep the economy viable move down. This is similar
to what we observed in Figure 5. In both cases, a negative v necessitates a high-interest rate
to prevent output from growing too high; conversely, when v > 0, a low-interest rate is
required to keep the economy outside a liquidity trap.
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Figure 6. Viability kernels for undervalued currency.
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Figure 7. Viability kernels for overvalued currency.
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The domestic bank would be ideally suited to respond to a change in the foreign
interest rate by keeping the economy in the intersection of the kernels for all possible values
of v ∈ V. Unfortunately, for the calibrated parameters, this intersection is an empty set.
Nonetheless, the above analysis motivates our claim that the advice formulated for an
economy with a neutral exchange rate, as list (a), (b) in Section 6.1, is valid for all economies.
That is, the domestic bank should keep the level interest rate high if the foreign real interest
rate is negative, and it should keep the level interest rate low if the foreign real interest
rate is positive. Our conclusions can also be visualised with Tables 1–3. These tables show
the minimum and maximum viable values of inflation, output gap and interest rate (all
in level terms) for the cases of undervalued currency (q = 0.04) and overvalued currency
(q = −0.04). They highlight the contraction of the viability kernel in situations where q
and v are both positive or both negative. Furthermore, they confirm our observations that
viability requires a lower domestic interest rate in order to offset a positive foreign real
interest rate, and vice versa.

Table 1. Minimum and maximum viable values of inflation, output gap and interest rate (all in level
terms) for v = −0.005.

πmin πmax ymin ymax imin imax

q = −0.04 0.01 0.02 0.023 0.04 0.056 0.07
q = 0.04 0.01 0.03 −0.034 0.028 0.035 0.07

Table 2. Minimum and maximum viable values of inflation, output gap and interest rate (all in level
terms) for v = 0.

πmin πmax ymin ymax imin imax

q = −0.04 0.01 0.03 −0.016 0.032 0.035 0.056
q = 0.04 0.01 0.03 −0.032 0.008 0.021 0.042

Table 3. Minimum and maximum viable values of inflation, output gap and interest rate (all in level
terms) for v = 0.005.

πmin πmax ymin ymax imin imax

q = −0.04 0.01 0.03 −0.029 0.029 0.007 0.042
q = 0.04 0.022 0.03 −0.04 -0.023 0.014 0.021

7. Conclusions

We have applied viability theory to a stylised macroeconomic model and explored
how a central bank of a small open economy can conduct monetary policy when the foreign
central bank pursues its own stabilisation policy. We have framed the problem of the
domestic bank as a qualitative NA-game. To solve this problem, we have computed several
viability kernels for the domestic bank, and indicated the states that enable it to preserve
the viability of its economy.

It follows from our discussion on policy choices available to the domestic bank that
hedging against both positive and negative foreign real interest rates seems impossible.
However, if the direction of adjustment of the foreign real interest rate is known, the
domestic bank may be able to establish the viability kernel. For the states in the viability
kernel, there exist domestic interest rate adjustment policies that can keep the domestic
economy in the desired set K.

An obvious question is what the central bank needs to do if the economy is outside
the viability kernel. In such circumstances, the bank should embark on crisis control
à la [35,36]. This is the approach taken by many central banks in 2022. In particular, they
select their interest rate adjustments u′(t) from a set U′ ⊃ U (see (9)) with wider bounds
u′ > u1, ū′ > u2. Furthermore, the system’s dynamics can be sped up by decreasing the
time intervals between adjustments. Finally, a central bank may improve the resilience
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of its economy to foreign shocks by expanding the viability kernel through reforms that
would change the values of the coefficients a, d2, d3, p, ρ10.
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Appendix A. Viable Areas

To define viable areas, viability theory introduces the viability theorem, which establishes
the relationship between any closed set of points D viable under F, and the concept of the
proximal normal11 to D at x. The relationship between proximal normals and the viability of
D under F is defined formally in [32,47] (Theorem 2.3) and [31] (Theorem 3.2.4).

There is also an alternative, perhaps more intuitive, viability characterisation based on
contingent cones. The contingent cone at x̄ ∈ frD (boundary of D) is the set of all directions
pointing “into” D at x̄ that form acute angles with a tangent to D at x̄.12 Given system’s
dynamics F(·), whenever it is possible to identify a closed set D such that the “velocities”
F(·) available at x ∈ D and the directions from the contingent cone of D at x intersect, then
every x ∈ D must be viable under F. In other words, there exists at least one direction in
the “velocities” set F(·) “pointing” inside D. That is, there must exist a trajectory starting
from each x ∈ D that remains in D.

Formally, the largest viability domain is the viability kernel VF(K), see (5).
For a control problem, the existence of the viability kernel VF(K) indicates an area for

which sufficient control exists to maintain the system within VF(K) from any point in VF(K).
In other words, we know that if a trajectory begins inside the viability kernel VF(K) then we
have sufficient controls to keep this trajectory in the constraint set K for all t. Alternatively,
if evolution of the system begins outside the kernel i.e., x0 ∈ K\VF(K), then it leaves K in
finite time. When F represents the system’s dynamics of a control problem, establishing
the viability kernel VF(K) has important implications for policy-making. In particular, it
allows us to construct control rules that maintain the system’s viability, see [30].

Appendix B. Exchange Rate Responsiveness to Interest Rate Adjustments

Our calibration of ρ is based on observations related to the hike in New Zealand’s
interest rate by 0.25% on 12 June 2014. Let us denote ∆i = 0.0025. This hike was accom-
panied by an appreciation of the domestic currency of (0.8606− 0.8530)/0.8530 = 0.0089
≈ 1% vis-a-vis the US dollar on the same day. We say ∆q = −0.01.

Hence,
∆q
∆i

=
−0.01
0.0025

= −4. I.e., we contend that every (positive) percentage point
of change in i adds −4 points to the velocity of q measured on the day the interest rate
was changed.

However, all velocities in the model (20)–(23) are expressed in
[

1
quarter

]
units. We

know that the exchange rate adjustments are very fast, and the period over which q can
change may be very short. To make the size of ρ compatible with the other model parame-
ters it will be assumed that there are no other interest rate changes within a quarter after
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the observed hike. E.g., assuming the domestic and foreign real interest rates differential is
0, the jump in i at time t will modify the value of q(t + 1 quarter) as follows

q(t + 1 quarter)− q(t) = −ρ∆i · 1 quarter i.e., for ∆i = 0.0025,

q(t + 1 quarter)− q(t) = −4 · 0.0025 = −0.01 .

To summarise, we set ρ to 4. This value was also used in [10].

Appendix C. VIKAASA

VIKAASA is a specialised MATLAB application that can compute viability kernel
approximations for rectangular constraint and control sets.13

VIKAASA can be used either as a set of MATLAB functions,14 or via a graphical user
interface (GUI), as in Figure A1. Using the GUI one can specify the viability problem for
which to the kernel is sought, run the kernel approximation algorithms and view the results.
VIKAASA also supports saving and viability kernel data into files.

Figure A1. VIKAASA main interface.

A manual for VIKAASA can be found in [45].

Notes
1 This paper draws from [1].
2 In the two-person game context, we cannot use the gender-neutral pronoun their to describe a singular player action. Instead,

we will use he and his to refer to a single genderless agent.
3 For more interpretations of (3) see e.g., [30]).
4 Viability is normally defined for an infinite time horizon, but it is also possible to define Θ ≡ [0, T], T ∈ R+, and consider

viability in finite-time.
5 The parameter notation is chosen to reflect some compatibility of our model with Batini-Haldane’s discrete-time model in [39].
6 This is the reason we refer to our game as a nuisance agent game.



Games 2022, 13, 58 23 of 24

7 This algorithm (called the inclusion algorithm, see [9]) employed by VIKAASA will miss any viable points that cannot reach a
steady state; e.g., because they form (large) orbits. However, experimenting with our monetary policy models, which consisted
of using different discretisation grids and trying various controls did not lead to the discovery of points like that.

8 The total number of rows of the array for the selected discretisation (see Appendix C) is 683.
9 The penultimate subplot is the economy’s velocity norm, i.e., the sum of absolute values of the right-hand sides of (20)–(23). We

consider this number a measure of an aggregate system’s velocity and call it velocity in the figure. If this velocity is close to zero,
the economy has approached a steady state. If the steady-state is inside VK

F and no state variable has ever breached the bounds
of K then the evolution starting point is viable; refer to Appendix C.

10 See [37] for a discussion on building systemic resilience in the context of viability theory.
11 Let NPD(x) denotes the set of proximal normals to D at x i.e., the set of p ∈ Rn such that the distance of x + p to D is equal

to ||p||.
12 If D were a disc, then a contingent cone at any point of the circumference would be a half-space. When x̄ is an interior point of

D, then the contingent cone for this point is the whole space.
13 VIKAASA stands for Viability Kernel Approximation, Analysis and Simulation Application = VIKAASA, which happens to be

a Sanskrit word that means “progress” or “development”.
14 VIKAASA is also compatible with GNU Octave, but without the GUI. See the manual for more information.
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