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Abstract: The Global Malmquist Productivity Index (GMPI) stands as an evolution of the Malmquist
Productivity Index (MPI), emphasizing global technology to incorporate all-time versions of Decision-
Making Units (DMUs). This paper introduces a novel approach, integrating the Nash Bargaining
Game model with GMPI to establish a Cross-Productivity Index. Our primary objective is to develop
a comprehensive framework utilizing the Nash Bargaining Game model to derive equitable common
weights for different time versions of DMUs. These weights serve as a fundamental component for
cross-evaluation based on GMPI, facilitating a holistic assessment of DMU performance over varying
time periods. The proposed index is designed with essential properties: feasibility, non-arbitrariness
concerning the base time period, technological consistency across periods, and weight uniformity for
GMPI calculations between two-time versions of a unit. This research amalgamates cross-evaluation
and global technology while employing geometric averages to derive a conclusive cross-productivity
index. The core motivation behind this methodology is to establish a reliable and fair means of
evaluating DMU performance, integrating insights from Nash Bargaining Game principles and GMPI.
This paper elucidates the rationale behind merging the Nash Bargaining Game model with GMPI
and outlines the objectives to provide a comprehensive Cross-Productivity Index, aiming to enhance
the robustness and reliability of productivity assessments across varied time frames.

Keywords: data envelopment analysis; global Malmquist productivity index; common weights;
cross-evaluation; Nash bargaining

1. Introduction

Data Envelopment Analysis (DEA) has been introduced as a tool for evaluating the
performance of homogeneous and similar Decision-Making Units (DMUs). Since then,
numerous theoretical and practical developments have been presented for this mathemat-
ical programming-based technique, and various topics have been discussed in its scope.
One of these topics in the context of evaluating the performance of DMUs is the devel-
opment of performance appraisal indexes over time, such as the Malmquist, Laspeyres,
Paasche, Fisher, Tornqvist, and Hicks-Moorsteen [1]. Among these indexes, the Malmquist
Productivity Index (MPI) has received considerable attention and has been the subject of
numerous studies in this area.

The MPI, proposed by Caves et al. [2], is based on the first-period technology for
performance appraisal. By using the fixed period as the fundamental technology, the MPI
maintains certain desirable properties such as consistency in calculating the MPI due to
the same basis, transitivity, and circularity. However, the choice of the base time period is
arbitrary, and other time periods are not taken into consideration. To address this issue,
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various suggestions have been proposed, such as using the geometric mean of the MPIs
obtained by considering both time periods as the basis [3], and using global technology.

The concept of global technology as the benchmark technology for evaluating the
performance of DMUs over time was first added to the MPI concepts at DEA by [4]. The
use of this technology as a set of all time versions of all DMUs led to the introduction of the
Global Malmquist Productivity Index (GMPI). This index has features such as feasibility, in-
dependence of results from different technologies, circularity, and consistency. Consistency
means that the basis for calculating the index is the same for different DMUs, which makes
the DMUs comparable based on the scores. But the consistency of [4]’s GMPI was only
linked to the technology used. The authors of [5] pointed out a kind of inconsistency in this
index, which is the possibility of using different weights to calculate the GMPIs of different
DMUs. Geometrically, not only different DMUs, but even different time versions of a DMU,
can use a different hyperplane of the global technology as the benchmark. To address
such inconsistencies, ref. [5] proposed a method involving a Common Weight (CW) for all
DMUs across all times, aiming to mitigate disparities arising from varied technologies and
support hyperplanes. However, this method showed limitations, lacking peer evaluation
and being heavily reliant on weight selection.

Cross-evaluation can also be chosen as an intermediary solution for dynamic evalua-
tion of DMUs: between full weight freedom in [4], and full weight limitation of all DMUs
to a CW in [5]. Ding et al. [6] used the concept of cross-evaluation in calculating MPI.
However, this applies exclusively to global technology, and cross-evaluation is utilized
solely for identifying efficiencies, not productivity indexes. In the conventional MPI for-
mula, only Cross-Efficiency (CE) scores replace the efficiency scores of conventional DEA
models. Additionally, the weights used in evaluations are not common, introducing a
challenge of inconsistency. In addition, the function used to aggregate performance is of an
arithmetic type that is not compatible with MPI studies in the use of geometric functions.
Homayoni et al. [7] proposed a cross-productivity index to address the issues identified
in [6], where the weights from self-evaluation and peer evaluation were used directly in
the productivity index calculation. However, the problem of inconsistency still exists, as
the efficiencies in their MPI ratio are calculated based on different weights.

In this paper, we introduce a methodology for calculating GMPIs that addresses the
limitations of previous approaches. We consider the global technology set, comprised of
all DMUs in two different time periods, as the benchmark. To ensure fair evaluation and
account for DMUs’ preferred weights, we suggest using several CWs for self and peer
evaluation, instead of relying on just one CW. For both time versions of a DMU, we obtain
a CW and use it to calculate the GMPI of that DMU and others.

Due to the competitive nature of the DEA evaluation process, we employ the Nash
bargaining game model with suitable breakdown points to establish fair CWs. This co-
operative model is formulated to simultaneously maximize the utility of all participants.
Additionally, it results in a Pareto-optimal solution, which motivates players to accept it.
We create a cross-evaluation matrix containing values of self and peer productivity and
aggregate the GMPIs using the geometric mean to maintain the multiplicative structure at
the aggregate level. This approach overcomes the inconsistency issue of previous methods
and provides a more acceptable evaluation of DMUs. Furthermore, our method accounts
for DMUs’ preferences and ensures fairness in the evaluation process.

After examining the literature on CW and MPI in DEA, it is apparent that no attempt
has been made to obtain a CW for the time versions of a DMU. Furthermore, no study has
yet calculated a GMPI matrix. A review of the literature also suggests that game theory has
not been used to generate productivity indexes in DEA.

The proposed integrated framework of GMPI, CW, Nash bargaining, and cross-
evaluation allows the constructed GMPI to possess certain properties. The use of a CW in
calculating the efficiencies of time versions of a DMU ensures that the GMPI fraction is well
defined and consistent across all DMUs. The use of global technology ensures that the mod-
els used to estimate efficiencies are always feasible [4]. Additionally, both self-evaluation
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and peer evaluation are considered, resulting in an aggregated GMPI that inherits the
desired cross-evaluation features. This includes reducing the dependence of results on a
particular weight, increasing stability and reality, avoiding overestimation, being fair due
to the use of desired weights of each unit, and reflecting reality more accurately.

The paper is structured as follows. The second section offers an overview of essential
background information. In the third section, we introduce the proposed method along
with its properties, and the fourth section presents an examination of the method through a
numerical example. Finally, the last section presents our conclusions and suggestions for
future research.

2. Preliminaries

In this section, we provide a brief overview of some fundamental concepts and princi-
ples of DEA and game theory that are necessary for understanding the proposed method.
For ease of reference, all the symbols and abbreviations used throughout the paper are
compiled in Table 1.

Table 1. The abbreviations and nomenclatures used in this paper.

Nomenclatures

j = 1,. . ., n Set of Observed DMUs o The index of the under evaluation DMUo.
i = 1,. . ., m Set of inputs Eoo CCR Efficiency of DMUo
r =1,. . ., s Set of outputs Ejo Cross-efficiency values of DMUo utilizing weights of DMUj

Xj Input vector of DMUj Ek,G
o Efficiency of DMUo in time k relative to the global frontier

Yj output vector of DMUj uk,G
j

Output weight vectors of DMUj at time k in relation to the
global frontier

U Vectors of output weights vk,G
j

Input weight vectors of DMUj at time k in relation to the
global frontier

V Vectors of input weights Ek,G
j,o

Cross-efficiency of DMUo at time k using optimal weights of
DMUj at time k with respect to the global frontier.

Abbreviations

DEA Data Envelopment Analysis CEM Cross-Efficiency Matrix
DMU Decision Making Unit GMPI Global Malmquist Productivity Index

CE Cross-efficiency SGMPI Self-Evaluation Nash CW Global Malmquist Productivity Index

MPI Malmquist Productivity Index PGMPI Peer Evaluation Nash CW Global Malmquist
Productivity Index

CW Common Weight CGMPI Cross Evaluation Nash Common Weight Global Malmquist
Productivity Index

2.1. Cross-Efficiency

The cross-evaluation method, introduced by [8,9], utilizes peer evaluation in addition
to self-evaluation, establishing various sets of input and output weights for each DMU
and computing its efficiencies based on all these weight combinations. Consequently,
each DMU will obtain multiple distinct efficiency scores, and the average portrays the
comprehensive performance of the DMU. DMUs can then be compared and ranked based
on average cross-efficiencies, that exhibit robust discrimination capabilities and adhere to
reasonable logic. The DEA literature has extensively studied cross-efficiency, with recent
studies including [10–17].

Employing the conventional notation in DEA, we consider a set of n DMUs to be
evaluated based on m inputs and s outputs. Each DMU is denoted as DMUj = (Xj, Yj)
(j = 1,. . ., n), where Xj = (x1j,. . ., xmj) and Yj = (y1j,. . ., ysj) represent the input and output
vectors of DMUj, respectively.

The efficiency rating for any given DMUo can be computed using the following ratio
form of the CCR model [18]:

Eo= Max uo·yo
vo·xo

S.t.
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uo·yj

vo·xj
≤ 1, j = 1, . . . , n,

vo ≥ 0,uo ≥ 0 (1)

uo and vo represent the vectors of output and input weights of DMUo, respectively. This
problem is solved by sequentially evaluating the efficiency of each DMU, altering it as the
unit under evaluation, resulting in n evaluations to determine the relative efficiency of all
DMUs. The efficiency score ranges from 0 to 1, with DMUs scoring 1 considered efficient
and those scoring less than 1 considered inefficient.

When the most preferred weights obtained by model (1) for a given DMUj (rating
DMU) are employed to compare the efficiency score for another DMUo (rated), the so-called
cross-efficiency value is:

Ejo =
uo·yj

vo·xj
(2)

The resulting cross values between each DMU can be collected and arranged in a
Cross-Efficiency Matrix (CEM), as shown in Table 2. The entries in column ‘o’, which
correspond to the rated DMUo, represent the evaluations obtained by using the preferred
weights of all n DMUs. These evaluations include the self-evaluation (based on its own
weights) and the evaluations based on the weights of n − 1 other DMUs (peer-evaluation).
On the other hand, the entries in row j represent the evaluations of all DMUs based on the
preferred weights of rating DMUj. The efficiency values evaluated for each DMU with
respect to itself are positioned on the main diagonal of the CEM.

Table 2. Cross-Efficiency Matrix.

Rating DMU
Rated DMUs

1 . . . o . . . n

1 E11 . . . E1o . . . E1n
. . . . . . . . . . . .
j Ej1 . . . Ejo . . . Ejn

. . . . . . . . . . . .
n En1 . . . Eno . . . Enn

The cross-efficiency score of DMU0 is typically computed as the average of its cross-
efficiencies using (3):

CEo =
1
n

n

∑
j=1

Ejo (3)

2.2. Malmquist Productivity Index

The Malmquist Productivity Index (MPI) is a widely used tool in productivity analysis,
particularly in DEA. The MPI evaluates and compares productivity changes across DMUs
over time. Essentially, the MPI gauges productivity changes by examining shifts in the
efficiency frontier or best practice technology across different time periods. It allows
analysts to measure changes in productivity by considering both technological progress
and efficiency improvements. This method compares the efficiency of DMUs between
different time periods, reflecting alterations in technology or efficiency enhancements
within DMUs.

Consider the performance evaluation and productivity change for n DMUs at two
times, t and t + 1. Let Et,t

o and Et,t+1
o represent the efficiencies of unit o at time t relative to

the technology frontier of time t and t + 1, respectively. Similarly, Et+1,t
o and Et+1,t+1

o denote
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the efficiencies of this unit at time t + 1 relative to the technological boundaries of time t
and t + 1. The efficiencies are computed using model (1). The MPI is defined as follows:

MPIo =

[
Et+1,t

o

Et,t
o

Et+1,t+1
o

Et,t+1
o

] 1
2

(4)

Less, more, and equal MPI values of 1 indicate regress, progress, and zero productivity
change over time t and t + 1, respectively.

The MPI has undergone numerous theoretical advancements since its inception, all
geared toward refining its application and augmenting its analytical prowess within the
realm of productivity analysis. Table 3 encapsulates a selection of these theoretical exten-
sions of the MPI.

Table 3. Theoretical extensions of MPI.

Topic References

1 Cost type MPI [19–24]
2 Global/biennial/overall MPI [4,5,20,25–28]
3 Network [29–32]
4 Combination of MPI with other Indexes and Indicators [33–38]
5 Distance function/Directional productivity [39–43]

6 Aggregation/disaggregation/ decomposition/Centralized
scenario/mergers/meta-frontier [44–58]

7 Others [59–72]

2.3. Game Theory

Game theory is a mathematical framework that helps analyze decision making and
strategic interactions between different individuals or groups. Cooperative game theory, a
subset of game theory, centers on scenarios in which players can unite and collaborate to
attain their goals. In cooperative games, players can agree on how to distribute the payoff
among themselves, which is the essence of the bargaining method. The bargaining method
is a cooperative game theory solution concept that provides a way to allocate the gains
from cooperation among the players.

The bargaining method assumes that players negotiate a cooperative solution that
maximizes the sum of their payoffs. The solution must be feasible, meaning that it
should lie within the players’ negotiation range. The negotiation range is determined
by the players’ reservation values, which are the minimum payoffs they are willing to
accept. The bargaining method provides different solutions depending on the negotiation
process, such as the Nash bargaining solution, the Kalai-Smorodinsky solution, and the
egalitarian solution.

Assuming n players, denoted as {1,. . ., n}, engage in a bargaining scenario, where the
payoff vector is represented as an element in Rn. Here, Rn signifies the feasible set and serves
as the breakdown point. According to [73], a reasonable solution in bargaining should
adhere to fundamental properties in bargaining theory. These properties encompass: Pareto
efficiency, ensuring that no participant can be made better off without making another
participant worse off; invariance concerning affine transformations, implying the solution
remains unchanged despite linear transformations; independence of irrelevant alternatives,
asserting that the chosen solution remains consistent irrespective of irrelevant options;
and symmetry, signifying the equitable treatment of all participants. The authors of [73]
demonstrated the existence of a unique solution satisfying these four properties, referred to
as the Nash solution. The Nash solution can be derived by maximizing ∏n

i=1(ui − bi) where
ui and bi are the elements of u and b, respectively. This involves selecting a vector from the
feasible solutions of the game that maximizes the product of the differences between each
player’s desired utility and their respective breakdown points, with the less desirable point
serving as the breakdown.
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The combination of game theory and DEA has been explored in various studies, which
aim to evaluate the efficiency of decision-making units. The use of game theory models
can help capture the strategic interactions between the units, while DEA can measure their
efficiency. Table 4 summarizes the findings of some of these studies and their contributions
to the field. Overall, the combination of game theory and DEA can provide a comprehensive
framework to analyze decision-making processes in complex and dynamic environments.

Table 4. A literature review on DEA-Game.

Subject Area of DEA Game References

1 Connecting efficiency games to various versions of DEA models [74–77]

2
Breaking down the overall system efficiency in a multistage and

parallel-processes network or calculating the efficiency of
processes in a network

[78–85]

3 Evaluating efficiency when multiple groups of inputs or
different perspectives are taken into consideration [86–88]

4
Reaching consensus among individuals or organizations

employing multiple criteria for performance evaluation, and
addressing the Egoist’s dilemma

[89–96]

5 Technology sharing and resource pooling [97–101]

6 Establishing a unified set of weights for evaluating the
efficiency of DMUs [102–105]

3. Cross Common Weights Global Malmquist Productivity Index Based on
Bargaining Games
3.1. Motivation through a Numerical Example

In this section, our focus is on delineating the motivation behind the proposed method
by utilizing a hypothetical example. Our aim is to explicate the methodology for computing
the GMPI through the lens of a straightforward numerical illustration. To embark on this,
we will delve into a dataset encompassing 8 DMUs, each characterized by two inputs and
one output, assessed at two distinct time points: t and t + 1. At time t, these DMUs are
denoted as A through G, while at time t + 1, they are represented as A’ through G’. The
pertinent data concerning these DMUs is delineated in Table 5, laying the foundation for
our illustrative example.

Table 5. Data for numerical example.

Time t Time t + 1

DMU X1 X2 Y DMU X1 X2 Y

A 0.5 2.5 1 A’ 0.25 2.25 1
B 0.75 1.25 1 B’ 1 2 1
C 1.5 2 1 C’ 0.75 2.25 1
D 1.5 0.75 1 D’ 1.5 0.5 1
E 2 0.75 1 E’ 2 0.25 1
F 3.25 0.75 1 F’ 2.5 1 1
G 2.5 1.5 1 G’ 2.5 2 1
H 2 2.5 1 H’ 3 2.25 1

The technology of the 8 DMUs in two time periods and two-dimensional space is
presented in Figure 1. The constant return to scale technology is depicted with the bold
(black) border, which represents the t-time technology frontier. DMUs A, B, D, E, and F are
located on this frontier. The faint (orange) frontier with points A’, D’, and E’ on it represents
the technology boundary of time t + 1. Directional vectors are included in the figure to
indicate the change in state of the DMUs from time t to t + 1.
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To gauge the performance change of unit C, traditionally, analysts employ the geo-
metric mean of efficiency between C’ and C at both time points, t and t + 1, within the
framework of the MPI. The MPI serves as a customary measure for assessing productivity
alterations over time. In this context, efficiencies are computed by measuring the radial
distance between the under-evaluated DMU and its radial projection onto the frontiers,
to the origin. In Figure 1, the cross signs mark the projections of point C and C’ on the
frontiers of times t and t + 1. The projection points on the time t frontier lie on the line
segments AB and BD, while the projection points on the time t + 1 frontier lie on the
segment A’D’. There are four projection points and three different faces, which means that
the performance of unit C is calculated based on the distance to different bases or different
supporting hyper-planes of the two-time technologies. This leads to the use of different
normal vectors and different input and output weights for calculating the corresponding
performance of a DMU, resulting in inconsistency in evaluating the performance of the
under-evaluated unit.

To overcome inconsistencies resulting from the use of different technologies and time
bases, Pastor and Lovell [4] proposed the use of a global technology that includes all DMUs
from both time periods. Figure 2 displays the global technology and its corresponding
global frontier, where efficient DMUs A’, D’, and E’ are for time t + 1, and efficient unit B
is for time t. To calculate the efficiencies used in MPI, we now examine the projections of
points C and C’ on this global frontier, resulting in only two projection points: one on the
A’B line segment, and the other on the BD line segment. Although the number of bases has
been reduced, the point of concern is that the efficiencies of C and C’ are still calculated
relative to different line segments and, therefore, different bases.

Due to the inconsistencies highlighted, [5] proposed a method involving a CW applied
uniformly across all DMUs and time periods. This aimed to mitigate disparities arising
from disparate technologies and supporting hyperplanes. However, this approach lacked
the capacity for peer evaluation and showed a high reliance on the weight selection,
posing limitations.
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In the upcoming section, we propose an alternative method centered on employing a
global frontier, ensuring consistency in the underlying technology for efficiency calculations.
By using a shared weight across two versions of a DMU, our approach maintains uniformity
in efficiency calculations, leveraging the normal vector of a hyperplane derived from the
global frontier. This obviates inconsistencies seen in previous methods. Furthermore, the
common weight we introduce adheres to the Pareto property, facilitating cross-comparisons
among DMUs, thus enabling peer evaluation—a feature lacking in the [5] method. Un-
like [5], our approach’s analytical output is not reliant on a singular weight, enhancing
confidence in the evaluation while embracing additional favorable characteristics.

3.2. Method Description

In this section, we outline the steps of our proposed method to calculate a Cross Global
Malmquist productivity index. We will consider a set of 10 DMUs, aiming to analyze how
their productivity changes across different time periods.

For the first time, the global technology and its boundary, i.e., the global frontier, was
used by [4] to calculate GMPI. Following [4], we consider a global technology constructed
from data encompassing all DMUs over two distinct time periods (all periods in the case
in which we may have more periods). The efficiency of DMUk

o= (x k
o, yk

o

)
for k = t, t + 1

relative to the global frontier, can be obtained using model (5).

Ek,G
o = Max

uk,G
o yk

o

vk,G
o xk

o

s.t
uk,G

o yk
j

vk,G
o xk

j

≤ 1, j = 1,. . . , n, k = t, t + 1

uk,G
o , vk,G

o ≥ 0, k = t, t + 1 (5)
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so that (u k,G
o , vk,G

o ) is the weight vector for inputs and outputs, and Xj = (x1j,. . .,xmj) and
Yj = (y1j,. . ., ysj) are input and output vectors of DMUj, respectively. Ref. [4] defined the
GMPI for DMUo as follows:

GMPIo =
Et+1,G

o

Et,G
o

(6)

As indicated by [4], the GMPI is circular and, in contrast to the super-efficiency case,
the associated linear programming is always feasible under any conditions [106,107]. As
mentioned in the previous section, our approach is to use the same weights to calculate
GMPIo such that this common weight (CW) is used to calculate the fractional efficiencies
of GMPIo. The efficiencies of this fraction are related to two-time versions of a DMU.
Obviously, these two DMUs tend to have a CW in such a way that their performance is
maximized, and therefore they have a kind of conflict based on the choice of the CW. This
situation brings to mind the concepts of game theory, in which these two DMUs play the
role of players in a two-person cooperative game in that they do a kind of bargaining to
reach a CW with each other.

In cooperative game theory, a Nash bargaining game models the negotiation process
between players to reach a mutually beneficial outcome. In the context of efficiency
evaluation for DMUs, this game reflects the bargaining process to determine the CW that
maximizes the joint efficiency gains. In this context, the concept of a “breakdown point”
becomes essential. The breakdown point signifies a threshold or critical value beyond
which further enhancements in efficiency become challenging or less feasible. Given the
objective of enhancing efficiency, the breakdown point in this scenario should indeed relate
to efficiency. It could represent the maximum level of joint efficiency achievable, or a point
where the gains from further improvements are significantly diminished or impractical.
Determining this point is crucial for understanding the limitations or challenges in striving
for higher efficiencies among the DMUs.

There are several options for selecting the bargaining breakdown point or bargaining
lower bound of a DMU, and the literature on DEA bargaining games has proposed various
methods [79,87,96,104,108–110]. One approach is based on the leader-follower model [108,109],
where one DMU is assumed to be a leader and its optimistic efficiency is computed
first. Then, the other DMU acts as a follower, whose efficiency is calculated without
changing the leader’s efficiency score. Another method involves adding a virtual DMU
with the maximum number of inputs while producing the least amount of output values to
estimate the breakdown points [79,87,104]. The CCR input-oriented and cross-efficiency
evaluation models have also been used to determine breakdown points [95,110]. Yet, cross-
efficiency scores may lack uniqueness, introducing non-uniqueness to the Nash bargaining
efficiency for a DMU. This can diminish the theoretical value and practical utility of the
Nash bargaining game DEA model. Therefore, we propose that the possible minimum
efficiency of DMUs are good choices for the breakdown points. Employing an aggressive
perspective based on the leader-follower strategy, we determine the breakdown point (with
minimum efficiency) of each DMU with respect to the global frontier.

To do that, let us at first consider DMUt
o as the leader, and the DMUt+1

o as the follower
DMU. We use model (7) to obtain the minimum efficiency for the follower DMUt+1

o .

Et+1,G
o = Min ut+1,G

o yt+1
o

vt+1,G
o xt+1

o

s.t
ut+1,G

o yt
j

vt+1,G
o xt

j
≤ 1, j = 1, . . . , n,

ut+1,G
o yt+1

j

vt+1,G
o xt+1

j
≤ 1, j = 1, . . . , n,

ut+1,G
o yt

o
vt+1,G

o xt
o
= Et,G

o , j = 1, . . . , n,

ut+1,G
o , vt+1,G

o ≥ 0, j = 1, . . . , n,

(7)
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In this model, Et,G
o is the efficiency of DMUt

o (maximum efficiency) relative to the global
frontier, which is obtained using model (7). The third constraint is related to maintaining
the efficiency at its maximum value. Similarly, we consider DMUt+1

o as the leader DMU,
and the unit DMUt

o as the follower DMU (model (8)):

Et,G
o = Min ut,G

o yt
o

vt,G
o xt

o

s.t
ut,G

o yt
j

vt,G
o xt

j
≤ 1, j = 1, . . . , n,

ut,G
o yt+1

j

vt,G
o xt+1

j
≤ 1, j = 1, . . . , n,

ut,G
o yt+1

o
vt,G

o xt+1
o

= Et+1,G
o , j = 1, . . . , n,

ut,G
o , vt,G

o ≥ 0, j = 1, . . . , n,

(8)

We now use the following bargaining model (9) to obtain a fair CW between DMUt
o

and DMUt+1
o :

Z= Max(uC,G
o yt

o
vC,G

o xt
o
− Et,G

o )(
uC,G

o yt+1
o

vC,G
o xt+1

o
− Et+1,G

o )

s.t
uC,G

o yt
j

vC,G
o xt

j
≤ 1, j = 1, . . . , n

uC,G
o yt+1

j

vC,G
o xt+1

j
≤ 1, j = 1,. . . , n

uC,G
o yt

o
vC,G

o xt
o
≥ Et,G

o

uC,G
o yt+1

o
vC,G

o xt+1
o
≥ Et+1,G

o

uC,G
o , vC,G

o ≥ 0

(9)

In this model, DMUt
o and DMUt+1

o are players who bargain together to achieve a fair
CW, and Et,G

o and Et+1,G
o , obtained from models (7) and (8), are the breaking points.

To ensure Pareto optimality, symmetry, scale invariance, and contraction independence,
it is necessary for the Nash bargaining feasible set to be convex. By performing basic
calculations, we can express model (10) in the following form:

Z= Max(uC,G
o yt

o
vC,G

o xt
o
− Et,G

o )(
uC,G

o yt+1
o

vC,G
o xt+1

o
− Et+1,G

o )

s.t uC,G
o yt

j − vC,G
o xt

j ≤ 0, j = 1, . . . , n
uC,G

o yt+1
j − vC,G

o xt+1
j ≤ 0, j = 1,. . . ,n

uC,G
o yt

o − Et,G
o ·vC,G

o xt
o ≥ 0

uC,G
o yt+1

o − Et+1,G
o ·vC,G

o xt+1
o ≥ 0

uC,G
o , vC,G

o ≥ 0

(10)

It is worth noting that all the constraints in model (10) are linear, which means that
the feasible set S is continuous, compact, and convex. As a result, the conditions of the
bargaining game are satisfied in model (10), making it suitable for our intended purpose.

The optimal solution of (10), which is the CW between the two-time versions of DMUo
in the global technology, are denoted by

(
vC,G∗

o ,uC,G∗
o ) . Since these CWs are derived from

a bargaining game, they can be considered a fair and acceptable solution for players to
calculate efficiencies. The Nash bargaining efficiencies for DMUt

o and DMUt+1
o using these

common optimal weights are uC,G∗
o yt

o
vC,G∗

o xt
o

and uC,G∗
o yt+1

o
vC,G∗

o xt+1
o

, respectively. The rate of change in the
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performance of DMUt
o and DMUt+1

o , which we call the Self-Evaluation Nash Common
Weight Global Malmquist Productivity Index (SGMPI), is given by:

SGMPIoo = (
uc,G∗

o yt+1
o

vc,G∗
o xt+1

o
)(

uc,G∗
o yt

o

vc,G∗
o xt

o

) (11)

which indicates progress in the performance of unit o from time t to t + 1. Similarly, we
can obtain the CW and SGMPI values for all DMUs. Now, considering the peer evaluation
strategy, we use the weights of each DMU to evaluate the productivity change of other
DMUs. As a result, considering the common weights between the time versions of DMUj
obtained based on model (10), we calculate the Peer Evaluation Nash Common Weight
Global Malmquist Productivity Index (PGMPI) for DMUo as follows:

PGMPIjo = (
uc,G∗

j yt+1
o

vc,G∗
j xt+1

o
)(

uc,G∗
j yt

o

vc,G∗
j xt

o

), j = 1, . . . , n, j 6= o (12)

Then we form a Cross-GMPI matrix, whose elements are SGMPI and PGMPI of all
units. See Table 6.

Table 6. Cross-GMPI matrix.

Rating DMU
Rated DMUs

1 . . . 0 . . . n

1 SGMPI11 . . . PGMPI1o . . . PGMPI1n
. . . . . . . . . . . .
j PGMPIj1 . . . SGMPIjo . . . PGMPIjn

. . . . . . . . . . . .
n PGMPIn1 . . . PGMPIno . . . SGMPInn

Each row displays the rating values of the other DMUs based on the weights associated
with the DMUs in that row. The SGMPI values are on the main diagonal, whereas the
other matrix numbers represent the PGMPI values. To aggregate the (S/P) GMPI values,
we employed the geometric mean function. The mean values, i.e., Cross Evaluation Nash
Common Weight Global Malmquist Productivity Index (CGMPI) for DMUo is:

CGMPIo = n
√
(S/P)GMPI1o × . . . .× (S/P)GMPIno =

(
n

∏
i=1

(S/P)GMPIio

)1/n

(13)

These values are based on the use of more than one common weight, which is shared
to evaluate all DMUs, unlike the GMPI proposed by [5] and other GMPIs which use only
one weight vector to calculate the GMPI. In general, we propose the following algorithm
to estimate the MPI based on an integrated framework of cross evaluations, bargaining
games, common weights, and global technology.

Phase One: Using the bargaining game.

1. Solving model (5) to obtain the favorite weight and maximum efficiency of each unit
relative to the global frontier.

2. Solving models (7) and (8) to get the game’s breakdowns for each player DMUt+1
o

and DMUt
o.

3. Solving the Nash bargaining game model (10) to obtain the CW (vC,G∗
o , uC,G∗

o ) between
DMUt

o and DMUt+1
o .

4. Obtaining Nash bargaining efficiencies using common optimal weights, i.e., uC,G∗
o yt

o
vC,G∗

o xt
o

and uC,G∗
o yt+1

o
vC,G∗

o xt+1
o

.
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Phase Two: Using cross evaluation.

1. Calculating the self and peer values

SGMPIoo = (
uc,G∗

o yt+1
o

vc,G∗
o xt+1

o
)(

uc,G∗
o yt

o

vc,G∗
o xt

o

) (14)

PGMPIjo = (
uc,G∗

j yt+1
o

vc,G∗
j xt+1

o
)(

uc,G∗
j yt

o

vc,G∗
j xt

o

), j = 1, . . . , n, j 6= o (15)

2. Forming a Cross-GMPI matrix (Table 6) with elements (S/P) GMPIjo.
3. Aggregating the scores of column ‘o’ of the Cross-GMPI matrix by using geometric

mean to obtain CGMPIo (13).

In the forthcoming numerical analysis, the proposed methodology will be elaborated
upon, highlighting its distinctive features and advantages.

4. Application of Proposed Method to the Example

In this section, we delve into a comprehensive numerical example using the dataset
previously introduced in the motivation section. Our aim is to showcase the functionality
of our proposed integrated approach in computing the GMPI in detail. The primary focus
here is to elucidate the methodology introduced in this study, outlining its intricacies,
steps, and distinctive features. Employing the dataset, we provide a detailed, step-by-step
breakdown of how our method is applied and its functionalities, emphasizing its unique
attributes and advantages. Towards the end, we conduct a brief comparison between our
method and existing methodologies, specifically the GMPI and CWGMPI, to highlight the
distinct advantages observed in our proposed method through the numerical illustration.

Describing the proposed method involves revisiting the numerical example outlined
in Section 3, and focusing on DMU C. The maximum efficiency of C, using model (5), is
0.571429. With this efficiency held constant for DMU C, we use model (7) to obtain the
minimum efficiency for C’, which is the bargaining breakdown point for C’, at 0.666667.
Similarly, considering DMUt+1

o = C’ as the leader DMU, and the unit DMUt
o = C as the

follower DMU, and solving model (8), the breakdown value for the C unit will be 0.55.
By employing these values in bargaining model (10), the optimal CW between DMUs C
and C’ is (v1*, v2*, u*) = (0.34476397, 0.24142703, 0.56035676), and the value of the game
is 0.0003337. Using this common weight, the efficiencies of DMUs C and C’ are 0.560357
and 0.571429, respectively. The SGMPI for C is equal to (0.698888)/(0.560357) =1.247219,
which indicates progress in the performance of unit C from time t to t + 1. Similarly, we can
obtain the CW and SGMPI values for all DMUs (A,A’), (B,B’),. . ., (H,H’). Table 7 shows the
minimum and maximum efficiency values of the models (7)/(8) and (5).

Table 8 displays the outcomes of the implementation of the bargaining model (10).
The optimal values of CW are presented in columns 2 to 4, while the fifth column shows
the value of the game.

We utilized the weights obtained earlier to evaluate the productivity of other DMUs
and determine their corresponding productivity ratios. Table 9 presents the Cross- GMPI
matrix. As mentioned before, each row exhibits the rating values of the other DMUs
according to the weights linked with the DMUs listed in that respective row. For instance,
in the second row, the corresponding line of A and A’, the values for the other DMUs are
derived from the CW of the bargaining game between A and A’. The three numbers in each
cell denote the efficiencies in time 1, time 2, and the performance change index (efficiency
of time 2/efficiency of time 1) from top to bottom, respectively. The CGMPI values are
listed in the last row of Table 9.
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Table 7. The lower and upper bounds of efficiencies.

DMUs Lower Bound of Efficiency Upper Bound of Efficiency

A 0.5 0.846154
B 1 1
C 0.55 0.571429
D 0.833333 0.888889
E 0.333333 0.727273
F 0.5 0.526316
G 0.5 0.5
H 0.444444 0.444444
A’ 1 1
B’ 0.666667 0.6875
C’ 0.666667 0.733333
D’ 1 1
E’ 0.888889 1
F’ 0.555556 0.571429
G’ 0.444444 0.444444
H’ 0.380952 0.380952

Table 8. Bargaining model results.

DMUs V1
* V2

* U* Z

A,A’ 0.615385 0.307692 0.846154 0
B,B’ 0.727273 0.363636 1 0
C,C’ 0.344764 0.241427 0.560357 0.000334
D,D’ 0.444444 0.444444 0.888889 0
E,E’ 0.285714 0.571429 0.714286 0.042328
F,F’ 0.230655 0.333828 0.512897 0.0001

G,G’ 0.25 0.25 0.5 0
H,H’ 0.222222 0.222222 0.444444 0

Table 9. Cross-evaluation matrix, SGMPI and PGMPI and CGMPI values of numerical example.

DMUs A,A’ B,B’ C,C’ D,D’ E,E’ F,F’ G,G’ H,H’

A,A’
0.846154 1 0.55 0.733333 0.578947 0.37931 0.423077 0.423077

1 0.6875 0.733333 0.785714 0.647059 0.458333 0.392857 0.333333
1.181818 0.6875 1.333333 1.071429 1.117647 1.208333 0.928571 0.787879

B,B’
0.846154 1 0.55 0.733333 0.578947 0.37931 0.423077 0.423077

1 0.6875 0.733333 0.785714 0.647059 0.458333 0.392857 0.333333
1.181818 0.6875 1.333333 1.071429 1.117647 1.208333 0.928571 0.787879

C,C’
0.783067 1 0.560357 0.802555 0.643646 0.430529 0.457789 0.433345
0.890301 0.677072 0.698888 0.878496 0.747257 0.507875 0.416695 0.355218
1.136941 0.677072 1.247219 1.094624 1.160976 1.179652 0.910234 0.81971

D,D’
0.727273 1 0.571429 0.888889 0.727273 0.5 0.5 0.444444

0.8 0.666667 0.666667 1 0.888889 0.571429 0.444444 0.380952
1.1 0.666667 1.166667 1.125 1.222222 1.142857 0.888889 0.857143

E,E’
0.5 0.769231 0.454545 0.833333 0.714286 0.526316 0.454545 0.357143

0.526316 0.5 0.47619 1 1 0.555556 0.384615 0.333333
1.052632 0.65 1.047619 1.2 1.4 1.055556 0.846154 0.933333

F,F’
0.591959 0.86891 0.505996 0.860055 0.720683 0.512897 0.476059 0.39579
0.634164 0.570957 0.555021 1 0.941497 0.563334 0.412199 0.355419
1.071298 0.657096 1.096888 1.162717 1.306395 1.098339 0.865857 0.897997

G,G’
0.727273 1 0.571429 0.888889 0.727273 0.5 0.5 0.444444

0.8 0.666667 0.666667 1 0.888889 0.571429 0.444444 0.380952
1.1 0.666667 1.166667 1.125 1.222222 1.142857 0.888889 0.857143

H,H’
0.727273 1 0.571429 0.888889 0.727273 0.5 0.5 0.444444

0.8 0.666667 0.666667 1 0.888889 0.571429 0.444444 0.380952
1.1 0.666667 1.166667 1.125 1.222222 1.142857 0.888889 0.857143

CGMPI 1.114681 0.669778 1.190908 1.121148 1.217967 1.146278 0.892848 0.84846
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Based on the CGMPI values in the last row of Table 9, DMUs B, G, and H have
experienced regression in productivity, while other units show improvement, as can be
seen in Figures 1 and 2.

Upon careful examination of the game values, it has been observed that for DMUs
whose lower efficiency is 1, the value of the game will always be zero. In such cases, we
can avoid the computation of the game model (10) by considering the optimal weight of
the other unit as a common weight. For instance, let us consider DMUs A and A’. Since A’
is located on the global frontier, its optimal weight is (0.61538462, 0.30769231, 0.84615385)
(line segment parallel to the vertical axis), and the optimal weight of A is (0.61538462,
0.30769231, 0.84615385) (line segment A’B). As the optimal value of A’ does not change, we
can use the weight vector related to A as the common weight for both DMUs. This reduces
the computational burden significantly.

In what follows, we compare the proposed Cross-GMPI method with two other
methods, namely the GMPI method proposed by [4] and the CWGMPI method proposed
by [5]. The reason for this choice is that these two indexes are based on the consideration of
global technology.

First, we consider the GMPI model. In this method, each of the two-time versions of
the 8 DMUs are compared to the global boundary separately, and as a result, 16 separate
weights are obtained. Table 10 shows these weights. In the last column, the value of GMPI
is given. Since the output orientation of the CCR model (1) is used in the evaluation of units
relative to the frontier, and considering that the output of all units is equal to the constant
number one, then the optimal value of the objective function of the CCR model is equal to
the optimal weight of U*. So, the numbers in the fourth column of Table 10, in addition
to the optimal value for the output weight of the units at any time, indicate the efficiency
value of the DMU of that row. For example, the efficiency of unit A in the first time is equal
to 0.846154, and in the second time is equal to 1. To calculate GMPI, the division of two
efficiencies is used. The optimal weights corresponding to these two efficiency vectors are
(0.615385, 0.307692, 0.846154) and (4, 0, 1), respectively. As can be seen, the weight vectors
are not the same. As a result, two efficiency values are divided for calculating the GMPI,
which are based on different weights. Apart from this, the index calculated for the units is
based on self-evaluation strategy, not peer evaluation. In the proposed cross-MPI method,
instead of 16 different weight vectors, eight weight vectors were used (Table 8); that is, for
both time versions of a DMU, a common weight vector is used, so the basis for calculating
the efficiency of two DMUs is the same. Also, these vectors were used to calculate the
efficiencies, and as a result the GMPI, of other units in the form of peer evaluation.

Table 10. The optimal weights and value for GMPI.

V1
* V2

* U* GMPI

A 0.615385 0.307692 0.846154
A’ 4 0 1 1.181818
B 0.5 0.5 1
B’ 0.5 0.25 0.6875 0.6875
C 0.285714 0.285714 0.571429
C’ 0.533333 0.266667 0.733333 1.283333
D 0.444444 0.444444 0.888889
D’ 0.5 0.5 1 1.125
E 0.363636 0.363636 0.727273
E’ 0 4 1 1.375
F 0.210526 0.421053 0.526316
F’ 0.285714 0.285714 0.571429 1.085714
G 0.25 0.25 0.5
G’ 0.222222 0.222222 0.444444 0.888889
H 0.222222 0.222222 0.444444
H’ 0.190476 0.190476 0.380952 0.857143
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Now we consider the CWGMPI model. If we use this model to evaluate the 8 DMUs
of the numerical example, only one common weight vector is generated for all units, and
all the efficiencies used to calculate the CWGMPI are based on this one vector. In Table 11,
GMPI values based on this vector for units are given. As you can see, not only is this
index not based on peer evaluation, but it is not even based on self-evaluation, and all
calculations and rankings depend on this common weight.

Table 11. The optimal weights and value for CWGMPI.

V1
* V2

* U*

CW 0.190853 0.187448 0.37745
DMUs CWGMPI DMUs CWGMPI
A,A’ 1.101632 E,E’ 1.218691
B,B’ 0.667168 F,F’ 1.14487
C,C’ 1.170434 G,G’ 0.889999
D,D’ 1.12332 H,H’ 0.855186

Now let us review the CGMPI values obtained by the proposed method which can be
seen in Table 9. For a better visual understanding, we use a radar chart (Figure 3).
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Figure 3. Cross-GMPI matrix radar diagram of the proposed method for the numerical example.

In a radar chart, the different levels, or concentric polygons (from inside to outside),
represent the values or scales of the dimensions being measured. The distance of a point
from the center of the chart to a specific level on each axis corresponds to the value of the
variable for that particular entity. The interpretation of levels in the radar chart based on
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the data provided enables a quick assessment of the relative performance of DMUs (A to H)
across multiple weights (Common weights between DMUs A,A’ to H,H’ in Table 7). DMUs
A, B, G, and H seem to have nearly identical performance across all weights. They maintain
consistent values across the radar chart, indicating similar strengths and weaknesses in
the measured weights. DMUs C, D, E, and F exhibit more variation in their performance
across different weights. The third numbers in the columns of Table 8 are the vertices of
the octagons of Figure 3. When one level is inside another level, it suggests that the DMU
corresponding to the outer level performs better compared to the DMU associated with
the inner level. Briefly, we notice that DMU B is at the innermost level of the graph, and
this means that this unit undoubtedly has the least change in performance compared to
other units. After that unit, G and H units are located. On the other hand, units E and C are
the largest octagons, i.e., polygons with the greatest distance from the center of the radar.
These results are consistent with the CGMPI values obtained by the proposed method in
the last row of Table 8. Therefore, it can be inferred that the conclusion regarding the state
of change in the performance of the units is based on an average value as represented by
an octagon. It is obvious that the inference and analysis of the situation based on such a
process is much more reliable than the analysis based on only one of its values.

The proposed integrated framework of GMPI, CW, Nash bargaining, and cross-
evaluation allows the constructed GMPI to possess certain properties. The use of a CW in
calculating the efficiencies of time versions of a DMU ensures that the GMPI fraction is
well defined and consistent across all DMUs. This means that the basis of comparison is
the same for performance appraisal. That is, not only is the efficiency used in calculating
the Malmquist index based on common boundaries, but also on common weights or com-
mon supporting hyperplanes of boundaries [5]. Since a common weight is employed in
the computation of productivity indexes for all units each time, the base for comparison
remains consistent, ensuring the consistency and comparability of results.

The Malmquist index measures productivity change by comparing a unit’s efficiency
at time t + 1 to time t. In DEA, these efficiencies are relative and reliant on a frontier
comparison. Malmquist indexes are categorized based on single or multiple technology
use: reference-based (using only one technology, e.g., time t or global technology) or
adjacent-based (employing more than one time technology). Adjacent-based indexes may
encounter infeasibility issues due to some units’ super-efficiency in one period relative to
another. Employing global technology ensures feasibility in efficiency estimation models [4].
By utilizing global technology, our proposed index avoids potential inefficiency concerns
in efficiency calculations.

DEA’s notable functionality lies in its ability to assist each DMU in selecting the most
advantageous weights or multipliers for inputs and outputs during efficiency calculations.
However, traditional DEA models, particularly in measuring MPI, tend to overstate effi-
ciency due to the flexibility in weight selection for inputs and outputs. Consequently, this
overestimation affects the rationality of derived MPI values. Various strategies address
this issue, notably the common set of weights and the cross-evaluation process. Cross-
evaluation, a significant component of DEA theory, surpasses the common set of weight
method in applications [111]. It presents clear benefits, including personalized DMU order-
ing and the avoidance of unrealistic weight schemes without necessitating expert weight
restrictions [112].

Utilizing a self-evaluation and peer evaluation methodology akin to cross-evaluation
to compute cross GMPI, our approach yields realistic values for judgment. Cross GMPI,
derived from the mean of productivity scores, represents an average productivity change,
ensuring stability and reliability in assessment.

5. Conclusions

This study presents an innovative, integrated approach to compute the MPI through a
combination of global technology, Common Weights, Nash bargaining, and cross-evaluation
techniques. Our proposition advocates for obtaining CWs for two-time versions of a DMU
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based on global technology, facilitating efficiency calculations in tandem with a singular
frontier, and ensuring consistency and comparability in results across different evaluations.

By employing the Nash bargaining game model, these CWs satisfy desirable proper-
ties, ensuring incentive alignment among DMUs and yielding Pareto-efficient solutions.
Additionally, the novelty of incorporating CWs for peer and cross-sectional evaluations
stands out as a novel contribution, enhancing the method’s robustness and applicability.

This integrated framework yields a proposed index boasting several desirable proper-
ties: feasibility, non-arbitrariness in base time period selection, technological and weight
consistency, result stability and reliability, and equitable assessments. The comparison
of our Cross-GMPI method with existing models, namely the GMPI and CWGMPI, un-
derscores its superiority in offering a holistic evaluation while maintaining fairness and
reliability across evaluations.

The numerical example showcases the effectiveness of our proposed method. Utilizing
radar charts for visual representation allows for a swift yet comprehensive assessment
of DMU performance across various weights. This visual depiction highlights consistent
performances among certain DMUs and variations in others, providing nuanced insights
into their relative strengths and weaknesses.

In essence, our integrated approach not only resolves efficiency overestimation con-
cerns prevalent in traditional DEA models, but also ensures a more equitable and reliable
assessment. Its distinct advantages, such as avoidance of unrealistic weight schemes, and
enhanced stability, underline its superiority in performance evaluation.

The present study could be improved or expanded in several ways. This research
discussed a methodology for determining a CW vector of DEA based on the Nash bar-
gaining solution. In general, the resulting Nash bargaining game model is non-linear,
given the nature of ratio forms of DEA efficiency. Converting the nonlinear model into
a parametric linear programming problem with one parameter whose lower and upper
bounds can be determined, and using a heuristic search on the single parameter employing
the Kalai-Smorodinsky solution (which is the unique allocation rule for two-player bar-
gaining problems with linear programming), or using Egoist’s dilemma for this purpose,
could be considered for future research. Developing the present study for more than two
time periods using the Extended Nash bargaining game, using more advanced and newer
indexes in the literature to calculate cross-sectional MPI values, and considering the effects
of return to scale and of internal structures for DMUs, could also be guidelines for future
research. It is recommended that studying the effects of common inputs, merging and
decomposition of DMUs, and decision-making in a centralized scenario and in uncertainty
conditions, be considered for future research.

Author Contributions: Conceptualization, R.F., M.R.M., P.F.W. and Y.T.; Methodology, R.F.; Software,
M.R.M.; Formal analysis, R.F., P.F.W. and Y.T.; Data curation, R.F.; Writing—original draft, R.F. and
M.R.M.; Writing—review & editing, R.F., P.F.W. and Y.T.; Project administration, P.F.W. and Y.T. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available in the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Walheer, B. Malmquist Productivity Index for Multi-Output Producers: An Application to Electricity Generation Plants. Socioecon.

Plann Sci. 2019, 65, 76–88. [CrossRef]
2. Caves, D.W.; Christensen, L.R.; Diewert, W.E. The Economic Theory of Index Numbers and the Measurement of Input, Output,

and Productivity. Econometrica 1982, 50, 1393. [CrossRef]
3. Fare, R.; Grosskopf, S.; Norris, M.; Zhang, Z. Productivity Growth, Technical Progress, and Efficiency Change in Industrialized

Countries. Am. Econ. Rev. 1994, 84, 66–83.
4. Pastor, J.T.; Lovell, C.A.K. A Global Malmquist Productivity Index. Econ. Lett. 2005, 88, 266–271. [CrossRef]

https://doi.org/10.1016/j.seps.2018.02.003
https://doi.org/10.2307/1913388
https://doi.org/10.1016/j.econlet.2005.02.013


Games 2024, 15, 3 18 of 21

5. Kao, C. Malmquist Productivity Index Based on Common-Weights DEA: The Case of Taiwan Forests after Reorganization. Omega
2010, 38, 484–491. [CrossRef]

6. Ding, L.; Yang, Y.; Wang, W.; Calin, A.C. Regional Carbon Emission Efficiency and Its Dynamic Evolution in China: A Novel
Cross Efficiency-Malmquist Productivity Index. J. Clean. Prod. 2019, 241, 118260. [CrossRef]

7. Homayoni, A.; Fallahnejad, R.; Hosseinzadeh Lotfi, F. Cross Malmquist Productivity Index in Data Envelopment Analysis. 4OR
2021, 20, 567–602. [CrossRef]

8. Sexton, T.R.; Silkman, R.H.; Hogan, A.J. Data Envelopment Analysis: Critique and Extensions. New Dir. Program Eval. 1986,
1986, 73–105. [CrossRef]

9. Doyle, J.; Green, R. Efficiency and Cross-Efficiency in DEA: Derivations, Meanings and Uses. J. Oper. Res. Soc. 1994, 45, 567.
[CrossRef]

10. Abolghasem, S.; Toloo, M.; Amézquita, S. Cross-Efficiency Evaluation in the Presence of Flexible Measures with an Application to
Healthcare Systems. Health Care Manag. Sci. 2019, 22, 512–533. [CrossRef]

11. Seyedalizadeh Ganji, S.R.; Rassafi, A.A.; Xu, D.L. A Double Frontier DEA Cross Efficiency Method Aggregated by Evidential
Reasoning Approach for Measuring Road Safety Performance. Measurement 2019, 136, 668–688. [CrossRef]

12. Deng, X.; Fang, W. A Novel Mean-Variance-Maverick DEA Prospect Cross-Efficiency Approach for Fuzzy Portfolio Selection.
J. Intell. Fuzzy Syst. 2019, 37, 8113–8130. [CrossRef]

13. Chen, L.; Wang, Y.M.; Huang, Y. Cross-Efficiency Aggregation Method Based on Prospect Consensus Process. Ann. Oper. Res.
2020, 288, 115–135. [CrossRef]

14. Fang, L.; Yang, J. An Integrated Ranking Approach Using Cross-Efficiency Intervals and the Cumulative Prospect Theory. Comput.
Ind. Eng. 2019, 136, 556–574. [CrossRef]

15. Kao, C.; Liu, S.T. Cross Efficiency Measurement and Decomposition in Two Basic Network Systems. Omega 2019, 83, 70–79.
[CrossRef]

16. Chen, L.; Wang, Y.M. DEA Target Setting Approach within the Cross Efficiency Framework. Omega 2020, 96, 102072. [CrossRef]
17. Chen, L.; Huang, Y.; Li, M.J.; Wang, Y.M. Meta-Frontier Analysis Using Cross-Efficiency Method for Performance Evaluation. Eur.

J. Oper. Res. 2020, 280, 219–229. [CrossRef]
18. Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the Efficiency of Decision Making Units. Eur. J. Oper. Res. 1978, 2, 429–444.

[CrossRef]
19. Maniadakis, N.; Thanassoulis, E. A Cost Malmquist Productivity Index. Eur. J. Oper. Res. 2004, 154, 396–409. [CrossRef]
20. Tohidi, G.; Razavyan, S.; Tohidnia, S. A Global Cost Malmquist Productivity Index Using Data Envelopment Analysis. J. Oper.

Res. Soc. 2012, 63, 72–78. [CrossRef]
21. Thanassoulis, E.; Shiraz, R.K.; Maniadakis, N. A Cost Malmquist Productivity Index Capturing Group Performance. Eur. J. Oper.

Res. 2015, 241, 796–805. [CrossRef]
22. Huang, M.Y.; Juo, J.C.; Fu, T. tan Metafrontier Cost Malmquist Productivity Index: An Application to Taiwanese and Chinese

Commercial Banks. J. Product. Anal. 2015, 44, 321–335. [CrossRef]
23. Walheer, B. Cost Malmquist Productivity Index: An Output-Specific Approach for Group Comparison. J. Product. Anal. 2018,

49, 79–94. [CrossRef]
24. Mirzaeian, F.; Fallahnejad, R. Cost Malmquist Productivity Index Based on Piecewise Linear Cost Function in Data Envelopment

Analysis. Ind. Manag. J. 2015, 13, 300–328.
25. Asmild, M.; Tam, F. Estimating Global Frontier Shifts and Global Malmquist Indices. J. Product. Anal. 2007, 27, 137–148. [CrossRef]
26. Pastor, J.T.; Asmild, M.; Lovell, C.A.K. The Biennial Malmquist Productivity Change Index. Socio-Econ. Plan. Sci. 2011, 45, 10–15.

[CrossRef]
27. Afsharian, M.; Ahn, H. The Overall Malmquist Index: A New Approach for Measuring Productivity Changes over Time. Ann.

Oper. Res. 2014, 226, 1–27. [CrossRef]
28. O’Donnell, C.J.; Fallah-Fini, S.; Triantis, K. Measuring and Analysing Productivity Change in a Metafrontier Framework.

J. Product. Anal. 2017, 47, 117–128. [CrossRef]
29. Kao, C.; Hwang, S.N. Multi-Period Efficiency and Malmquist Productivity Index in Two-Stage Production Systems. Eur. J. Oper.

Res. 2014, 232, 512–521. [CrossRef]
30. Kao, C. Measurement and Decomposition of the Malmquist Productivity Index for Parallel Production Systems. Omega 2017,

67, 54–59. [CrossRef]
31. Yu, M.-M.; Chen, L.-H. A Meta-Frontier Network Data Envelopment Analysis Approach for the Measurement of Technological

Bias with Network Production Structure. Ann. Oper. Res. 2019, 287, 495–514. [CrossRef]
32. Tavana, M.; Khalili-Damghani, K.; Santos Arteaga, F.J.; Hashemi, A. A Malmquist Productivity Index for Network Production

Systems in the Energy Sector. Ann. Oper. Res. 2019, 284, 415–445. [CrossRef]
33. Oh, D. hyun A Global Malmquist-Luenberger Productivity Index. J. Product. Anal. 2010, 34, 183–197. [CrossRef]
34. Aparicio, J.; Pastor, J.T.; Zofio, J.L. On the Inconsistency of the Malmquist-Luenberger Index. Eur. J. Oper. Res. 2013, 229, 738–742.

[CrossRef]
35. Kerstens, K.; Van De Woestyne, I. Comparing Malmquist and Hicks-Moorsteen Productivity Indices: Exploring the Impact of

Unbalanced vs. Balanced Panel Data. Eur. J. Oper. Res. 2014, 233, 749–758. [CrossRef]

https://doi.org/10.1016/j.omega.2009.12.005
https://doi.org/10.1016/j.jclepro.2019.118260
https://doi.org/10.1007/s10288-021-00489-8
https://doi.org/10.1002/ev.1441
https://doi.org/10.1057/jors.1994.84
https://doi.org/10.1007/s10729-019-09478-0
https://doi.org/10.1016/j.measurement.2018.12.098
https://doi.org/10.3233/JIFS-190568
https://doi.org/10.1007/s10479-019-03491-w
https://doi.org/10.1016/j.cie.2019.07.053
https://doi.org/10.1016/j.omega.2018.02.004
https://doi.org/10.1016/j.omega.2019.05.008
https://doi.org/10.1016/j.ejor.2019.06.053
https://doi.org/10.1016/0377-2217(78)90138-8
https://doi.org/10.1016/S0377-2217(03)00177-2
https://doi.org/10.1057/jors.2011.23
https://doi.org/10.1016/j.ejor.2014.09.002
https://doi.org/10.1007/s11123-014-0411-1
https://doi.org/10.1007/s11123-017-0523-5
https://doi.org/10.1007/s11123-006-0028-0
https://doi.org/10.1016/j.seps.2010.09.001
https://doi.org/10.1007/s10479-014-1668-5
https://doi.org/10.1007/s11123-017-0494-6
https://doi.org/10.1016/j.ejor.2013.07.030
https://doi.org/10.1016/j.omega.2016.04.001
https://doi.org/10.1007/s10479-019-03436-3
https://doi.org/10.1007/s10479-019-03173-7
https://doi.org/10.1007/s11123-010-0178-y
https://doi.org/10.1016/j.ejor.2013.03.031
https://doi.org/10.1016/j.ejor.2013.09.009


Games 2024, 15, 3 19 of 21

36. Arabi, B.; Munisamy, S.; Emrouznejad, A. A New Slacks-Based Measure of Malmquist-Luenberger Index in the Presence of
Undesirable Outputs. Omega 2015, 51, 29–37. [CrossRef]

37. Du, J.; Duan, Y.; Xu, J. The Infeasible Problem of Malmquist–Luenberger Index and Its Application on China’s Environmental
Total Factor Productivity. Ann. Oper. Res. 2017, 278, 235–253. [CrossRef]

38. Du, J.; Chen, Y.; Huang, Y. A Modified Malmquist-Luenberger Productivity Index: Assessing Environmental Productivity
Performance in China. Eur. J. Oper. Res. 2018, 269, 171–187. [CrossRef]

39. Lambert, D.K. Productivity Measurement from a Reference Technology: A Distance Function Approach. J. Product. Anal. 1998, 10,
289–304. [CrossRef]

40. Fuentes, H.J.; Grifell-Tatjé, E.; Perelman, S. A Parametric Distance Function Approach for Malmquist Productivity Index
Estimation. J. Product. Anal. 2001, 15, 79–94. [CrossRef]

41. Pastor, J.T.; Lovell, C.A.K.; Aparicio, J. Defining a New Graph Inefficiency Measure for the Proportional Directional Distance
Function and Introducing a New Malmquist Productivity Index. Eur. J. Oper. Res. 2019, 281, 222–230. [CrossRef]

42. Asmild, M.; Baležentis, T.; Hougaard, J.L. Multi-Directional Productivity Change: MEA-Malmquist. J. Product. Anal. 2016,
46, 109–119. [CrossRef]

43. Kevork, I.S.; Pange, J.; Tzeremes, P.; Tzeremes, N.G. Estimating Malmquist Productivity Indexes Using Probabilistic Directional
Distances: An Application to the European Banking Sector. Eur. J. Oper. Res. 2017, 261, 1125–1140. [CrossRef]

44. Grifell-Tatjé, E.; Lovell, C.A.K. A Generalized Malmquist Productivity Index. TOP 1999, 7, 81–101. [CrossRef]
45. Orea, L. Parametric Decomposition of a Generalized Malmquist Productivity Index. J. Product. Anal. 2002, 18, 5–22. [CrossRef]
46. Lovell, C.A.K. The Decomposition of Malmquist Productivity Indexes. J. Product. Anal. 2003, 20, 437–458. [CrossRef]
47. Zelenyuk, V. Aggregation of Malmquist Productivity Indexes. Eur. J. Oper. Res. 2006, 174, 1076–1086. [CrossRef]
48. Camanho, A.S.; Dyson, R.G. Data Envelopment Analysis and Malmquist Indices for Measuring Group Performance. J. Product.

Anal. 2006, 26, 35–49. [CrossRef]
49. Yu, M.M. The Capacity Productivity Change and the Variable Input Productivity Change: A New Decomposition of the Malmquist

Productivity Index. Appl. Math. Comput. 2007, 185, 375–381. [CrossRef]
50. Wang, Y.M.; Lan, Y.X. Measuring Malmquist Productivity Index: A New Approach Based on Double Frontiers Data Envelopment

Analysis. Math. Comput. Model. 2011, 54, 2760–2771. [CrossRef]
51. Chen, K.H.; Yang, H.Y. A Cross-Country Comparison of Productivity Growth Using the Generalised Metafrontier Malmquist

Productivity Index: With Application to Banking Industries in Taiwan and China. J. Product. Anal. 2011, 35, 197–212. [CrossRef]
52. Pantzios, C.J.; Karagiannis, G.; Tzouvelekas, V. Parametric Decomposition of the Input-Oriented Malmquist Productivity Index:

With an Application to Greek Aquaculture. J. Product. Anal. 2011, 36, 21–31. [CrossRef]
53. Mayer, A.; Zelenyuk, V. Aggregation of Malmquist Productivity Indexes Allowing for Reallocation of Resources. Eur. J. Oper. Res.

2014, 238, 774–785. [CrossRef]
54. Afsharian, M.; Ahn, H. Multi-Period Productivity Measurement under Centralized Management with an Empirical Illustration to

German Saving Banks. OR Spectr. 2017, 39, 881–911. [CrossRef]
55. Diewert, W.E.; Fox, K.J. Decomposing Productivity Indexes into Explanatory Factors. Eur. J. Oper. Res. 2017, 256, 275–291.

[CrossRef]
56. Walheer, B. Disaggregation of the Cost Malmquist Productivity Index with Joint and Output-Specific Inputs. Omega 2018, 75,

1339–1351. [CrossRef]
57. Arocena, P.; Saal, D.S.; Urakami, T.; Zschille, M. Measuring and Decomposing Productivity Change in the Presence of Mergers.

Eur. J. Oper. Res. 2019, 282, 319–333. [CrossRef]
58. Afsharian, M.; Ahn, H.; Harms, S.G. Performance Comparison of Management Groups under Centralised Management. Eur. J.

Oper. Res. 2019, 278, 845–854. [CrossRef]
59. Balk, B.M.; Althin, R. A New, Transitive Productivity Index. J. Product. Anal. 1996, 7, 19–27. [CrossRef]
60. Grifell-Tatjé, E.; Lovell, C.A.K.; Pastor, J.T. A Quasi-Malmquist Productivity Index. J. Product. Anal. 1998, 10, 7–20. [CrossRef]
61. Førsund, F.R. The Rise and Fall of Slacks: Comments on Quasi-Malmquist Productivity Indices. J. Product. Anal. 1998, 10, 21–34.

[CrossRef]
62. Simar, L.; Wilson, P.W. Estimating and Bootstrapping Malmquist Indices. Eur. J. Oper. Res. 1999, 115, 459–471. [CrossRef]
63. Althin, R. Measurement of Productivity Changes: Two Malmquist Index Approaches. J. Product. Anal. 2001, 16, 107–128.

[CrossRef]
64. Chen, Y. A Non-Radial Malmquist Productivity Index with an Illustrative Application to Chinese Major Industries. Int. J. Prod.

Econ. 2003, 83, 27–35. [CrossRef]
65. Shestalova, V. Sequential Malmquist Indices of Productivity Growth: An Application to OECD Industrial Activities. J. Product.

Anal. 2003, 19, 211–226. [CrossRef]
66. Asmild, M.; Paradi, J.C.; Aggarwall, V.; Schaffnit, C. Combining DEA Window Analysis with the Malmquist Index Approach in a

Study of the Canadian Banking Industry. J. Product. Anal. 2004, 21, 67–89. [CrossRef]
67. Daskovska, A.; Simar, L.; van Bellegem, S. Forecasting the Malmquist Productivity Index. J. Product. Anal. 2010, 33, 97–107.

[CrossRef]
68. Fuentes, R.; Lillo-Bañuls, A. Smoothed Bootstrap Malmquist Index Based on DEA Model to Compute Productivity of Tax Offices.

Expert Syst. Appl. 2015, 42, 2442–2450. [CrossRef]

https://doi.org/10.1016/j.omega.2014.08.006
https://doi.org/10.1007/s10479-017-2603-3
https://doi.org/10.1016/j.ejor.2017.01.006
https://doi.org/10.1023/A:1018667306633
https://doi.org/10.1023/A:1007852020847
https://doi.org/10.1016/j.ejor.2019.08.021
https://doi.org/10.1007/s11123-016-0486-y
https://doi.org/10.1016/j.ejor.2017.03.012
https://doi.org/10.1007/BF02564713
https://doi.org/10.1023/A:1015793325292
https://doi.org/10.1023/A:1027312102834
https://doi.org/10.1016/j.ejor.2005.02.061
https://doi.org/10.1007/s11123-006-0004-8
https://doi.org/10.1016/j.amc.2006.06.113
https://doi.org/10.1016/j.mcm.2011.06.064
https://doi.org/10.1007/s11123-010-0198-7
https://doi.org/10.1007/s11123-010-0202-2
https://doi.org/10.1016/j.ejor.2014.04.003
https://doi.org/10.1007/s00291-016-0465-8
https://doi.org/10.1016/j.ejor.2016.05.043
https://doi.org/10.1016/j.omega.2017.01.012
https://doi.org/10.1016/j.ejor.2019.08.048
https://doi.org/10.1016/j.ejor.2019.05.005
https://doi.org/10.1007/BF00158474
https://doi.org/10.1023/A:1018329930629
https://doi.org/10.1023/A:1018342214700
https://doi.org/10.1016/S0377-2217(97)00450-5
https://doi.org/10.1023/A:1011682625976
https://doi.org/10.1016/S0925-5273(02)00267-0
https://doi.org/10.1023/A:1022857501478
https://doi.org/10.1023/B:PROD.0000012453.91326.ec
https://doi.org/10.1007/s11123-009-0147-5
https://doi.org/10.1016/j.eswa.2014.11.002


Games 2024, 15, 3 20 of 21

69. Yang, B.; Zhang, Y.; Zhang, H.; Zhang, R.; Xu, B. Factor-Specific Malmquist Productivity Index Based on Common Weights DEA.
Oper. Res. 2016, 16, 51–70. [CrossRef]

70. Karagiannis, G.; Knox Lovell, C.A. Productivity Measurement in Radial DEA Models with a Single Constant Input. Eur. J. Oper.
Res. 2016, 251, 323–328. [CrossRef]

71. Li, Z.; Crook, J.; Andreeva, G. Dynamic Prediction of Financial Distress Using Malmquist DEA. Expert Syst. Appl. 2017, 80, 94–106.
[CrossRef]

72. Zhu, N.; Liu, Y.; Emrouznejad, A.; Huang, Q. An Allocation Malmquist Index with an Application in the China Securities Industry.
Oper. Res. 2017, 17, 669–691. [CrossRef]

73. Nash, J.F.; Nash, J. The Bargaining Problem. Econometrica 1950, 18, 155–162. [CrossRef]
74. Banker, R.D. A Game Theoretic Approach to Measuring Efficiency. Eur. J. Oper. Res. 1980, 5, 262–266. [CrossRef]
75. Banker, R.D.; Charnes, A.; Cooper, W.W.; Clarke, R. Constrained Game Formulations and Interpretations for Data Envelopment

Analysis. Eur. J. Oper. Res. 1989, 40, 299–308. [CrossRef]
76. Rousseau, J.J.; Semple, J.H. Two-Person Ratio Efficiency Games. Manag. Sci. 1995, 41, 435–441. [CrossRef]
77. Hao, G.; Wei, Q.; Yan, H. Generalized DEA Model and the Convex Cone Constrained Game. Eur. J. Oper. Res. 2000, 126, 515–525.

[CrossRef]
78. Zhou, Z.; Sun, L.; Yang, W.; Liu, W.; Ma, C. A Bargaining Game Model for Efficiency Decomposition in the Centralized Model of

Two-Stage Systems. Comput. Ind. Eng. 2013, 64, 103–108. [CrossRef]
79. Du, J.; Liang, L.; Chen, Y.; Cook, W.D.; Zhu, J. A Bargaining Game Model for Measuring Performance of Two-Stage Network

Structures. Eur. J. Oper. Res. 2011, 210, 390–397. [CrossRef]
80. An, Q.; Chen, H.; Xiong, B.; Wu, J.; Liang, L. Target Intermediate Products Setting in a Two-Stage System with Fairness Concern.

Omega 2017, 73, 49–59. [CrossRef]
81. Rezaee, M.J.; Izadbakhsh, H.; Yousefi, S. An Improvement Approach Based on DEA-Game Theory for Comparison of Operational

and Spatial Efficiencies in Urban Transportation Systems. KSCE J. Civ. Eng. 2016, 20, 1526–1531. [CrossRef]
82. Jalali Naini, S.G.; Moini, A.; Jahangoshai Rezaee, M. Nash Bargaining Game Model for Two Parallel Stages Process Evaluation

with Shared Inputs. Int. J. Adv. Manuf. Technol. 2013, 67, 475–484. [CrossRef]
83. Borrero, D.V.; Hinojosa, M.A.; Mármol, A.M. DEA Production Games and Owen Allocations. Eur. J. Oper. Res. 2016, 252, 921–930.

[CrossRef]
84. Wu, H.; Lv, K.; Liang, L.; Hu, H. Measuring Performance of Sustainable Manufacturing with Recyclable Wastes: A Case from

China’s Iron and Steel Industry. Omega 2017, 66, 38–47. [CrossRef]
85. Du, J.; Chen, Y.; Cook, W.D.; Liang, L.; Zhu, J. Evaluating Two-Stage Network Structures: Bargaining Game Approach. In

International Series in Operations Research and Management Science; Springer New York LLC: New York, NY, USA, 2014; Volume 208,
pp. 165–187.

86. Jahangoshai Rezaee, M.; Moini, A.; Haji-Ali Asgari, F. Unified Performance Evaluation of Health Centers with Integrated Model
of Data Envelopment Analysis and Bargaining Game. J. Med. Syst. 2012, 36, 3805–3815. [CrossRef] [PubMed]

87. Jahangoshai Rezaee, M.; Moini, A.; Makui, A. Operational and Non-Operational Performance Evaluation of Thermal Power
Plants in Iran: A Game Theory Approach. Energy 2012, 38, 96–103. [CrossRef]

88. Yang, X.; Morita, H. Efficiency Improvement from Multiple Perspectives: An Application to Japanese Banking Industry. Omega
2013, 41, 501–509. [CrossRef]

89. Nakabayashi, K.; Tone, K. Egoist’s Dilemma: A DEA Game. Omega 2006, 34, 135–148. [CrossRef]
90. Nakabayashi, K.; Sahoo, B.K.; Tone, K. Fair allocation based on two criteria: A dea game view of “add them up and divide by

two” (<Special Issue> Operations Research for Performance Evaluation). J. Oper. Res. Soc. Jpn. 2009, 52, 131–146. [CrossRef]
91. Jahanshahloo, G.R.; Hosseinzadeh Lotfi, F.; Sohraiee, S. Egoist’s Dilemma with Interval Data. Appl. Math. Comput. 2006,

183, 94–105. [CrossRef]
92. Sohraiee, S. Evaluation of Egoist’s Dilemma with Fuzzy Data. Appl. Math. Sci. 2009, 3, 1219–1233.
93. Daneshvar, S. Egoists Dilemma with Fuzzy Data. Afr. J. Math. Comput. Sci. Res. 2012, 5, 9–16. [CrossRef]
94. Sekine, S.; Fu, J.; Muto, S. Game Theoretic Approaches to Weight Assignments in Data Envelopment Analysis Problems. Math.

Probl. Eng. 2014, 2014, 434252. [CrossRef]
95. Wu, J.; Liang, L.; Zha, Y.C. Determination of the Weights of Ultimate Cross Efficiency Based on the Solution of Nucleolus. Xitong

Gongcheng Lilun Yu Shijian/Syst. Eng. Theory Pract. 2008, 28, 92–97. [CrossRef]
96. Wu, J.; Liang, L.; Yang, F.; Yan, H. Bargaining Game Model in the Evaluation of Decision Making Units. Expert Syst. Appl. 2009,

36, 4357–4362. [CrossRef]
97. Lozano, S. Information Sharing in DEA: A Cooperative Game Theory Approach. Eur. J. Oper. Res. 2012, 222, 558–565. [CrossRef]
98. Lozano, S. Using DEA to Find the Best Partner for a Horizontal Cooperation. Comput. Ind. Eng. 2013, 66, 286–292. [CrossRef]
99. Lozano, S. DEA Production Games. Eur. J. Oper. Res. 2013, 231, 405–413. [CrossRef]
100. Lozano, S.; Hinojosa, M.A.; Mármol, A.M. Set-Valued DEA Production Games. Omega 2015, 52, 92–100. [CrossRef]
101. Hinojosa, M.A.; Lozano, S.; Mármol, A.M. DEA Production Games with Fuzzy Output Prices. Fuzzy Optim. Decis. Mak. 2018,

17, 401–419. [CrossRef]
102. Wu, H.; Du, S.; Liang, L.; Zhou, Y. A DEA-Based Approach for Fair Reduction and Reallocation of Emission Permits. Math.

Comput. Model. 2013, 58, 1095–1101. [CrossRef]

https://doi.org/10.1007/s12351-015-0185-x
https://doi.org/10.1016/j.ejor.2015.12.013
https://doi.org/10.1016/j.eswa.2017.03.017
https://doi.org/10.1007/s12351-016-0249-6
https://doi.org/10.2307/1907266
https://doi.org/10.1016/0377-2217(80)90058-2
https://doi.org/10.1016/0377-2217(89)90422-0
https://doi.org/10.1287/mnsc.41.3.435
https://doi.org/10.1016/S0377-2217(99)00306-9
https://doi.org/10.1016/j.cie.2012.09.014
https://doi.org/10.1016/j.ejor.2010.08.025
https://doi.org/10.1016/j.omega.2016.12.005
https://doi.org/10.1007/s12205-015-0345-9
https://doi.org/10.1007/s00170-012-4498-0
https://doi.org/10.1016/j.ejor.2016.01.053
https://doi.org/10.1016/j.omega.2016.01.009
https://doi.org/10.1007/s10916-012-9853-z
https://www.ncbi.nlm.nih.gov/pubmed/22544456
https://doi.org/10.1016/j.energy.2011.12.030
https://doi.org/10.1016/j.omega.2012.06.007
https://doi.org/10.1016/j.omega.2004.08.003
https://doi.org/10.15807/jorsj.52.131
https://doi.org/10.1016/j.amc.2006.05.058
https://doi.org/10.5897/AJMCSR11.127
https://doi.org/10.1155/2014/434252
https://doi.org/10.1016/S1874-8651(09)60023-5
https://doi.org/10.1016/j.eswa.2008.05.001
https://doi.org/10.1016/j.ejor.2012.05.014
https://doi.org/10.1016/j.cie.2013.06.016
https://doi.org/10.1016/j.ejor.2013.06.004
https://doi.org/10.1016/j.omega.2014.10.002
https://doi.org/10.1007/s10700-017-9278-8
https://doi.org/10.1016/j.mcm.2012.03.008


Games 2024, 15, 3 21 of 21

103. Wang, M.; Li, Y. Supplier Evaluation Based on Nash Bargaining Game Model. Expert Syst. Appl. 2014, 41, 4181–4185. [CrossRef]
104. Omrani, H.; Gharizadeh Beiragh, R.; Shafiei Kaleibari, S. Performance Assessment of Iranian Electricity Distribution Companies

by an Integrated Cooperative Game Data Envelopment Analysis Principal Component Analysis Approach. Int. J. Electr. Power
Energy Syst. 2015, 64, 617–625. [CrossRef]

105. Sugiyama, M.; Sueyoshi, T. Finding a Common Weight Vector of Data Envelopment Analysis Based upon Bargaining Game. Stud.
Eng. Technol. 2014, 1, 13–21. [CrossRef]

106. Zhu, J. Robustness of the Efficient DMUs in Data Envelopment Analysis. Eur. J. Oper. Res. 1996, 90, 451–460. [CrossRef]
107. Seiford, L.M.; Zhu, J. Infeasibility of Super-Efficiency Data Envelopment Analysis Models. INFOR J. 1999, 37, 174–187. [CrossRef]
108. Lundberg, S.; Pollak, R.A. Separate Spheres Bargaining and the Marriage Market. J. Political Econ. 1993, 101, 988–1010. [CrossRef]
109. Liang, L.; Cook, W.D.; Zhu, J. DEA Models for Two-Stage Processes: Game Approach and Efficiency Decomposition. Nav. Res.

Logist. 2008, 55, 643–653. [CrossRef]
110. Wu, J.; Liang, L.; Yang, F. Determination of the Weights for the Ultimate Cross Efficiency Using Shapley Value in Cooperative

Game. Expert. Syst. Appl. 2009, 36, 872–876. [CrossRef]
111. Liu, J.S.; Lu, L.Y.Y.; Lu, W.M. Research Fronts in Data Envelopment Analysis. Omega 2016, 58, 33–45. [CrossRef]
112. Anderson, T.R.; Hollingsworth, K.; Inman, L. The Fixed Weighting Nature of a Cross-Evaluation Model. J. Product. Anal. 2002,

17, 249–255. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.eswa.2013.12.044
https://doi.org/10.1016/j.ijepes.2014.07.045
https://doi.org/10.11114/set.v1i1.277
https://doi.org/10.1016/0377-2217(95)00054-2
https://doi.org/10.1080/03155986.1999.11732379
https://doi.org/10.1086/261912
https://doi.org/10.1002/nav.20308
https://doi.org/10.1016/j.eswa.2007.10.006
https://doi.org/10.1016/j.omega.2015.04.004
https://doi.org/10.1023/A:1015012121760

	Introduction 
	Preliminaries 
	Cross-Efficiency 
	Malmquist Productivity Index 
	Game Theory 

	Cross Common Weights Global Malmquist Productivity Index Based on Bargaining Games 
	Motivation through a Numerical Example 
	Method Description 

	Application of Proposed Method to the Example 
	Conclusions 
	References

