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Abstract: The paper presents a complete information model of bidding in second price 

sealed-bid and ascending-bid (English) auctions, in which potential buyers know the unit 

valuation of other bidders and may spitefully prefer that their rivals earn a lower surplus. 

Bidders with spiteful preferences should overbid in equilibrium when they know their rival 

has a higher value than their own, and bidders with a higher value underbid to reciprocate 

the spiteful overbidding of the lower value bidders. The model also predicts different 

bidding behavior in second price as compared to ascending-bid auctions. The paper also 

presents experimental evidence broadly consistent with the model. In the complete 

information environment, lower value bidders overbid more than higher value bidders, and 

they overbid more frequently in the second price auction than in the ascending price 

auction. Overall, the lower value bidder submits bids that exceed value about half the time. 

These patterns are not found in the incomplete information environment, consistent with 

the model. 
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1. Introduction 

One of the most basic and apparently innocuous assumptions about behavior in games is that 

players will adopt dominant strategies. One reason why players may avoid dominant strategies, as 

expressed in monetary payoffs, is because they have social preferences such as spite or conditional 

Results and Discussion cooperation. Recent laboratory research in public good mechanism design, for 

example, has documented extensive failure by subjects to follow dominant strategies even in fairly 

simple environments, perhaps due to a desire to cooperate with others who are also cooperative 

(Attiyeh et al. [1]; Kawagoe and Mori [2]; Cason et al. [3]). Mixed results also exist in experiments 

assessing the incentive-compatibility of second price (Vickrey) auctions. For example, Kagel and 

Levin [4] find that 58 to 67 percent of bids exceed value, and Harstad [5] reports that severe 

overbidding does not decline over time, while others such as Coppinger et al. [6], Cox et al. [7], 

Kagel et al. [8], and Chew and Nishimura [9] report consistency with value-revealing bidding.  

Overbidding is much less pronounced in the English, ascending-bid auction. Especially in the 

“Japanese” version of ascending-bid auction [10,11], which is isomorphic to the second price auction, 

the equilibrium bidding strategy is more transparent, which has led some researchers to conclude that 

the subtlety of the dominant strategy in the sealed bid second-price auction is a primary reason some 

bidders fail to follow it. Learning is also difficult in the second price auction because the use of a 

weakly dominated strategy may often not cause any loss in actual payoff (Kagel and Levin [4]). 

Moreover, even with standard (own-payoff maximizing) preferences, many Nash equilibria exist in 

these auction formats other than the dominant strategy equilibrium. 

This paper explores the importance of alternative, spiteful preferences as an explanation for 

overbidding in second price and ascending-bid auctions. A spiteful agent has utility that increases 

when the earnings of her rivals decrease, and so she may be willing to sacrifice some monetary payoff 

in order to reduce the other agent’s monetary payoff (Saijo and Nakamura [12]). The following section 

contains our formal definition, which features a reciprocal motive; i.e., subjects feel more spiteful 

towards others who treat them spitefully. The key design feature of second price and ascending-bid 

auctions that make them incentive-compatible under standard preferences makes them particularly 

prone to manipulation by bidders who have spiteful preferences. Because an individual’s monetary 

payoff conditional on winning the auction is independent of her bid, if she cares only about her 

monetary payoff has no incentive to change her bid to lower her price. But if she fails to win her bid 

may determine the payoff of the winner. Therefore, if she is spiteful she can increase her bid to 

increase her (spiteful) utility. Agents who have spiteful preferences would not consider a bid equal to 

value to be a dominant strategy.  

We construct a two-bidder, intention-based reciprocal decision model which belongs to the class of 

reciprocity models including Rabin [13] and Segal and Sobel [14], and extend it to the sequential 

decision making of the ascending-bid auction in the spirit of Dufwenberg and Kirchsteiger [15] and 
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Falk and Fischbacher [16]. Intention is measured by the distance between a buyer’s bid choice and her 

standard value-revealing bid which we consider as the intention neutral reference. A bidder with a low 

value for the object may behave spitefully when her opponent expects to win a positive surplus. This 

can be interpreted as part of the disutility of losing the auction, since she is in a disadvantageous 

position. This may prompt her to place a spiteful bid higher than her value, hoping to reduce her 

opponent’s winning surplus. For example, suppose it is common knowledge that bidder 1 values the 

object at 800 yen, while bidder 2 values the object at 700 yen. A spiteful bidder 2 could bid, say,  

750 rather than her value 700 in a second-price auction to reduce bidder 1’s winning surplus from  

800 − 700 = 100 to 800 − 750 = 50. A novelty of our analysis is in incorporating retaliation by the 

bidder who has a higher value. The higher value bidder may place a deliberately low bid in order to 

penalize the spiteful conduct by the lower value bidder, even though such a retaliatory bid reduces his 

chance of winning. Continuing the example, bidder 1 could bid less than his value of 800, such as 760, 

in order to limit the spiteful actions of bidder 2. Bidder 1 could even penalize a spiteful bidder 2 by 

bidding lower than 750. 

Another novel feature of our analysis is that we consider a complete information environment, 

which strengthens the impact of social preferences such as spite and reciprocity. This is intended to 

approximate conditions in which bidders have some information about rivals’ values or costs, such as 

in local government procurement settings with repeated competition between the same set of bidders. 

In the incomplete information environment typically employed in the auction literature, adding spiteful 

and reciprocal preferences as we have modeled them still results in bids equal to value in the unique 

(but not dominant strategy) symmetric equilibrium. By contrast, bidders with spiteful and reciprocal 

preferences should overbid in equilibrium when they have complete information about their rival’s 

value and they know their rival has a higher value than their own.  

Spiteful and reciprocal preferences also make the second price and the ascending-bid auction forms 

non-isomorphic. In an ascending-bid auction, an auctioneer or clock raises a calling price until there 

remains only one active bidder. A climbing calling price gradually reduces the winner’s payoff. Taking 

this effect into account, in our sequential decision model the bidders are more aware of the extent of 

the other’s spitefulness when they reach each new, higher calling price, because they can infer that 

their rival did not drop out. This makes the bidder with the higher value willing to retaliate at an earlier 

stage. Consequently, for the same level of spiteful preferences, in response the lower value bidders 

should overbid less in the ascending-bid auction than in the second price auction. Thus, the upper 

bound of the set of equilibria in ascending-bid auctions is likely to be lower. 

The second part of the paper presents experimental evidence that provides some qualified support 

for the predictions of this model. In the complete information environment, lower value bidders 

overbid more than higher value bidders, and they overbid more frequently in the second price auction 

than in the ascending price auction. Overall, the lower value bidder submits bids that exceed  

value about one-half the time. These patterns are not found in the data we collected for the  

incomplete information environment, consistent with the model. Similar to most of the literature on 

incomplete information second price and ascending bid auctions, bids are near values for both low- 

and high-value bidders. 

Researchers have recently measured and explored the impact of social preferences that include 

reciprocity and spite in a variety of environments, but often in non-competitive contexts such as public 
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good provision, two-agent bargaining and simple games. A small amount of research has studied the 

impact of spite in auctions, starting with Morgan et al.’s [17] theoretical analysis. Their model, which 

we discuss below in more detail, features non-reciprocal spite and does not predict differences between 

the second price and ascending price auctions for the two-bidder setting we employ. Cooper and 

Fang’s [18] experimental study also considers (like us) a two-bidder environment for simplicity, but 

only second price auctions. They provide bidders with noisy information about their rival’s value, with 

varying degrees of accuracy, and find that overbidding is consistent both with spite and  

“joy-of-winning” motivations. Andreoni et al. [19] also report a laboratory experiment in which 

bidders may have information about rivals’ value draws. They consider first and second price auctions, 

all with four competing bidders, and test predictions regarding equilibrium strategies in three different 

information structures. Their results provide strong support for theory, but they also observe 

overbidding by lower value bidders in their second price auctions that is consistent with a spite motive. 

Herrmann and Orzen [20] identify spiteful behavior in two-bidder contests that share some strategic 

similarities to auctions.  

Our results are also consistent with spiteful bidder preferences, and we observe overbidding and 

underbidding in a pattern consistent with our model of reciprocal spite. Lower value bidders overbid 

relative to their values, but in response the higher value bidders underbid to punish this overbidding (or 

at least make overbidding risky). In equilibrium these spiteful social preferences substantially reduce 

the size of the set of Nash equilibria. Moreover, this combination of spite and reciprocity is the reason 

that isomorphism fails for the second price and ascending price auction, and the particular pattern of 

larger and more frequent overbids in the second price auction predicted by the model is also observed 

in the experimental data. 

2. The Model: Spite Bidding with and without Reciprocity 

2.1. Known Values (Complete Information) 

Consider, for simplicity, the case of two buyers with unit demand of values },{ 21 vv , with 21 vv  . 

In this subsection, we assume that both buyers know each other’s values. Although this assumption of 

complete information about a rival bidder’s values is unusual, we consider it for two reasons. First, 

complete information is a reasonable approximation of auction markets that take place repeatedly 

between the same set of bidders, such as procurement auctions where bid histories provide information 

about values (Arora et al. [21]; Cason et al. [22]), and other settings with repeated bidding such as for 

internet search auctions (Edleman et al. [23]). Second, spiteful motivations are more likely to be 

triggered in the complete information environment, since bidders know their relative value position. 

This allows the model to highlight the effect of spiteful reciprocity while eliminating the complexity 

arising from value uncertainty. This view is also consistent in spirit with the increased information 

about rivals studied in Andreoni et al. [19] and Cooper and Fang [18] that also consider implications of 

spite in auctions. Thus, our complete information model provides a useful benchmark for the case of 

well-informed bidders, which presents the starkest contrast to the more standard incomplete 

information context, considered below in Section 2.2. As will be seen, an analysis of this complete 

information context reveals new implications for bidder behavior in auctions. 
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We consider all values and bids in terms of minimum transaction unit 0 , corresponding for 
example to a minimum currency unit. Let Vi v , }2,1{i , where },,,2,,0{ vv   V , uv , and 

u  is a finite positive integer greater than 1. Each buyer chooses a bid BBb ii  , }2,1{i , where 

},,,2,,0{ bbBBi    , }2,1{i , a set of bids commonly available to the two buyers, where 

v cb  and c  is a finite positive integer greater than 1. In what follows, we consider only pure  

bid strategies.  

A. Second Price Auction 

In the second price auction with two buyers, the winner’s payment is equal to the loser’s bid. Thus, 
buyer i’s monetary payoff is given by  jii BB: , jiji   },2,1{, , such that  

 
jijiji bbjibbbbjijii IbIIbbb   )(210)(),( vv  (1)

where IA is an index function which assumes value 1 when the statement A holds, and zero otherwise. 

The first term in the RHS of (1) is her winning payoff, the second term is her losing payoff (zero), and 

the third term is her expected payoff from a tie.  

Case 1: The Conventional Model 

It is well known that the second price auction has multiple Nash equilibria. Figure 1 shows the set 
of Nash equilibria with two buyers who receive payoff (1) when )700 ,800() ,( 21 vv . The upper left 

shaded area is the set of inefficient equilibria where buyer 2 with the lower value wins. The efficient 

lower right area includes a value-revealing dominant strategy Nash equilibrium [24,25]. 

Figure 1. Example of Nash equilibrium set in second price auction with standard  

money-maximizing preferences. 

 
In the following, we show that introducing spiteful motivations narrows the set of Nash equilibria and 

that the equilibrium set also differs between when bidders are spiteful with and without reciprocity. 
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Case 2: Spite-without-Reciprocity 

Morgan et al. [17] present a model of two spiteful buyers who obtain a utility loss when they lose 

that depends on their rival’s amount of monetary winning payoff [26]. There is no element of 

reciprocity in their model, since buyers become unconditionally spiteful whenever they lose. So we 

call this case the spite-without-reciprocity model. In their model, buyer i’s utility can be represented by 

 
jijiji bbijijibbijibbjijii IbbIbIbbbu   )]()[(21)()(),( vvvv   (2)

for }2 ,1{, ji , ji  , where the coefficient i  is a positive real number.  

The black dotted line in Figure 2 shows, the set of Nash equilibria for the case with 
)700 ,800() ,( 21 vv , 10 , 3.01  , and 2 0.8  . The equilibrium set is much smaller compared 

to Figure 1, and all of its elements are efficient. When spiteful preferences are stronger, however, as 
shown by the orange dotted line with 11   and 42  , all elements of the equilibrium set are 

inefficient. The condition that determines whether the equilibrium set is efficient is 121  . Two 

points should be noted; one is that the lower bound of the equilibrium set is strictly above 
) ,() ,( 2221 vv bb  or ) ,() ,( 2221  vvbb . The other is that the value-revealing strategy 

) ,(),( 2121 vvbb  is no longer an equilibrium and there is no equilibrium bid strategy that generates 

the equivalent monetary outcome of the value-revealing strategy. 

Figure 2. Example of equilibrium set with spiteful motivations but no reciprocal-spite 

motivation (spite-without-reciprocity). 

 

Case 3: Spite-with-Reciprocity 

The main innovation of our model is to incorporate the possibility of retaliation against a bidder’s 

spiteful behavior. We label this spite-with-reciprocity model. We construct buyers’ utility in the spirit 

of the reciprocity model proposed by Segal and Sobel [14] with some modifications on the specific 

functional forms [27–31]: 
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jiji bbjijj
j

iibbjijii IRbbIbbbU   ]))[(()(),( vv 

  
ji bbjijj

j
iiji IRbbb  ]))[(()(21 vv   (3)

for }2,1{, ji , ji  . The first term in the RHS of (3) is buyer i’s monetary payoff when she wins. The 

second term is the payoff in the event of loss that consists of monetary payoff zero (which is omitted) 

and the term which is typically labeled as psychological payoff in reciprocity models. This term is a 
product of the difference between her rival’s monetary payoff ij bv

 and rival’s reference winning 

payoff (hereafter reference payoff) jR , and a weight )( j
j

i b  with coefficient i  which is a  

non-negative real number [32]. Note that when 0i  or )( j
j

i b = 0, the utility (3) becomes 

conventional utility (1). When )( j
j

i b  is a negative constant and the reference payoff 0jR   
For }2 ,1{, ji  and ji  , the utility (3) becomes the utility with spite-without-reciprocity of (2). Thus, 

as usual in reciprocity models, the reference payoff jR  and the weight )( j
j

i b  play the key role in 

characterizing reciprocity. In this paper, we regard 211 vv R  and 02 R  as the reference because 

these payoffs are realized under the value-revealing bid strategy jikb kk , , v , which is neutral of any 

spiteful intention since it is the dominant strategy in the conventional model. Also, we assume the 
weight )( j

j
i b  is non-positive to represent the bidder’s spite intention [33]. Reciprocity models 

commonly interpret the weight )( j
j

i b  to reflect the buyer i’s view of buyer j’s intention toward  

buyer i, and represents buyer j’s intention by a deviation of buyer j’s action from the spite neutral 
reference strategy jjb v . 

Specifically, consider the case of buyer 1. If } , ,{ 122  vv b , buyer 1 should speculate what 

makes buyer 2 place a bid 22 vb  since such bids increase the likelihood of a negative monetary 

payoff if buyer 2’s purpose is to win. It is reasonable for buyer 1 to perceive buyer 2’s bid deviation 
from 2v  as spiteful, because buyer 2 reduces buyer 1’s winning surplus to 21 bv  from 21  vv  . 

Hence, the size of bid deviation 22 bv  corresponds to buyer 1’s lost surplus. How much damage the 

lost surplus means to buyer 1 must be measured relative to the range of buyer 1’s potential winning 
payoff possible with buyer 2’s spite bid, which is 21  vv  . Thus, we define buyer 1’s weight such that 

)(}0,min{)( 21222
2
1   vvv bb [34]. Recognizing buyer 2’s spiteful intention, buyer 1 may 

reciprocate by placing a deliberately low bid in order to let buyer 2 win with negative winning surplus 
of 12 bv . 

Consider next the case of buyer 2. The size of bid deviation 11 bv  reflects the minimum winning 

surplus that buyer 1 claims. The larger payoff buyer 1 claims, the more spiteful buyer 2 becomes. The 
size of bid deviation 11 bv  also corresponds to buyer 1’s maximum potential winning surplus that 

she is willing to forego to retaliate against buyer 2. The impact of bid deviation 11 bv  should be 

measured relative to the payoff range 21 vv  . Thus, we define buyer 2’s weight by 

)(}0 , max{)( 21111
1
2   vvv bb . With these specifications for weights, it is easy to check that the 

losing payoff of each buyer i, }2,1{i  is increasing in her own bid ib . 

Segal and Sobel [14] showed that the Nash equilibrium concept is directly applicable to their 

general reciprocity model (see [27]). Accordingly, we define the equilibrium of the second price 

auction as follows. 
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Definition 1 (Equilibrium in the second price auction): A strategy profile jiji BBbb  ),(  generates 

an equilibrium in the second price sealed-bid auction, if for each jiji  },2,1{, , )(   jii bBRb , where 

iji BBBR :  is buyer i’s best response correspondence defined by 

 iijiijiiiiji BbbbUbbUBbbBR  ),,(),(  )( , for a given jj Bb  . 

Thus, we can identify the equilibrium set for any VV ) ,( 21 vv , 21  vv  , and 1 , which is 

formally stated in Proposition 1 below. (Proofs of all propositions and lemmas are collected in 
Appendices A and B.) Figure 3 shows an example when ) ,( 21 vv )700 ,800(  and 21  . The 

equilibrium set is represented by a dotted line segment whose lower bound is 
)700 ,710() ,(),( 2221  vv bb  and upper bound is ),( 21 bb )ˆ ,ˆ( 11   = (760, 750), where 

11
ˆ B  is the threshold bid for buyer 1 in the following sense [35]; when her rival bids above 1̂ , 

buyer 1 strictly prefers to lose, and weakly prefers to win otherwise. Lemma 1 below summarizes the 

property of i̂ , }2,1{i  (For details about i̂  and the proof of Lemma 1, see Appendix A-1.) [36]. 

Figure 3. Example of equilibrium set in the second price auction with spite and  

reciprocal-spite motivations (spite-with-reciprocity). 

 

Lemma 1: (i) There exists a unique threshold bid Bi ̂ , for each }2 ,1{i . (ii) },,{ˆ
121   vv   

and 22
ˆ v .  

Proposition 1: The equilibrium set with buyers of the spite-with-reciprocity type is given by 

  ˆ)ˆ( ),( 12221   bBBbbE v . 

The boundaries of equilibrium set are defined by the two buyers’ threshold bids, and the equilibrium 

set in Figure 3 is much smaller than the one in Figure 1 [37]. Unlike the conventional and the  

spite-without-reciprocity models, the equilibrium set is always efficient. We can conclude that 

b2 

710 760 
b1  0 

 750 

800 

v1=800 

v2=700 

 E with ߚመଵ = 760 



Games 2011, 2   

          

 

373

introducing buyers of spite-with-reciprocity type does not impede efficiency, and it even potentially 

improves the performance of second price auction, since it eliminates inefficient outcomes from the 

equilibrium set [38]. Although the value-revealing bid strategy is no longer an equilibrium, the 

equilibrium bid strategy ) ,(),( 2221 vv bb )ˆ,ˆ( 22   , the lower bound of E, generates the 

equivalent outcome. 

B. Ascending-Bid Auction 

In an ascending-bid auction the calling price rises by unit ε, and this increase occurs in each unit of 

time in the clock version. We assume that the initial price is low enough so that both buyers are active 

at the start. The auction terminates when either buyer withdraws from bidding. If both buyers withdraw 

simultaneously, the winner is chosen randomly with equal probabilities, and the winner has to pay her 

own withdrawal bid.  

Let Br  denote the calling price, with 0r  corresponding to the initial stage before the auction 

starts. At each r, each buyer chooses a bid at which she plans to withdraw. Such a planned withdrawal 
bid of buyer i at decision point r is denoted by rri Bb , , where },,,{, brrBB rri  , }2,1{i  for 

all Br . Note that the decision problem at r = 0 is equivalent to that in the second price auction. Each 

buyer makes sequential decision at each decision point r as the calling price rises, until she arrives at 
the actual withdrawal point where rb ri , . Those sequential decisions of planned withdrawal bids 

(hereafter bids) }{ ,rib  are behavioral strategies. Since the ascending-bid auction does not allow buyers 

to reenter after they withdraw, our analysis focuses on the buyers’ behavioral strategies. The auction 
terminates at the decision point where rbb rr },min{ ,2,1 . 

We are particularly interested in buyers’ behavior when r climbs past 2v . When this occurs there is 

no doubt that buyer 2’s bid exceeds 2v , which means to buyer 1 that buyer 2 is spiteful. By letting r go 

beyond 2v , buyer 2 eliminates the upper part of possible payoff range of buyer 1 located above r1v . 

The extent of spitefulness toward buyer 1 of the same size of bid deviation 22 bv  must be different 

for different range of buyer 1’s possible winning payoffs, and so must be the effect of the bid deviation 

11 bv  on buyer 2. We extend our model (3) to the extensive form in the spirit of Dufwenberg and 

Kirchsteiger [15] based on the behavioral strategies, through modifying the weight )( j
j

i b , 

jiji   },2,1{, , of (3) in the following way. The new weight ),(  , rb rj
j

i  depends on a behavioral 

strategy rjb  ,  at each decision point r, and especially when } , ,{ 12   vv r , the weight ),(  , rb rj
j

i  

is updated with the new, smaller denominator  },max{ 21 rvv . Buyer i’s utility at r is therefore 

given by 

rjrirjri bbjrijrj
j

iibbrjirjrii IRbrbIbrbbU
 , , , ,

))(,()() ,,(  , , , , ,   vv 
 

 
rjri bbjrijrj

j
iirji IRbrbb

 , ,
)])(,()[(21  , , ,  vv   

(4) 

for }2,1{, ji , ji  ,where 



 





otherwise, 

 if

),},max{(}0,max{

),},max{(}0,min{
),(

21 ,

21 ,
 ,

ji

rjj

rjj
rj

j
i rb

rb
rb

vv
vvv

vvv



  for } , ,0{ 1  vr , and 

0)  ,   (  rj
i  for },,{ 1 br v . Note that the absolute value of ),(  , rb rj

j
i  becomes larger as r rises 
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when } , ,{ 12   vv r . This means that each buyer becomes more sensitive to the other buyer’s 

spite intention [39,40]. 

For each r, we consider the equilibrium set analogous of E in Proposition 1, which we call interim 
equilibrium set, denoted by rE . 

Definition 2 (Interim equilibrium): At each Br , let )(  , , rjri bBR  denote buyer i’s  

best response correspondence against a given rrj Bb  ,  such that, 

)(  , , rjri bBR  rrirjririrjririrri BbrbbUrbbUBb   , , , , , , , , ), ,,() ,,(   for }2,1{, ji , ji . A bid 

strategy profile rrrr BBbb  ),(  ,2 ,1  at given Br  is an interim equilibrium, if )(  , , ,
  rjriri bBRb , 

jiji  },2,1{, . 

For a given r, an interim equilibrium set can be stated as  

rE  jiibBRbBBbb rjririrrrr   },2 ,1{ ),(  ),(  , , , ,2 ,1 . The set 0E  at r = 0 is the same as E in the 

second price auction. Let us call rE  null, if its only element is ) ,() ,(  ,2 ,1 rrbb rr  . Proposition 2 

below describes the properties of non-null interim equilibrium sets. Each non-null rE  has its lower 

bound }) , max{  ,} , (max{),( 22 ,2 ,1 vv rrbb rr   and its upper bound )ˆ  ,ˆ(),(  ,1 ,1 ,2 ,1 rrrr bb   , where 

rr B ,1̂  is the threshold bid for buyer 1 at decision point r, which is the counterpart of 1̂  in the 

second price auction [41]. Lemma 2 summarizes the properties of ri ,̂ , }2 ,1{i . By the rule of the 

ascending-bid auction that prohibits reentry, if rE  is null for some rr  , then rE  is null for all 

} , ,{ brr  . Lemma 3 shows that the calling price r̂  identified in Lemma 2 (i) is the lowest r 

beyond which rE  becomes null. Consequently, the auction will never continue beyond r̂ . 

Lemma 2: (i) There exists } ,,{ˆ 12  vv r  such that }ˆ min{ˆ  ,1 rrBrr  . 

(ii) 2 ,2
ˆ vr  when },,0{ 2vr , otherwise no buyer 2’s threshold bid exists. There exists unique 

},},,{max{ˆ
12 ,1   vv rr  for each }ˆ,,0{ rr   with 10,1

ˆˆ   . No buyer 1’s threshold bid exists 

for } ,ˆ{ b,rr   except 1vr  where 1 ,1
ˆ vr . 

(ii) 1,1
ˆˆ  r  for all },,,0{ 2vr , and r,1̂  is non-increasing in r, for all }ˆ,,{ 2 rr  v . 

Lemma 3: rE  is not null for all }ˆ,,0{ rr   and rE  is null otherwise. 

Buyer i does not prefer to win against any of her rival’s possible bids rrj Bb  , , when r falls in the 

range where no ri  ,̂  exists (see Appendix A-4). Based on Lemma 2 and 3, we can derive buyers’ best 

response correspondences. (The list of the best response correspondences is available in Appendix  
(A-5.). By Lemma 3, we can restrict our equilibrium analyses to the case }ˆ,,0{ rr  . 

Proposition 2: (i) The interim equilibrium set rE  for all }ˆ,,,0{   rr   is given by 

  ˆ},max{ ),(  ,12 rrrr brBBbbE   v  . 

(ii) For rrr  ,1̂ˆ  , )}ˆ ,ˆ( ),ˆ ,ˆ{(ˆ rrrrEr   if rr ˆ ,1ˆ ,1̂   , and )}ˆ ,ˆ( {ˆ rrEr  otherwise. 

Let rB  denote the set of bid profiles whose lower bid is greater than r, defined by 

}},,2 ,{},min{  ),( { 2121 brrbbbbr  B . Then, for a given }ˆ , , ,0{ rr  , the set 

 r
rr EE B \  consists of interim equilibrium bid profiles that terminate the auction at r. Thus, these 
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bid strategy profiles constitute equilibrium that ultimately determine the price in the ascending-bid 

auction. Hence, we define the equilibrium as follows. 

Definition 3 (Equilibrium in the ascending-bid auction): A bid strategy profile BBbb  ),( 21  is an 

equilibrium in the ascending-bid auction, if  ),( 21 bb    
r

r

r
rr EE

ˆ

0
\


B

 [42]. 

Proposition 2 together with Lemma 2 implies that we have an inclusion relation among all non-null 

interim equilibrium sets of the following sort: EEEEE rr   0ˆˆ 2
 v [43]. The next 

proposition identifies the equilibrium set in the ascending-bid auction. 

Proposition 3: The bid strategy profile BBbb  ),( 21  is equilibrium in the ascending-bid auction if 

and only if    rr EEE\ Ebb ˆˆ
0021  \  ),( BB   . 

It is immediate that the equilibrium set   EEE r ˆ \ B . The upper bound of the equilibrium set 

of the ascending-bid auction coincides with the upper bound of the set rE ˆ  which is 

)ˆ ,ˆ(),(  ,2 ,1 rrbb rr  . It is bounded by the upper bound of the equilibrium set E in the second price 

auction )ˆ ,ˆ(),( 1121  bb , since 1 ,1
ˆ ˆ  r . Furthermore, )ˆ ,ˆ( 11    is bounded by the upper 

bound of the equilibrium set in the conventional model ) ,( 11 vv . 

Figure 4 depicts an interim equilibrium set rE  when 8001 v , 7002 v , 21  , 10 , 720r , 

and 740ˆ
720 ,1 r  as the dark dotted line between ),(),( 21 rrbb  )720,730(  and 

)ˆ,ˆ(),(  ,1 ,1 ,2 ,1 rrrr bb   )740,750( . The set 720E  in Figure 4 is the proper subset of the equilibrium 

set E in the second price auction of Figure 3. In this example, since the threshold bid rr B,1̂  remains 

the same at 740 for r = 730 and 740 (due to the discreteness of rB  [44]), 740ˆ r . Consequently, the 

equilibrium set of the ascending-bid auction comes down to the blue dotted line connecting between 

(710, 700) and (750, 740). 

Figure 4. Example of interim equilibrium set in the ascending bid auction with spite and 

reciprocal-spite motivations (spite-with-reciprocity). 
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The analysis up to this point boils down to the following testable hypothesis: if the bidders are all 

self-regarding money-maximizing preference types, it is known that the prices observed in the 

ascending-bid auction should coincide in distribution with those in the second price auction. This also 

is the case when bidders are the type of spite-without-reciprocity, because the upper bound of 

corresponding interim equilibrium sets remains the same, which is easy to check. But if some bidders 

are the type of spite-with-reciprocity, it immediately follows from Proposition 3 that higher prices 

should be less frequent in the ascending-bid auction than in the second price auction.  

2.2. Unknown Values (Incomplete Information) 

In the incomplete information case, there are two main differences compared to the complete 

information case. First, the two players are now perceived as symmetric buyers (ex ante), so that we 

omit the subscript when there is no risk of confusion. Second, we no longer have a reason to restrict 

buyers’ value sets and bid sets to be discrete with the minimum bid unit   to ensure the existence  

of equilibrium.  

Let ],0[ vV  be a closed interval from which each buyer’s value is drawn independently. Let 

]1 ,0[: VG  be the cumulative probability distribution of each buyer’s value with density function 

g: ഥܸ ՜ ሾ0, 1ሿ, which is common knowledge. In what follows, we consider a buyer whose private value 

is Vv , and she perceives her opponent’s value as a random variable Vz  that follows the 

cumulative probability distribution G with density function g. 

We consider the second price auction as the special case of the ascending-bid auction where the 
calling price is zero. Thus, our analysis focuses on the ascending-bid auction. Let BbrBr  ],[ , with 

vb , and BBr  0  denote buyer’s bid set at decision point when the calling price is r. Consider a 

continuous and continuously differentiable function rr BVb : , with 0)0( rb  to represent buyer’s 

withdrawal bid strategy, (hereafter bid strategy for short) at a given decision point r. We focus on a 
symmetric equilibrium where both buyers employ the same bid strategy )(rb , for all Br  . Since 

such a symmetric equilibrium bid function must be strictly increasing in its argument [45,46], each 

buyer can construct the probability distribution of her opponent’s bid from G  via the inverse bid 

strategy function VBb rr  :1 . As the calling price r increases, the possibility of the opponent’s bid 

being less than r is eliminated, so that each buyer updates G  conditional on ]),([ 1 brbz r
 . 

Suppose that at a given r, a buyer with value v makes a bid )(xbr  as if her value is Vx . She 

expects that her opponent with value z will make a withdrawal bid )(zbr . For a given z, we can 

construct buyer i’s deterministic utility ) ),(),(( rzbxbU rr  based on the utility (4), where  , , , ,, irjri bb v

and jv  correspond to v ),( ),( zbxb rr , and z, respectively. Then the buyer’s expected utility is obtained 

by taking expectation of ) ),(),(( rzbxbU rr  with respect to random variable z, denoted by 

 ) ),(),(() ,( rzbxbUErxEU rrzz  . The exact form of buyer’s expected utility ) , rxEU z (  is provided 

by (B2) in Appendix B-1. Buyer’s decision problem at each r is to choose a bid strategy function 
)(xbr  that maximizes ) , rxEU z (  when vx , for every Vv . 

Following the same steps in the preceding subsection 2.1B, let us define symmetric interim 

equilibrium as follows. 
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Definition 4: Let a function rr BVb  :  be continuous, continuously differentiable, and strictly 

increasing bid strategy for a given Br  . Then, the function )  ( 
rb  generates a symmetric interim 

equilibrium at r if it maximizes vxz rxEU  ),(  for all Vv . 

For each buyer, her ultimate withdrawal decision point is given by )(v rbr , where her optimal bid 

coincides with the current calling price. 

Definition 5: Let a function BVb  :  be continuous, continuously differentiable, and strictly increasing 

bid strategy. Then, the function )  ( b  generates a symmetric equilibrium in the ascending-bid auction if 

it maximizes 
)(

1 ),(
rbxz rxEU v

  for all Vv . 

Then the symmetric equilibrium bid function is sequentially rational if it also generates symmetric 

interim equilibrium at each Bbr
-

  )](,0[
1

v  for all Vv .  

Proposition 4: There exists a unique symmetric interim equilibrium strategy )  ( b  such that vv  )(b , 

for all relevant Bbr
-

  )](,0[
1

v and for all Vv . 

Proposition 4 asserts that the value-revealing bid strategy is a unique symmetric equilibrium bid 

strategy (but not a dominant strategy) in both the second price and ascending-bid auctions. The 

intuition behind Proposition 4 is simple. In the incomplete information environment, buyers are  

no longer aware of their relative value position, which is the driving force for their spiteful bids in  

the complete information case. This result contrasts with Morgan et al. [17] who predict overbidding 

by all buyers with the spite-without-reciprocity type. Moreover, in contrast to the complete  

information case considered in the previous section, the incomplete information case with buyers of 

the spite-with-reciprocity type does not generate any differences in bidding or winning prices between 

the second price and ascending-bid auctions. 

3. Experimental Design 

The theoretical model in the previous section generates a range of empirical implications that we 

evaluated in a controlled laboratory experiment. The experiment consisted of seven sessions of 12 

subjects each (84 total subjects), all conducted with undergraduate econ major students at Shinshu 

University. Subjects bid in a series of two-bidder auctions with one item for sale. Motivated by the 

differing testable implications derived above, the principal treatment variables were the auction format 

(ascending-bid versus second price sealed-bid) and information conditions (complete versus 

incomplete). Both of these treatment variables were varied within sessions, and in four sessions all 

subjects bid in both formats and both information conditions. In the remaining three sessions subjects 

only bid in complete information, sealed-bid auctions. Subjects submitted bids for 6 to 10 consecutive 

periods within each treatment configuration.  

A secondary treatment variable was the matching rule. This was also varied within sessions, so 

sometimes subjects bid against the same opponent for 6 to 10 periods, and at other times subjects bid 

against randomly-changing opponents every period. We included fixed pairings in some sessions 

because the multiple equilibria (cf Figures 1–4) may require some coordination. Fixed pairings make 

this coordination more plausible. The matching rule was common knowledge. The presentation order 
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of both the principal and secondary treatment variables was varied across sessions to control for  

order effects. 

In the complete information treatment, the two possible resale values for the two bidders were 700 

and 800 yen. These two values were randomly assigned each period, and this was common knowledge. 

Therefore, after a bidder learned that her resale value was 800 yen, for example, she knew with 

certainty that the other bidder’s resale value was 700 yen. In the incomplete information treatment, 

resale values were drawn independently for each bidder each period from the discrete uniform 

distribution between 500 and 800 yen. The uniform distribution is the most commonly-used 

distribution in the extensive literature on independent private value auctions (Kagel, [47]). This 

probability distribution was common knowledge, but individuals only learned their own value draw. 

Bids were constrained to 10-yen increments, but value draws could be any whole yen amount in the 

feasible range. In all ascending-bid auction treatments the clock price increased in 10-yen increments. 

Subjects received the difference between their resale value and their price paid when they won the 

auction. The price was determined by the lowest bid or the first drop-out price, depending on the 

auction format, with the highest or the remaining bidder winning the auction. (Consistent with the 

theoretical model, ties were resolved randomly.) Subjects received written instructions to describe the 

auction rules and procedures, which they first read in silence before the experimenter read them aloud. 

The instructions included both equation and payoff table explanations describing the relationship 

between bidder actions, allocations, and payoffs. A translation of the instructions is shown in 

Appendix C. At the conclusion of the session subjects received their cumulative auction earnings in 

cash, along with a 1,000 yen show-up payment. Payments (including this show-up payment) averaged 

about 4,500 yen, and ranged between 1,590 and 10,788 yen. Sessions typically lasted about  

150 min.  

4. Experimental Results  

4.1. Overview 

In order to orient the reader, we first summarize the data using a series of figures before turning to 

formal hypothesis testing. Recall that in the complete information environment, the valuations are 

either 700 or 800 yen. Figures 5 and 6 display the frequency distribution of bids for the low-value 

(700) and high-value (800) bidder, respectively [48]. In the ascending-bid auction, 30 of the 291 bids 

for the low value bidder are not observed directly, since the low-value bidder won the auction when 

the high-value bidder dropped out. These censored bids are at least as high as this drop-out price, so 

the minimum bid consistent with these prices (displayed on Figure 5) presents only the lower bound of 

the intended bid by this low-value bidder [49]. The statistical tests below account for this censoring. 

In all panels of these figures, the modal bid equals the bidder’s value. Overbidding by the low-value 

bidder, however, is pronounced in Figure 5. About one-half of all low-value bids exceed 700  

(51 percent in the ascending-bid auction and 47 percent in the second-price sealed-bid auction). 

Conditional on overbidding, the figure suggests that more aggressive bids such as 750 and 790 are 

more common in the sealed-bid auction. Figure 6 indicates that underbidding is more common than 

overbidding for the high-value bidder in the sealed-bid auction. 
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Figure 5. (a) Distribution of ascending price auction bids for value = 700; (b) Distribution 

of second price sealed auction bids for value = 700. 
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Figure 6. Distribution of second price sealed auction bids for value = 800. 

 

Figure 7 summarizes the bid combinations for the complete information sealed bid auctions in the 

treatment in which pairs of bidders are randomly re-assigned each period. The modal bid pair is on the 

value-revealing strategy equilibrium (700, 800), but other pairs are common. Most of the pairs lie to 

the right of the line drawn on the surface of this diagram. This line indicates where the low-value bid 
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example, Pair 2 exhibited substantial underbidding by the high-value bidder (even leading to two cases 
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and the lowest value draws, although subjects only observed their own value draw and therefore did 
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Figure 7. All bid pairs for random groups complete information second-price sealed  

bid auctions. 

 

Figure 8. Example fixed pairs sealed bids in complete information environment. 

 

  

68
0 71

0 74
0 77

0 80
0 83

0

0
5
10
15

20

25

30

35

40

45

50

64
067

070
073

076
079

082
085
0

Value=800 Bid

Frequency

Value=700 Bid

680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860

740 750 760 770 780 790 800 810 820 830 840 850 860

B
id

 b
y 

V
al

ue
=

70
0 

B
id

de
r 

 .

Bid by Value=800 Bidder

Pair 1

Pair 2

Pair 3

Bid1=Bid2

Start

Finish

Start

Finish

Start

Finish

Reciprocal-Spite Region

Spite Region
2

1
3

4

5

6

7
8



Games 2011, 2   

          

 

382

Figure 9. (a) Ascending price auction bids for the lower value in incomplete information 

environment; (b) Second price sealed auction bids for the lower value in incomplete 

information environment. 
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Figure 10. Second price sealed auction bids for highest value in incomplete  

information environment. 

 

Careful inspection of the figures should remind the reader that bids were constrained to 10-yen 

intervals, while value draws could correspond to any integer yen amount. Therefore, by design the 

bidders will typically not be able to bid exactly equal to their drawn value. Overbidding and 

underbidding appear about equally common on the figures, and on average bids are within one percent 
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Figure 5 above illustrates widespread overbidding by the low-value bidders. This indicates support 
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fixed versus random matching of bidding pairs. The estimates only use the sealed bid auction data, 

since as already noted the ascending price bids for the high-value bidder are heavily censored because 

this bidder typically wins. 

Table 1. Regression models of bid deviations from value and overbidding: Complete 

information environment, sealed bid auction. 

Model 

All Bidders Frequent Over-Bidders 
1 (Random 

Effects GLS) 
2 (Random 

Effects Probit) 
3 (Random 

Effects GLS) 
4 (Random 

Effects Probit) 
Dependent Variable Bid − Value = 1 if Bid > Value Bid − Value = 1 if Bid > Value 

Dummy Variable = 1 if 

Lower Value 

−35.03 

(47.56) 

1.30** 

(0.12) 

−6.12 

(38.10) 

1.54** 

(0.15) 

Dummy Variable = 1 for 

Fixed Pairings 

5.40 

(5.95) 

0.22* 

(0.11) 

20.72 

(26.49) 

0.08 

(0.13) 

1/period 
94.99 

(85.23) 

−0.11 

(0.19) 

155.03 

(170.91) 

−0.26 

(0.23) 

Intercept 
−21.17 

(27.18) 

−1.61** 

(0.22) 

−28.47 

(46.29) 

−0.45* 

(0.20) 

Observations 1150 1150 542 542 

Number of Bidders 84 84 39 39 

R2 or Log-likelihood 0.01 −470.0 0.01 −273.5 

Notes: Standard errors (in parentheses) are based on a subjects random effects model and for the GLS 

regressions in columns 1 and 3 are calculated to be robust to unmodeled correlation of choices within clusters 

defined by sessions. 

* denotes significantly different from zero at the five-percent level, and ** denotes significantly different 

from zero at the one-percent level. 

The regression shown in column 1 determines whether bids relative to values are different between 

the low-value and the high-value bidders. The difference (Bid − Value) is actually lower for the  

low-value bidder, but this is mainly because of a small number of “throw-away” and overtly collusive 

bids, which were more common in the periods with fixed pairs of bidders. Although such bids were 

relatively rare, they add substantial variance and are a major reason that the regression coefficient 

estimate does not approach statistical significance. By contrast, the random effect probit model in 

column 2 is more robust to such outliers, and it indicates that the likelihood of overbidding is much 

higher for low-value bidders. Low-value bidders overbid 47 percent of the time, whereas high-value 

bidders overbid only 20 percent of the time. This difference is highly significant and is consistent with 

Hypothesis H1. 

The theoretical model’s predictions are based on agents who have spiteful preferences, which 

suggests that empirical results might be sharper when the analysis is focused more narrowly on those 

types of subjects. Therefore, columns 3 and 4 present estimates for the subset of subjects who bid 

above their value at least half the time when they had the low value draw. These 39 subjects represent 

roughly half the sample and their bids most clearly reveal spiteful preferences. Conclusions drawn for 

this spiteful subset of bidders are similar to those drawn for the entire sample. 
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Hypothesis H2: In the complete information environment, (a) low-value bidders bid higher in the 

second-price sealed-bid auction than in the ascending-bid auction, and (b) overbids (especially large 

overbids) are more common in the second-price sealed-bid auction than in the ascending-bid auction. 

The figures and the summary statistics presented above provide some suggestive evidence in 

support of H2. For a formal statistical test, however, we must account for the censoring of the bids in 

the ascending-bid auction. Recall that for this institution we do not observe the bid of the winning 

bidder—only the price at which the other bidder drops out. This censoring occurs for 30 of the 305  

(10 percent) of the low-value bidders’ bids. We employ survival analysis to account for this censoring, 

where “failure” occurs when the rival bidder drops out. The approach we use accounts for differing 

censoring points since the rival bidder drops out at different prices in different periods. 

Figure 11 presents a comparison of the Kaplan-Meier nonparametric estimate of the survival 

function S(x) = Prob (bid > x) for the two auction forms for the low-value bidders (e.g., see Cameron 

and Trivedi [50], Chapter 17). The median bid for the ascending-bid auction estimated using this 

method is 710, compared to 700 for the sealed bid auction. Overbidding (defined as any bid > 700) 

occurs with probability 0.58 in the ascending-bid auction, and with probability 0.49 in the sealed bid 

auction. The bid of 700, however, is the only place where the survivor function is higher for the 

ascending-bid auction. This is due to the higher mode of 700 in the sealed bid auction (cf Figure 5).  

Figure 11. Comparison of bid (survivor) functions for complete information with  

value = 700. 

 

For all other bids < 800, the survivor function estimates imply that the sealed bid auction has a 

higher probability of observing bids exceeding all particular bid prices that are higher than 700. For 

example, if we define large overbid as a bid greater than or equal to 750, large overbidding occurs with 

probability 0.22 in the ascending-bid auction, and with probability 0.34 in the sealed bid auction. A 
log-rank test rejects the null hypothesis that these survivor functions are equal ( 2

1 d.f 7.69  ; one-tailed 

p-value < 0.01). We therefore conclude that the data provide modest support Hypothesis H2, but only 

for the case of large overbids and not small overbids. 
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Since large overbids by low-value bidders are more common in the sealed-bid auction, a natural 

auxiliary hypothesis is that transaction prices are also higher in the sealed-bid auction: 

Hypothesis H3: In the complete information environment, (a) transaction prices are higher in the 

second-price sealed-bid auction than in the ascending-bid auction, and (b) prices above 700 

(especially greatly above 700) are more common in the second-price sealed-bid auction than in the 

ascending-bid auction. 

Figure 12 indicates that the cumulative distributions of transaction prices for the two auction 

institutions are ordered consistent with Hypothesis H3, since the sealed-bid CDF is lower than the 

ascending-bid CDF for the critical range of prices between 710 and 790. Table 2 indicates, however, 

that when considering all prices the data fail to reject the hypothesis that prices are equal across 

institutions (model 1), or that high prices are equally likely in either auction institution (model 2). 

Many of the prices are in the range of 690 to 710, which occur when the low-value bidder adopts a 

value-revealing strategy. Therefore, in order to focus on periods in which the low-value bidder exhibits 

some spiteful behavior, columns 3 and 4 report these same models after excluding the prices that are 

less than 711. Within this subset of data, which represents 35 percent of the price observations in 

columns 1 and 2, column 3 shows that transaction prices are significantly higher (by 11 yen) in the 

sealed-bid auction compared to the ascending-bid auction. Column 4 shows that the estimated 

likelihood that prices within this subsample exceed 740 increases from 25 percent in the ascending-bid 

auction to 54 percent in the sealed-bid auction. We therefore conclude that the data support the price 

differences indicated by Hypothesis H3 only when excluding lower prices that arise from  

value-revealing bid strategies.  

Figure 12. Cumulative distribution function of transaction prices for complete  

information auctions. 
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Table 2. Regression models of transaction prices and likelihood of high prices: Complete 

information environment. 

Model 

All Prices Excluding Prices < 711 

1 (Random 
Effects GLS) 

2 (Random 
Effects Probit) 

3 (Random 
Effects GLS) 

4 (Random 
Effects Probit) 

Dependent Variable Price = 1 if Price > 740 Price = 1 if Price > 740 

Dummy Variable = 1 if 

Sealed-Bid Auction 

−16.73 

(12.51) 

0.04 

(0.12) 

11.36** 

(3.07) 

0.77** 

(0.16) 

Dummy Variable = 1 

for Fixed Pairings 

−28.73** 

(10.87) 

−0.05 

(0.10) 

−4.73 

(2.91) 

−0.17 

(0.15) 

1/period 
27.14 

(19.21) 

−0.02 

(0.17) 

−3.98 

(4.92) 

−0.20 

(0.25) 

Intercept 
697.19** 

(18.18) 

−0.66** 

(0.21) 

754.09** 

(3.59) 

0.22 

(0.18) 

Observations 887 887 312 312 

Number of Sessions 7 7 7 7 

R2 or Log-likelihood 0.01 −465.6 0.05 −178.7 

Notes: Standard errors (in parentheses) are based on session random effects models. 

* denotes significantly different from zero at the five-percent level, and ** denotes significantly different 

from zero at the one-percent level. 

4.3. Hypothesis Testing: Incomplete Information Environment 

Section 2.2 established that even with spiteful preferences, in the incomplete information (unknown 

values) environment a unique symmetric equilibrium strategy exists where each bidder bids at her own 

value. Figures 9 and 10 indicate that significant dispersion of bids occurs both above and below value 

in the incomplete information data, partly due to the restriction that bids must be in 10-yen increments. 

Nevertheless, the data do not reject the null hypothesis that a linear bid function fit on the incomplete 
information sealed bid data has an intercept of 0 and a slope of 1 ( 2

2 d.f 1.02  ; p-value = 0.60), 

consistent with the equilibrium model and much of the experimental literature on second price and 

ascending bid auctions with incomplete information. To test the model, however, we need to determine 

whether bids shift between the complete and incomplete information environments as predicted by 

spiteful preferences. 

Hypothesis H4: (a) Low-value bidders bid higher and (b) high-value bidders bid lower in the complete 

information environment compared to the incomplete information environment. 

Support for this hypothesis may be difficult to obtain since in the incomplete information 

environment subjects do not know when they have the low or high value draw. They may have 

reasonably confident beliefs when they have very low value draws near 500 or very high value draws 

near 800, but not when they have intermediate values in the range between 600 and 700. 

Because bids are typically not observed for the higher value bidder in the ascending-bid auction, to 

test this hypothesis we consider only the sealed bid auction where all bids are observed. In order to 

make the two environments comparable, we normalize all bids by subtracting the associated value 

draw. We then regress this difference on a dummy variable for the complete information environment, 
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using the same control variables as in the regressions reported above. To be consistent with Hypothesis 

H4, the dummy variable for the complete information environment should be positive for low-value 

bidders (H4a) and negative for high-value bidders (H4b). The results, shown in Table 3, indicate 

support for Hypothesis H4a but not for H4b, and the support is not strong because it only holds when 

restricting the analysis to the subsample of frequently overbidding subjects. Estimates are rather 

imprecise, in part because of a small number of low “throw-away” or collusive bids in the complete 

information environment noted earlier. 

Another implication of the equilibrium result that bids should equal values in the incomplete 

information environment is that there should not be significant differences between bidding behavior 

for low and high value bidders.  

Table 3. Regression models of bid deviations from value to compare the complete and 
incomplete information environments. 

Model 

All Bidders Frequent Over-Bidders 
1 (Lower Value 

Bidders) 
2 (Higher Value 

Bidders) 
3 (Lower Value 

Bidders) 
4 (Higher Value 

Bidders) 

Dependent Variable Bid − Value Bid − Value Bid − Value Bid − Value 

Dummy Variable = 1 if 

Complete Info. 

Environment 

−43.03 

(40.96) 

6.34 

(14.48) 

24.86* 

(12.07) 

27.86 

(29.76) 

Dummy Variable = 1 for 

Fixed Pairings 

−20.28 

(17.24) 

21.53 

(12.32) 

−27.16 

(18.27) 

51.78 

(42.97) 

1/period 
20.57 

(18.21) 

88.07 

(82.36) 

20.61 

(23.37) 

203.74 

(218.76) 

Intercept 
27.66 

(20.02) 

−34.26 

(36.82) 

15.41** 

(4.40) 

−90.53 

(101.01) 

Observations 957 956 424 391 

Number of Bidders 84 84 39 39 

R2  0.00 0.01 0. 02 0.02 

Notes: Standard errors (in parentheses) are based on a subjects random effects model and are calculated to be 

robust to unmodeled correlation of choices within clusters defined by sessions. 

* denotes significantly different from zero at the five-percent level, and ** denotes significantly different 

from zero at the one-percent level. 

Hypothesis H5: In the incomplete information environment, overbidding is not more common for  

low-value bidders than for high-value bidders. 

This hypothesis is the counterpart of Hypothesis H1 (b), where for the complete information 

environment the hypothesis was that overbidding is more common for low-value bidders than for  

high-value bidders. Recall that Table 1 presented models of bid deviations and overbidding that 

partially supported Hypothesis H1 (b). The likelihood of overbidding is much higher for low-value 

bidders in the complete information environment, but the deviation between bid and value was not 

significantly different between low- and high-value bidders. Table 4 reports the identical models for 

the incomplete information environment, but this time the research hypothesis (H5) corresponds to the 

statistical null hypothesis that the dummy variable for the lower value is not significantly different 
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from zero [51]. Consistent with Hypothesis H5, we find no evidence that bidding behavior is different 

for the low- and high-value bidders.  

Table 4. Regression models of bid deviations from value and overbidding: Incomplete 

information environment, sealed bid auction. 

Model 

All Bidders Frequent Over-Bidders 
1 (Random 

Effects GLS) 
2 (Random 

Effects Probit) 
3 (Random 

Effects GLS) 
4 (Random 

Effects Probit) 
Dependent Variable Bid − Value = 1 if Bid > Value Bid − Value = 1 if Bid > Value 

Dummy Variable = 1 if 

Lower Value 

−4.30 

(6.70) 

−0.05 

(0.13) 

−13.69 

(7.25) 

−0.10 

(0.20) 

Dummy Variable = 1 for 

Fixed Pairings 

−3.58 

(5.40) 

0.86** 

(0.13) 

−15.11 

(13.10) 

1.11** 

(0.20) 

1/period 
−2.30 

(5.22) 

−0.76** 

(0.23) 

11.07 

(10.44) 

−0.43 

(0.35) 

Intercept 
3.16 

(3.36) 

−0.85** 

(0.30) 

17.28* 

(6.99) 

0.05 

(0.35) 

Observations 763 763 273 273 

Number of Bidders 48 48 17 17 

R2 or Log-likelihood 0.00 −325.8 0.02 −136.2 

Notes: Standard errors (in parentheses) are based on a subjects random effects model and for the GLS 

regressions in columns 1 and 3 are calculated to be robust to unmodeled correlation of choices within clusters 

defined by sessions. 

* denotes significantly different from zero at the five-percent level, and ** denotes significantly different 

from zero at the one-percent level. 

The final hypothesis is the incomplete information counterpart to Hypothesis H2. Recall that with 

complete information, overbids by the low-value bidder are predicted to be larger in the second-price 

compared to ascending-bid auction. By contrast, with incomplete information there should be no 

systematic difference between the bids across auction institutions. 

Hypothesis H6: In the incomplete information environment, (a) lower value bidders do not bid higher 

in the second-price sealed-bid auction than in the ascending-bid auction, and (b) overbids (especially 

large overbids) are not more common in the second-price sealed-bid auction than in the  

ascending-bid auction. 

We test Hypothesis H6 in exactly the same way that we tested Hypothesis H2. To account for the 

bid censoring in the ascending-bid auction, we again employ survival analysis. In the incomplete 

information environment, this censoring occurs for 30 of the 372 (8 percent) of the low-value bidders’ 

bids. Figure 13 presents a comparison of the Kaplan-Meier nonparametric estimate of the survival 

function for the two auction forms for the low-value bidders. The median bid for the ascending-bid 

auction estimated using this method is one yen above value, compared to one yen below value for the 

sealed bid auction. Overbidding (defined as any bid > value) occurs with probability 0.54 in the 

ascending-bid auction, and with probability 0.40 in the sealed bid auction. That is, similar to results in 

the experimental literature with incomplete information about rival values, bids are above and below 

value with approximately equal frequency. (Recall that bids exactly on values are not common in our 
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environment due to the restriction that bids had to be in 10-yen increments.) There is virtually no 

evidence that the frequency of large overbids is different for the two auction institutions, and the 

survivor functions are essentially identical for all bids that are 20 or more yen greater than value. 

Moreover, a log-rank test fails to reject the null hypothesis that these survivor functions are equal  
( 2

1 d.f 2.03  ; p-value = 0.15). We therefore conclude that the data support Hypothesis H6: 

Overbidding by low value bidders in the incomplete information environment is not different in the 

sealed-bid and ascending-bid auctions. 

Figure 13. Comparison of bid (survivor) functions for incomplete information low-value bidder. 

 

5. Conclusions 

We have investigated bidding behavior in both complete and incomplete information environments 

for two-person second price sealed-bid auctions and ascending-bid auctions for a single indivisible 

object with independent private values. Our intention-based bidding model features individuals who 

are reciprocally spiteful. A lower value bidder may be spiteful in the sense that he receives a positive 

psychological payoff when he loses if he reduces the winners’ payoff. A high-value bidder who faces a 

spiteful bidder’s over-bidding would reciprocate by underbidding to increase the likelihood that the 

spiteful bidder wins and incurs a negative monetary payoff. The possibility of this underbidding causes 

such spiteful bidders to refrain from bold overbidding. Our theoretical analysis in the complete 

information environment indicates that the equilibrium bidding strategy differs from the Nash 

equilibrium strategy set generated without spite and reciprocity, in the following three respects. First, 

the equilibrium strategy set is much smaller and does not contain any inefficient outcomes. Second, 

although a strategy of “bidding at one’s value” is no longer part of an equilibrium strategy profile, the 

equivalent outcome in which the lower value bidder bids at her own value and loses is one of the 

equilibrium outcomes. Third, the threat of reciprocal underbidding is more important in ascending-bid 
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auctions than second price sealed-bid auctions, since a rising calling price directly reveals the  

spiteful intention of a low-value bidder. This leads to a lower equilibrium spiteful over-bidding in 

ascending-bid auctions, which implies an even smaller equilibrium set with lower price upper bound. 

As summarized in Table 5, our experimental results provide qualified support for the model’s 

theoretical predictions. In the complete information setting, nearly half of the bids are consistent with 

spiteful overbidding. Bidders with lower private values are more prone to overbid in both auction 

formats, and large overbids and high prices are more common in the second price auctions than in the 

ascending-bid auctions. However, such systematic overbidding disappears when bidders’ private 

values are unknown in the incomplete information setting. This is also consistent with the model, 

which predicts value-revealing bidding behavior as the unique symmetric Nash equilibrium, although 

this is not a dominant strategy equilibrium. Overall, results tend to be more consistent with the spite 

model that features reciprocity than the conventional or the spite-without-reciprocity models. 

Table 5. Summary of theoretical predictions and hypotheses support. 

 Complete Information Incomplete Information 
 Theoretical 

Prediction 

Consistent with Hypothesis: Theoretical 
Prediction 

Consistent with Hypothesis: 

 H1 H2 H3 H4 H5 H6 

Conventional  

Model 

S = A,  

b(v) = v 
No No No 

S = A,   

b(v) = v 
No Yes Yes 

Spite without 

Reciprocity 

S = A,   

b(v) ≠ v 
Yes No No 

S = A,   

b(v) > v 
No Yes Yes 

Spite with 

Reciprocity 
S ≠ A,   

b(v) ≠ v 
Yes 

Yes  

(for large 

overbids) 

Yes  

(for prices 

> 710 

S = A, 

 b(v) = v 

Yes  

(for spiteful low 

value bidders) 

Yes Yes 

S: Bidding in a second price auction 

A: Bidding in an ascending-bid auction 

ܾሺ· ሻ: bid strategy 

Subjects’ decision-making seems to be different when they do or do not know each other’s values. 

When they have complete information about all bidders’ values, this allows them to evaluate their 

relative payoffs. A low-value bidder in our environment who bids 750, for example, knows that this 

bid will likely reduce the winning bidder’s payoff by half relative to the payoff if all bids equal values. 

A bidder with the higher value can also perceive the spiteful intentions of her opponent’s bid in the 

complete information environment. It is this spiteful intention that induces underbidding by the higher 

value bidder. This is the driving force behind our theoretical result that bidders make more timid 

overbids in the ascending-bid auction, because the rising calling price directly reveals the lower value 

bidder’s spiteful intention. This can be interpreted as an additional evidence of negative reciprocity at 

work, but here in the context of an auction, consistent with negative reciprocity observed in the context 

of ultimatum and related games (e.g., see Charness and Rabin [28]). 
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We then find the nearest B1̂  satisfying )11
ˆ,ˆ[  x . It is easy to check that 1̂  exists and 

}  ,, {ˆ
121   vv  . For more detail, see Appendix A-1. 

36. Based on Lemma 1, we can derive the best response correspondences for both buyers. See  

Appendix A-2. 

37. The position of buyer’s threshold bids depend on iR , }2 ,1{i . The conclusions of our qualitative 

analyses summarized at the end of subsection 2.1A, 2.1B, and 2.2, however, are unaffected by the 

size of the reference payoffs. 

38. This is not the only case where allowing for the possibility of reciprocity leads to eliminating 

some of Nash equilibria generated by the standard model. The well-known example is an 

ultimatum game which has multiple Nash equilibria under the standard model. Allowing 

reciprocity eliminates the proposer’s strategy of choosing the most self-advantageous offer 

expecting the receiver to accept it that is sub-game perfect Nash equilibrium under the standard 

model, but keeps other Nash equilibria that would have failed the sub-game perfect refinement. 
39. A change in the weight )  ,   ( rj

i   as r increases can lead to a different bid decision. As shown in 

Proposition 2 below and related discussion to follow, each equilibrium bid decision at the every 

decision point reached in the ascending-bid auction is also equilibrium in the previous decision 

point (not vice versa), and all the way back to the very start of auction. In this sense our model 

maintains consistency. The related issue can be found in the context of sequential decision making 

through partial resolution of risk particularly via non-expected utility preferences. If we want to 

maintain the dynamic consistency in preferences, it is known that preferences must satisfy 

consequentialism (Hammond [40]). It seems, however, inappropriate to impose consequentialism 

on preferences especially when we deal with players’ intentions explicitly. 
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40. Hammond, P. Consequentialist foundations of expected utility. Theor. Decis. 1988, 25, 25–78. 

41. In the same manner as described in [35], r ,1̂  is derived from the solution ] [ br,xr   to 

))(( 2 ,
2
111 rrrr xxx  vv  , i.e., equating buyer 1’s winning and losing payoff when 

rrr xbb  ,2,1 . Then, find the smallest number rr B ,1̂  satisfying )ˆ,ˆ[  ,1,1   rrrx . It can be 

shown that ) ,, {max{ˆ
1},2 ,1   vv rr . For more details, see Appendix A-4. 

42. Though we omit the argument regarding beliefs in our analysis, it may be worthwhile to point out 

the following; First, it is clear from Definition 3 that every equilibrium bidding strategy profile 
) ,( *

2
*
1 bb  belongs to interim equilibrium ܧ௥  for all }} ,min{ , , ,0{ *

2
*
1 bbr  . Second, since ܧ௥̂  has 

the lowest upper bound, there would not arise any need to revise a belief that is consistent with 

equilibrium bid on the equilibrium path. With these two properties, our Definition 3 is consistent 

with the definition of Sequential Reciprocity Equilibrium by Dufwenberg and Kirschteiger [15]. 

43. The psychological dynamics are different in nature from the comparison of Nash equilibrium 

versus subgame perfect Nash equilibrium. The subgame perfect equilibrium set in the 

conventional, self-interested preferences ascending-bid auction is equivalent to the Nash 

equilibrium set in the second price auction without its inefficient elements. However, with the 

spite motivation the maximum equilibrium price in the ascending bid auction is r̂ . Thus, the 

ascending-bid auction price predicted for buyers of spite-with-reciprocity is bounded by the 

maximum price predicted in the conventional model. 

44. The corresponding tie bid ݔ௥ defined in [41] is 748.3 for r = 720, 746.3 for r = 730, and 744.2 for 

r = 740. It follows that r̂ = 740. 

45. It is well known that the symmetric equilibrium bidding strategy must be strictly increasing in the 

buyer type (value in this model) in the auction where the highest bidder wins; for example,  

see Milgrom [46]. 

46. Milgrom, P. Putting Auction Theory to Work; Cambridge University Press: Cambridge, UK, 2004.  

47. Kagel, J. Auctions: A survey of experimental research. In The Handbook of Experimental 

Economics; Kagel, J., Roth, A., Eds.; Princeton University Press: Princeton, NJ, USA, 1995. 

48. These figures pool the data from the treatments with fixed groups and randomly-reformed groups  

of bidders. The subsequent analysis controls for different matching rules in the parametric 

regression models. 

49. The censoring problem is much greater for the high-value bidder, since in the ascending-bid 

auction this bidder wins in 278 of the relevant 309 auctions. Therefore, we do not report a bid 

distribution for the high-value bidder for this auction institution, nor do we use such bids in any of 

the statistical tests that follow. 

50. Cameron, C.; Trivedi, P. Microeconometrics: Methods and Applications; Cambridge University 

Press: Cambridge, UK, 2005. 

51. As in Table 1, we only employ the sealed bid auction data in these regressions because the  

high-value bidders’ bids are rarely observed in the ascending price auction.  
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Appendix A: Known Values Case (Complete Information) 

A-1. Property of i̂  and Proof of Lemma 1 

To identify buyer i’s threshold bid Bi ̂ , it is convenient to consider for a moment the larger bid 

strategy set  ],0[ bB . Consider the following difference between the winning payoff and losing 

payoff of buyer i: 

 [ ),( jii bbU  when ji bb  ] – [ ),( jii bbU  when ji bb  ] 

= 
jiji bbjijj

j
iibbji IRbbIb   ]))[(()( vv 

 

for }2,1{, ji , ji  . The tie bid Bbbx ji   that equates winning and losing payoff should satisfy 

0]))[(()(  jijj
j

iiji Rbbb vv  .  

Specifying xbb ji   and )( j
j

i b  in ]))[(()( jijj
j

iiji Rbbb  vv  , we define Bi : , 

}2,1{i  by 

)](}0,min{[)()( 22111 xDxxx  vvv  , (A1)

)](}0 , max{[)()( 21222 xDxxx  vvv   (A2)

where  21  vvD .  

A solution for ߮௜ሺݔሻ ൌ 0 denoted by ߚ௜ א തܤ  is the threshold tie bid, in the sense that buyer i strictly 
prefers to win when ijb  , strictly prefers to lose when ijb  , and weakly prefers to win by 

placing at least a tie bid when ijb  . This is because buyer i’s losing payoff is increasing in her own 

bid, so that the tie bid i  equates her winning payoff with her maximum losing payoff. Let us first 

prove the next lemma which characterizes i ,
 

. 

Lemma A1. (i) There exists a unique solution Bi   for each }2 ,1{i ; (ii) ),( 121 vv  and 

22 v . 

Proof of Lemma A1: Consider the case of buyer 2 first. The solution 2  to 0)(2 x  of (A2) is 

clearly unique and 22 v . Next, consider the case of buyer 1. It is easy to check that 0)(1 x  for 

all ],0[ 2vx  and 0)(1 x  for all ],[ 1 bx v . For all ),( 12 vvx , the function )(1 x  is continuous 

and differentiable with respect to x, and we have 0/)(21)( 211  Dxdxxd v . Therefore, 

the solution B1  to 0)(1 x  is unique and lies between 2v  and 1v .   � 

For a given solution Bi  , }2,1{i , we find its nearest number Bi ̂  such that 

)ˆ ,ˆ[ i   ii . Then, Lemma 1 immediately follows from Lemma A1.  

A-2. Best Response Correspondences in the Second Price Auction 

Let us state the best response correspondence for each buyer, which we repeatedly use in the proof 

of Proposition 1 below. The best response correspondence of buyer 2 for a given buyer 1’s bid can be 

given by 

}2,1{i
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













.otherwise}{

, if}{

} , , 0{if}{

)(

12

2112

2112

12

, εb bBb

b, b bBb

,ε, b, εb bBb

bBR v
v

 (A3)

Buyer 1’s best response correspondence for a given buyer 2’s bid can be stated as 















otherwise, ,} {

,ˆ if ,} {

},ˆ,,,0{ if ,} {

)(

21

1221

1221

21






bbBb

bbbBb

bbbBb

bBR



 (A4)

when 11 ̂  , and  











otherwise, ,} {

},ˆ,,,0{ if ,} {
)(

21

1221
21 


bbBb

bbbBb
bBR


 (A4)

when 11 ̂   so that )ˆ ,ˆ( 111   . (Note that },,{ˆ
121 vv    by Lemma 1.) 

A-3. The Equilibrium Set in the Second Price Auction 

Proof of Proposition 1: 
Suppose that a bid profile Ebb  ),( 21 . From (A3), (A4), and (A4), it is easy to check that 

)( 2211
  bbBRb  and )( 1122

  bbBRb . 

Conversely, suppose that )( 2211
  bbBRb  and )( 1122

  bbBRb . Let us first check the case where 

11 ̂  . Suppose that },,ˆ{ 12 bb    in the third line of (A4). Buyer 1’s best response to 
2b  is 

 
21 bb . Since },,ˆ{ 11   bb  , buyer 2’s best response is  12 bb  by condition (A3), and 

therefore no equilibrium exists with },,ˆ{ 12 bb   . Consider },,0{ 22  vb  or 

}ˆ,,{ 122   vb  in the first line of (A4). Suppose the former case. Buyer 1’s best response is 

 
21 bb . The first and the second lines of (A3) show that )( 122 bBRb  . Therefore, no equilibrium 

exists with },,0{ 22  vb . Suppose that }ˆ,,{ 122   vb . Buyer 1’s best response is 

 
21 bb  so that } ,,{ 21 bb  v . From the third line of (A3), buyer 2’s best response to 1b  is 

 12 bb  whose range is consistent with 
2b . Therefore ),() ,( 2221

  bbbb   is an equilibrium. 

Suppose that 12 ̂b . Recalling that },,{ˆ
121   vv  , we find that   11

ˆb  is the only best 

response of buyer 1 such that )(ˆ
1212 bBRb   , from (A3) and (A4). Consequently, 

),(),( 2221
  bbbb   for }ˆ,,{ 122 vb  is the only equilibrium bid profile. 

As for the case where 11 ̂   so that )ˆ ,ˆ( 111   , a similar analysis can be carried out based 

on (A3) and (A4’) , and this leads to the same conclusion.   � 

A-4. Property of ࢼ෡࢘,࢏ and Proof of Lemma 2 

We follow the same steps we used in Section A-1. First, consider the difference between buyer i’s 

winning and losing payoff at a decision point r in the ascending-bid auction as below: 

[ ) ,,( ,, rbbU rjrii  when rjri bb ,,  ] – [ ) ,,( ,, rbbU rjrii  when rjri bb ,,  ] 

            = rjrirjri bbjrijrj
j

iibbrji IRbrbIb
,,,,

]))[(,()( ,,,   vv   
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for }2,1{, ji , ji  . The tie bid rrjrir Bbbx  ,, , where ] ,[ brBr  , that equates winning payoff 

and maximum losing payoff should satisfy 0]))[(,()( ,,,  jrijrj
j

iirji Rbrbb vv  . 

Specifying rrjri xbb  ,,  and ),( , rb rj
j

i  
in ]))[(,()( ,,, jrijrj

j
iirji Rbrbb  vv  , we define 

BBri : , }2,1{i  by 









 otherwise, ,ˆ}]0 ,[min{)()(

 if  ,
) ,(

2211

11
1

rrrr

r
r Dxxx

rx
rx

vvv
vv


  (A5)









 otherwise, ,ˆ}]0 , max{[)()(

 if  ,
) ,(

1212

12
2

rrrr

r
r Dxxx

rx
rx

vvv
vv




 
(A6)

where  } ,max{ˆ
21 rDr vv . Let rri B,  denote the solution to 0) ,( rxri , }2 ,1{i  for given r . 

The counterparts of (A5) and (A6) in the second price auction are (A1) and (A2), respectively. 

Regarding buyer 2, it is immediate from (A6) that 2,2 vr  for all 2vr , otherwise 0) ,(2 rxr  for 

all rxr  . For buyer 1, Lemma A2 below characterizes rr B,1 . 

Lemma A2: (i) For ) ,0[ 1vr , there exists a unique ),( 12 vvr  such that rr ,1 . For ] ,[ 1 br v , 

there exists a unique 1vr  such that 1,1 1
vv  . 

(ii) There exists a unique solution  for all ] ,0[ rr  .  

(iii) For all ],0[ 2vr , 10,1,1  r . For all ] ,( 2 rr v ,  is strictly decreasing in r. 

(iv) There is no solution to 0) ,(1 rx  for all ] ,( brr  , except 1vr . 

Proof of Lemma A2: (i) We can identify rr ,1  as a solution rx  to 0),(1 
 rxrr rx . Consider 

] ,[ 1 br v . It is immediate from the first line of (A5) that 1vr  and it is unique. Consider next 

) ,0[ 1vr . From the second line of (A5), r  is a solution to  

  0
},max{

)0 ,min(
][),(

21

2
2111 
















r

r
rrrr x

x
xxxx

vv
v

vv . (A7)

Note that ),(1 rr xx  is continuous in rx . Since 0),( 21221  vvvv  and  

),( 111 vv    0)( 2
121   vv , by the mean value theorem, a solution rx r   

exists and satisfies 

),( 12 vvr . Also the derivative of ),(1 rr xx  with respect to ),( 12 vvrx  is given by 


























)(

)(
2

)(

)(
)1(

),(

1

2

1

2
1

1




r

r

r

r

r

rr

x

x

x

x

dx

xxd

v
v

v
v

 

whose sign is always strictly negative, so that ),(1 rr xx  is monotonically decreasing in rx . Therefore 

r  is uniquely determined. 

(ii) and (iii) rri B,  is the solution to 0) ,(1 rxr  for given r. Consider either ],0[ 2vr  or 

) ,( 12 vvr , and examine the second line of (A5); 


















},max{

}0,min{
)(][) ,(

21

21
211 r

x
xxrx r

rrr vv
v

vv . (A8)

),( 12,1 vvr

r,1
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Consider first ],0[ 2vr . Then, (A8) coincides with (A1). Therefore there exists unique 

10,1,1  r  for all r by Lemma A1. Next consider ) ,( 12 vvr . Let us solve (A8) momentarily for 

Bx r   instead of rr Bx  , and denote the solution by r,1 . For given r, 0) ,(1 rxr  for all 2vrx , 

and 0) ,(1 rxr  for all 1vrx . Since ),  (1 rxr  is a continuous quadratic function of rx , by the mean 

value theorem there exists unique solution ),( 12,1 vvr  for each ) ,( 12 vvr . To examine whether 

rr ,1 , let us apply the implicit function theorem to 0),( ,11 rr , since ),  (1 rxr  is continuous and 

differentiable with respect to both arguments. Then, we obtain 

 

)(2)(

)(

)(

) ,(

) ,(

,1211

1
1

2
,12

1

1,1

,1
r

r

xrr

rr

r

r

xrx

rrx

dr

d

rr










 













vv
v

v

 (A9)

whose sign is always negative, since ),( 12,1 vvr . Thus, the solution r,1  is strictly decreasing in r. 

This together with (i) implies that there is no solution rr ,1  for all ) ,( 1vrr . Then (ii) and  

(iii) follow. 
(iv) From the first line of (A5), there is no solution to 0) ,(1 rxr  for ] ,( 1 br v . Since we have 

just observed that there is no solution for ) ,( 1vrr  in the proof of (iii), this establishes the result. � 

The second step is to find a number rr B,1̂  such that )ˆ  ,ˆ[ ,1,1,1   rrr  for each relevant Br  . In 

the main text, we call this number rr B,1̂  the threshold bid for buyer 1 at decision point r. As we 

have already observed that 2,2 vr , 2,2
ˆ vr  for },,0{ 2vr , and no buyer 2’s exists otherwise. 

This proves the part of Lemma 2(ii) regarding r,2̂ . Lemma A2 below immediately follows from 

Lemma A2, which facilitates the proof of the rest of Lemma 2. 

Lemma A2: (i) There exists } ,,{ˆ 12  vv r  such that }ˆ min{ˆ ,1 rrBrr  . 

(ii) There exists a unique threshold bid },},,{max{ˆ
12,1   vv rr  for each }ˆ,,,0{ rr  . 

(iii) For all },,,0{ , 2vrr , rr  ,1,1
ˆˆ  , whereas for all }ˆ,,{ 2 rr  v , r,1̂  is  

non-increasing in r. 
(iv) There is no threshold bid for buyer 1 for all },,ˆ{ brr  , except 1vr . 

A-5. The Best Response Correspondences in an Ascending-bid Auction 

The best response correspondence of buyer 2 for a given buyer 1’s bid at decision point 
},,0{ 2  vr  can be stated as 















otherwise, ,} {

, if ,} {

},,,{ if ,} {

)(
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2,1,1
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


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bbbBb

rbbbBb

bBR v

v

 (A10)

when 2vr , 











otherwise, ,} {

, if ,} {
)(

,1

,1,1
,1,2 rr

rrr
rr bbBb

rbbbBb
bBR  (A10)
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when },,{ 12   vv r , 











otherwise, ,} {

, if ,} {
)(

,1

,1,1
,1,2 rr

rrr
rr bbBb

rbbbBb
bBR  (A10″)

and when },,{ 1 br v , 











otherwise. ,} {

, if ,} {
)(

,1

,1,1
,1,2 rr

rrr
rr bbBb

rbbbBb
bBR  (A10′′′)

Buyer 1’s best response correspondence for a given buyer 2’s bid at decision point }ˆ,,0{ rr   can 

be stated as 





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
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


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otherwise, ,} {
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when rr ,1,1 ̂  , and  
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
 (A11)

when rr ,1,1 ̂   so that )ˆ ,ˆ( ,1,1,1   rrr .  

For },,ˆ{ 1   vrr , 
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


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
otherwise, ,} {
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rr bbBb

rbbbBb
bBR  (A11″)

and for },,{ 1 br v , 


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otherwise. ,} {

, if ,} {
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,2
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,2,1 rr

rrr
rr bbBb

rbbbBb
bBR  (A11′′′)

A-6. Proof of Lemma 3 

An interim equilibrium set rE  is called null if )} ,{( rrEr  . If rE  is not null and there is only one 

active buyer, then the auction terminates at r  and buyers will never reach the decision point r and 

beyond, by the rule of ascending-bid auction which prohibits reentry. Thus, proving Lemma 3 is 

equivalent to proving the following Lemma 3′. 

Lemma 3:  rr ˆ  is the minimum r at which rE  is null, where rr ˆ,1
ˆˆ  .  

Proof of Lemma 3: Consider the case  rr ˆ . Note that },,{ˆ 12  vv r  from Lemma A2. 
Suppose that rb r ,1 . From the first line of (A10′) or (A10″), buyer 2′s best response is rb r ,2 . From 

the second line of (A11″), buyer 1’s best response is also rb r ,1 , so that ) ,(),( ,2,1 rrbb rr   is interim 

equilibrium at r. Next suppose that  2ˆ,1  rrb r . From the second line of (A10″) or (A10′′′),  
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buyer 2’s best response is rrbb r,r   ˆ,12  when   1ˆ vr  as well as when 
1ˆ v r . By 

(A11″), )()( 21,1 rbBRrb ,rr   . Consequently at  rr ˆ , the set rE  is a singleton with 

) ,(),( ,2,1 rrbb rr  , so that rE  is null. 

Consider the case rr ˆ  and rr ˆ,1ˆ,1 ̂  . Suppose that rb r ,1 . From the first line of (A10) and 

(A10″), buyer 2’s best response is rb r ,2 . From the second line of (A11), )()( ,2,1,1 rbBRrb rrr  . 

Suppose that  rb r,1 . Buyer 2’s best response is rbb rr  ,1,2  from the second line of (A10″) or 

(A10″). Then )()( ,2,1,1 rbBRrb rrr    from the second line of (A11). Suppose that 2,1 rb r . 

Buyer 2’s best response is   rbb rr ,1,2 . Since rrb ,1,2 ̂ , from the third line of (A11), 

)(}2   { ,2,1,1,1   rbBRrbb rrrr . It follows that )}ˆ ,ˆ( ),ˆ ,ˆ{(ˆ rrrrEr  , which is not null. 

Consider the case rr ˆ  and )ˆ ,ˆ( ˆ,1ˆ,1ˆ,1   rrr . Suppose that rb r ,1 . From the first line of (A10) 

or (A10″), buyer 2’s best response is rb r ,2 . From the first line of (A11), )()( ,2,1,1 rbBRrb rrr  . 

Suppose that  rb r,1 . Buyer 2’s best response is rbb rr  ,1,2  from the second line of (A10) or 

(A10″). Then )()( ,2,1,1 rbBRrb rrr    from the first line of (A11). Suppose that 2,1  rb r . Buyer 

2’s best response is   rbb rr ,1,2 . Since rrb ,1,2 ̂ , from the second line of (A11), 

)(}2  { ,2,1,1,1   rbBRrbb rrrr . Therefore )}ˆ ,ˆ{(ˆ rrEr  , which is not null. 

To sum up, )},ˆ ,ˆ{(ˆ   rrEr and either )}ˆ ,ˆ( ),ˆ ,ˆ{(ˆ rrrrEr   or )}ˆ ,ˆ{(ˆ rrEr  . Hence, 

rr ˆ  is the maximum r whose interim equilibrium set is not null. Buyers will never reach the 

decision point  rr ˆ  by the rule of ascending-bid auction.   � 

A-7. The Interim Equilibrium in an Ascending-bid Auction 

Proof of Proposition 2: Since bidding at  rr ˆ  will never be realized by Lemma 3, the equilibrium 
analysis should be focused on the case }ˆ ,, ,0{ rr  . 

(ii) The part of Proof of Lemma 3′ dealing with the case rrr ,1
ˆˆ   provides the proof. 

(i) Suppose that rrr Ebb  ) ,( ,2,1 . Since },{ˆ
12,1   vv r , it is clear from (A10), (A10), (A10″), 

(A11), and (A11′) that )( ,2,1,1
  rrr bBRb  and )( ,1,2,2

  rrr bBRb . 

Conversely, suppose that )( ,2,1,1
  rrr bBRb  and )( ,1,2,2

  rrr bBRb . Let us first check the case rr ,1,1 ̂  . 

Suppose that }, ,ˆ{ ,1,2 bb rr    in the third line of (A11). Buyer 1’s best response is  
rr bb ,2,1 , and 

}, ,ˆ{ ,1,1   bb rr  . Buyer 2’s best response is  
rr bb ,1,2  by the third line of (A10), the second line 

of (A10′), or (A10″). Therefore there is no interim equilibrium with }, ,ˆ{ ,1,2 bb rr   . 

Suppose next that },,{ 2,2  vrb r  for },,,0{ 2   vr  in the first line of (A11). Buyer 1’s 

best response is  
rr bb ,2,1 . If },,{ 2,1   vrb r , the first line of (A10) shows that buyer 2’s 

best response is  rr bb ,1,2 . If 2,1 vrb , buyer 2’s best response is 2,2 vrb  from the second line of 

(A10). In neither case, rb ,2  is consistent with 
rb ,2 . If },,{ 21 bb  v , buyer 2’s best response is 

 rr bb ,1,2  from the third line of (A10) so that },,{ 2,2  bb r v
 
which is again not consistent 

with 
rb ,2 . Therefore, there is no interim equilibrium with },,{ 2,2  vrb r  when 

},,,0{ 2   vr . 
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To examine the remaining case of 
rb ,2  in the first line of (A11), let us first consider },,,0{ 2vr . 

Suppose that }ˆ,,{ ,12,2  
rrb v . Buyer 1’s best response is  

rr bb ,2,1  from (A11) so that 

} ,,{ 2,1 bb r  v . From the third line of (A10) or the second line of (A10′), buyer 2’s best response 

is  rr bb ,1,2 . Therefore by (A10), (A10′) and (A11), buyer 1’s best response must be 

 
rr bb ,2,1  so that }ˆ ,,{ r1,2,1   vrb  is consistent with }ˆ,,{ ,12,2  

rrb v . Suppose next that 

rrb ,1,2 ̂ . Since },,{ˆ
12,1   vv r ,   rrb ,1,1

ˆ  is the only best response of buyer 1 such that 

)ˆ()ˆ( ,1,1,2,1,2  
rrrrr bBRb  from the second line of (A11) and  (A10′) or the third line of (A10). 

Second, consider the case }ˆ,,{ 2   rr v . Suppose that }ˆ,,{ ,1,2  
rr rb  . It is easy to 

check from (A10″) and the first line of (A11) that  
rr bb ,2,1  is buyer 1’s only best response such 

that )( ,2,1,2,2  
rrrr bbBRb . Suppose that rrb ,1,2 ̂ . From (A10″) and the second line of (A11), 

 
rr bb ,2,1  is buyer 1’s only best response such that )( ,2,1,2,2  

rrrr bbBRb . Consequently, the 

bid profiles that satisfy )( ,2,1,1
  rrr bBRb  and )( ,1,2,2

  rrr bBRb  must be ) ,(),( ,2,2,2,1
  rrrr bbbb   where 

}ˆ,},,{max{ ,12,2 rr rb v . 

The last case to examine is the case where rr ,1,1 ̂   so that )ˆ ,ˆ( 1,1,1   ,rrr . Based on the 

conditions (A11′) instead of (A11) together with (A10) and (A10′) , we can carry out similar analysis 

and derive the same conclusion.   � 

A-8. The Equilibrium in an Ascending-Bid Auction 

Proof of Proposition 3: Proposition 2 implies that no buyer stops the auction at any } , ,0{ 2  vr , 

so that   0 \ r
rr EE B . Since all interim equilibrium bid profiles are the form of 

) ,(),( ,2,2,2,1 rrrr bbbb  ,           






  rBBB  εrrεrr

r
rr

r
rr EEEEEEEE  \ \ \  for all 

}ˆ, , { 2 rr v . Since EEEEE rr   0ˆˆ 2
 v , EE

r

r r 


ˆ

0
. Then, it follows that 

  
 

r

r
r

rr EE
ˆ

0
\ B  rEE ˆ\ B . Therefore, a bid strategy profile BBbb  ),( 21  is an equilibrium 

if and only if  rEEbb ˆ
21 \) ,( B .   � 

Appendix B: Unknown Values Case (Incomplete Information) 

B-1. Buyer’s Expected Utility  

Consider symmetric buyers who employ the same bid strategy rr BVb : . For given realization 

of v and z, the deterministic utility function of (4) when the buyer bids as if her value is x can be 

rewritten as   

)()()()( ))()(),(())(() ),(),(( zbxbrrzbxbrrr rrrr
IRxbzrzbIzbrzbxbU   v , (B1)

(omitting the case of a tie,)  where 


 


otherwise,,0

, if, zz
R

vv
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and 













, if,0

, if}), ,max{(}0 ),(max{

, if}), ,max{(}0 ),(min{

)),((

z

zrzzbz

zrzzbz

rzb r

r

r

v
vv
vv

  

for }) max{ ,0[ zr  v, , and 0)  ,  (  r  for ]}, [max{ bz,r v . 

Let   be the set of cumulative probability distributions with support V . The buyer perceives her 
rival’s value z as a random variable following the probability distribution )(zG  with density 

function )(zg . Since we consider a strictly increasing bid function )  ( rb , the buyer wins when z falls 

below x, and she loses otherwise. (Since we consider only continuous bid function and continuous 

value distribution, the probability of a tie is zero.) Also note that at decision point r, buyers are not 
allowed to bid below r, so that they update )(zG  conditional on )(1 rbr

 . Then, the buyer’s expected 

utility BV EUz :  at a decision point r is obtained by taking expectation of (B1) with respect 

to z, such that 

 ))((1)()]([),( 1

)(1

rbGzdGzbrxEU r

x

rb

rz

r

 


v  

   ))((1/)()() ,( 1 rbGzdGRxbzrz r

x

r
 

v

 ,
 

(B2)

where  

].},,[max{ if,

}),,max{,0[ if,

                    ,0
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 z, rz,zbz

 zz, r,zbz

rz r
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  

The first term of (B2) represents the expected value of monetary winning payoff. The second term 
represents the buyer’s expected psychological payoff when she loses. For })max{,0[ zv,r , an 

increase in r raises the weight ) ,  ( r  by decreasing its denominator. When the denominator becomes 

zero, the weight ) ,  ( r  vanishes. 

B-2. Unique Symmetric Equilibrium Bidding Function 

Proof of Proposition 4: Consider a continuous and continuously differentiable bidding function )  ( rb  

that is strictly increasing and 0)0( rb . At every decision point Br  , a buyer whose value is Vv  

chooses an optimal Vx  which maximizes her expected payoff ) ,( rxEU z  of (B2), when vx . 

Since ) ,( rxEU z  is continuous in x, take the first derivative with respect to x and evaluate it at v. 

Then, we obtain the following first order condition: 

 ))((1)()]([ 
) ,( 1 rbGgb

dx

rxdEU
rr

x

z 



 vvv
v  

   ))((1)()() ,( 1 rbGgbr rr
 vvvv  

(B3)
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    0))((1/)()() ,( 1   rbGzdGbrz rr

v

v

v  

Note that the integral of (B3) corresponds to the case zv . Then, the first order condition (B3) can 

be rewritten as 

0
) ,(






vx

z

x

rxEU

 
)())(( vvv gbr   

  0)(
},max{

}0),(max{
)( 
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


  dzzg
zz

zbz
b r

r

v

v v
v  (B4)

It is immediate that a bidding function )(vv rb  for all Vr  ],[ vv  satisfies the condition (B4) 

for all Br  . Therefore, the value-revealing bidding strategy )(vv rb  for all Vr  ],[ vv  generates 

a symmetric interim equilibrium for all Br . Note that the case where 0r  corresponds to the 

second price auction. 
To prove uniqueness, suppose that )ˆ(ˆ vv rb  for some Vv̂ . If this strategy )  ( rb  constitutes a 

symmetric interim equilibrium, the condition (B4) must hold at v̂x . Since 0  and 0)  ( rb , the 

first term of the LHS of (B4) is positive and the second term is either positive or zero for all ],ˆ[ vvz , 

no matter what the shape of )(zbr  is for Vz other than v̂ . Therefore, the bidding function that 

specifies )ˆ(ˆ vv rb  for some Vv̂  does not fulfill the condition (B4) and cannot generate a 

symmetric interim equilibrium at any r. 
Next suppose that )ˆ(ˆ vv rb  for some Vv̂ . The first term of the LHS of (B4) is negative. In order 

to satisfy the condition (B4), there must be some ],ˆ[ˆ vvz  such that )ˆ(ˆ zbz r  so that the second term 

of the LHS of (B4) becomes positive. If )  ( rb  generates a symmetric interim equilibrium, the 

condition (B4) must hold for a buyer whose value is ẑ  as well. We have already observed, however, 

that such a bidding function cannot generate a symmetric interim equilibrium at any r. Therefore, the 
bidding function that specifies vv ˆ)ˆ( rb  for some Vv̂  does not generate a symmetric interim 

equilibrium at any r. Consequently a value-revealing bidding strategy )(vv rb  is a unique 

equilibrium strategy for the second price auction as well as the ascending-bid auction. Hence the 
highest possible decision point where the ascending-bid auction terminates is )(1 vv  rbr .      � 

Appendix C: Experiment Instructions (Translation) 

Thank you for participating in our experiment. This is a study on auctions. The Ministry of Science 

and Education has provided funds for our research. The instructions are simple. You are being paid 

1,000 yen in cash as start-up money. All you have to do is to make a bid in each of the auction 

situations according to the rules described in this instruction. In each round of auctions, depending on 

the bid you make and the resolution of the uncertainty, you may receive or pay a specified amount of 

money as a result of transaction. 

Your acts will be recorded and kept only in terms of purely anonymous data for the academic 

research on microeconomics.  
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Furthermore, and most importantly, this is not a project to see if you can make a “right” decision, or 

if you can come up with a “correct” answer.  

Instructions 

<1> What Are We Bidding for? 

We will ask you to bid, not for a commodity as in a real auction market, but for a monetary prize. In 

other words, you are going to compete for the right to earn a monetary prize. In an exchange for the 

prize, a winner has to pay according to the rules of the auction. 

At the beginning of each round of auction game, we will assign each of you a number. This 

represents a prize value to you. Once you win the auction, then you will receive the prize worth that 

value number, and you must pay the amount specified by the corresponding auction rules to obtain the 

prize. Your payoff is the difference between the prize and the amount of payment. If you do not win, 

you will not receive any prize and pay nothing, that is, your payoff is zero. 
 

    Your Assigned Prize Value    −   Payment    if you win, 
   Your Payoff    =  
    None           if you do not win. 

You know your prize value for sure once it is assigned to you. But you may or may not know the 

value assigned to the other participants in this experiment, depending on the experimental design.  

<2> The Auction Rules 

We will run two kinds of auctions. One is a sealed bid auction, called the second-price auction, and 

the other is an open bid auction, called the ascending-bid auction. The experiment starts with a session 

of sealed bid auctions, containing eight rounds of auctions each with fresh value assignment, and then 

proceeds to a session of ascending-bid auctions also containing eight rounds. 

(1) The Second-Priced Sealed Bid Auction 

Each of you is paired with another anonymous participant. Every auction round starts with the value 

assignment. You and the other participant receive a number each as your prize value, which we call 

“assigned value.” After receiving the assigned value, both of you are asked to make a bid. That is, you 

have to specify a number to submit to the experimenters. We collect those submitted bids, and identify 

a bidder who submitted the higher bid between the two of you, as a winner. The winner receives the 

right to obtain her assigned value. In exchange, the winner has to pay the amount equal to the 

lower bid in the pair, that is, the bid amount the non-winner submitted. Please note that the 

payment required by the winner is not her own bid.  

You know that you are paired with someone, but you do not know who is paired with you. There 

are two treatments as to pairing. In one treatment, you are paired with a different person, randomly 

determined, in every round. We call this treatment, “Part 1.” In the other treatment, you are paired with 

a person randomly in a first round, and continue to bid against this same anonymous person in the rest 

of the rounds. We call this treatment “Part 2.” In Part 1, we start with the second price auction for eight 
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rounds, and then proceed to “Part 2” for eight rounds. After that, we conduct the ascending-bid auction 

experiments under the treatment of Part 1 and then Part 2. 

Upon being instructed to do so, the first thing you have to do is to double click the icon indicated by 

“Sealed Bid” on your windows screen. Then you will see the dialogue window shown below, popping 

up in your screen. 

Make sure that you see the header “Sealed Bid” on the left of the dialogue window. Your ID 

number will be shown in a box in the first line of the dialogue window. Do not let the other 

participant know your ID number. This is very important to maintain the academic quality of our 

experiments. And please do not close this window by yourself. Once every necessary step is 

complete, the window will automatically close. 

 
Next, the experimenter will send you a private “assigned value,” which will appear in the box of the 

dialogue window labeled “Value Assignment.” In the event you win, this is the prize you are entitled 

to earn by making the appropriate payment. 

Only after the assigned values are distributed, the face of the “send bid” button turns black and you 

can then type the amount you decide to bid in the box labeled “Your Bid.” The minimum bid unit is 

10 yen. If you are sure about that amount, then click the “send bid” button to transmit that information 

to the experimenter. Your bid won’t reach the experimenter unless you click the “send bid” button. 

After all bids are transmitted, the system identifies the bidder whose submitted bid is the higher in the 

pair as a winner, and lets her know that she is the winner. 

PayoffYour BidValue 

Comments

Send 
Comment
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You will find the winner’s ID number shown in the box labeled “Winner’s ID” in the middle part of 

the dialogue window. The further right box under the header “the second highest bid” will show the 

amount that the winner has to pay, which is the lower bid in the pair. If you are the winner, the further 

left box under the header “payoff” will show the number that is your payoff obtained by subtracting 

the payment from your assigned value. On the other hand, if you are not the winner, the number in the 

box under the “payoff” is zero, since you do not get the prize and do not have to make any payment.  

For example, consider the case where your assigned value is 400 yen. Suppose that you bid 300 

yen, and the other participant paired with you bids 350 yen. In this case, you are not the winner since 

your bid is not the highest, and your payoff is zero. 

Next, suppose that the other participant paired with you bids 200 yen instead. Your bid, 300 yen, is the 

highest bid and you become the winner. Then you win the prize of 400 yen but must pay 200 yen, 

which comes down to the payoff of 200 yen. 

  If you win, 

  Your Payoff   = Assigned Value (¥400)  −  The Second Highest Bid (¥200)     =    ¥200 

  If you do not win, 

  Your Payoff = ¥0 

If you and the other participant bid the same amount, then a winner will be randomly selected. In 

this case, you will be a winner with probability of 50%.  

In the previous example, suppose that two of you bid 300 yen. Then, you can obtain the prize of  

400 yen and make the payment of 300 yen with probability of 50%, and obtain zero payoff otherwise. 

   Assigned Value (¥400) −  The Second Highest Bid (¥300)       with 50% chance, 
  Your Payoff   =   

¥0           with 50% chance. 

In the very bottom of the dialogue window, you find the “comments” box. Please type why and how 

you have come to a bid decision, when we, the experimenters, ask you to do so. Having finished typing 

your comments, click the “send comments” button. Your comments won’t be sent to the experimenters 

unless you click the “send comments” button. 

(2) The Ascending-Bid Auction 

In the ascending-bid auction, we, the experimenters, raise a price gradually from a very low level. 

At the beginning of the ascending-bid auction, all of you are “active” in the sense that you are bidding 

at that price level. Unless you indicate that you wish to withdraw from bidding, you are considered 

being active and willing to pay that amount of indicated price in the event that you become the winner 

at this very moment. As long as two of you are active, we continue to raise the price. At the moment 

when one bidder withdraws from bidding, then the remaining bidder becomes the winner awarded with 

the prize, and she has to pay the last price level at which two bidders were active.  

After you double click the icon named “Ascending Bid” on your screen, you will see the following 

dialogue window.  
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Please make sure that your ID number is shown in the box located at the top of the dialogue 

window. DO NOT let the other participants know of your ID. 

Similar to the experiment of the second-price sealed bid auction, you will see your assigned value 

pop up in the corresponding box. If you become a winner, this is the amount you will get as a prize. 

Underneath that box, there is a box indicating the “current price”. Once the auction starts, the number 

shown in that box rises gradually from 0 yen. As the number increases, the price thermometer on the 

left of the dialogue window grows higher. The price increases by 10 yen. 

Let us consider the case where the number in the “current price” box is 100. Suppose that you are 

willing to pay 100 yen if you win at this moment, but you would not want to pay more than 100 yen. In 

this case, click the “Drop” button to indicate that you wish to withdraw from bidding when the 

number in the “current price” box gets up to 110. Your withdrawal bid level will be recorded as 

100. Unless you click the “Drop” button, your wish to withdraw would not be transmitted to  

the experimenter. 

As long as the “current price” increases, the other participant paired with you is active. When one of 

the pair drops, the process of the ascending-bid auction stops. If the price stops increasing before you 

click the “Drop” button, this means that you win. Then, you will obtain the prize worth your assigned 

value, and your payment is 100 yen, which is one unit (= 10 yen) lower than the price level at which 

the process stops. The payment amount will be indicated in the “payment” box. The ID number of the 
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winner will be shown in the “winner” box. Your payoff will be indicated under the large box in the 

middle under the header of “payoff.” If you win, your payoff is your prize minus the payment. If you 

do not win, your payoff is zero. Such information will be listed in that box in each round. Each new 

result enters at the top of the list. 

Let us review the above details by some examples. Suppose that your assigned value is 400 yen. 

Suppose that the number in the “current price” box increases and stops at 350 before you click the 

“drop” button. This means that you win, and your payment is one step earlier than the 350 level, which 

is 340 yen. Your payoff is 400 minus 340, which is 60 yen.  

  Your Payoff =  Your Assigned Value (¥400)    −  Price before the Stop (¥340)  = ¥60 

Suppose that you click the “drop” button at 360. It means that you do not win, and your payoff  

is zero. 

When two of you simultaneously click the “drop” button, then a winner will be randomly selected, 

and the winner pays the price at the moment of withdrawal minus 10. 

At the bottom of the dialogue window, there is the “comments” box. Describe why and how you 

figure out the amount of price at which you choose to withdraw, when instructed to do so. To transmit 

your comments to the experimenter, click the “send” button. 

<3> The Experiment Procedure  

After you sit down in front of the computer terminal, each of you will be given ID number, which 

you continue to use during the full course of experiment. Do not show that number to any other 

participant. It is very important for the academic quality of this experiment that you keep your ID 

number completely private. 

(1) Pairing 

Having mentioned elsewhere, you are paired with another person among those participants in this 

room. You will never be told with whom you are paired. In Part 1, the person you paired with will be 

determined randomly every round of the auction, while in Part 2, your paired person will be 

determined randomly in the first round, and maintained the same anonymous person through out  

all rounds.  

(2)Value Assignment 

There are two ways in which your value is assigned in a round. In one case, which we call 

“treatment VA1,” your value is selected randomly from a predetermined set of values, which consists 

of 700 and 800, every round. Your computer screen informs you of your own value only, but if you 

receive 700, it automatically implies that your paired participant receives 800, and vice versa. 

In the other case, which we call “treatment VA2,” your value is a purely random variable from a 

predetermined range of value of [500,800] with uniform distribution. In every round, a fresh value is 

drawn independently. Again, you are informed of your own value only, and never be informed of the 

realized value drawn for your paired person. But the same random procedure is applied to both of you 

and your paired person, independently. 
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In order to get familiar with the auction rules, the first four rounds are for your practice. The 

outcomes from the subsequent rounds are recorded for real prize and payment. 

Please make sure that you fully understand the rules and procedure. You will be given a short quiz 

after all the instruction is completed.  

(3) How to Use Payoff Table  

Your payoff is a joint product of your own bid choice and a bid chosen by the other participant 

paired with you. The other participant’s payoff is also a joint product. Though there are numerous 

combinations of your bid and the other participant’s bid, in the treatment VA1, we provide you a 

payoff table that looks like the figure shown below. The table lists your payoffs and the other 

participant’s payoffs under the various but limited number of bid combinations, because of the  

space limit. 

The figure below shows the example of the payoff table with your assigned value being 350 yen 

and the other participant’s being 400 yen. The further left column lists the possible bids you can 

choose, and the first row lists the bids available for your paired person. Though those possible bids are 

listed with 50 yen increments, you are free to bid in 10 yen increments in the auction. 

There are two numbers shown in each cell. The number in the upper left of the cell is your payoff 

and the number in the lower right of the cell is the other participant’s payoff. 

 

For example, suppose that your bid is 350 yen and the other participant bids at 300 yen. Then, your 

bid is higher and you are the winner. You will be awarded 350 yen prize, your assigned value, and you 
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have to pay 300 yen, the other participant’s bid level, so that your net payoff is 50. The other 

participant who loses receives zero net payoff. 

Let us consider another case. Suppose that you bid 350 yen and the other participant bids 400 yen. 

Since her bid is higher, she is the winner and gets 400 yen prize and pays 350 yen equal to your bid. 

Her net payoff is 50, subtracting 350 from 400, which is shown in the lower right of the cell in the row 

of your 350 bid and the column of the other participant’s bid 400. 

Another important case is the event of tie. Suppose that you bid 300 yen and the other participant 

bids also 300 yen. Then the winner will be randomly selected. That is, you become the winner with 

50% chance, receiving your value prize of 350 yen and paying 300 yen. Your net payoff is 50 yen in 

when you win, and your expected payoff is 25 yen, which is shown in the upper left of the 

corresponding cell. Since the other participant’s assigned value is 400 yen, her expected payoff is  

50 = 0.5*(400 − 300), which is shown in the lower right of the corresponding cell. 

<4> The Summary of the Course of the Experiments 

There are two parts regarding pairing; In Part 1 you are paired with a new randomly selected person 

among other participants every round. In Part 2 you are paired with a randomly selected person in the 

first round and maintain the same person in the rest of the rounds. 

There are two treatments regarding value assignment. In treatment VA1, you are assigned either 

700 or 800 yen randomly, and in treatment VA2, you are assigned with a random number drawn from 

the range between 500 and 800 yen according to the uniform distribution. Each draw is independent. 

There are two types of auctions; one is the second-price sealed bid auction and the other is the 

ascending-bid auction, and the sealed bid auction precedes the ascending bid auction.  

As a total, there are 2 × 2 × 2 variations in our experimental treatments. We will run on average  

8 rounds for each treatment. At the beginning of the first sealed-bid auction experiment, there are four 

rounds set as the practice session. All payoffs generated during the practice session will not be 

counted. After completing the practice rounds, then we move on to the first set of 8 rounds of auction 

and start recording the realized payoffs.   

Your payoffs will be all recorded. At the end of the experimental session, we will pay you the 

cumulative amount in cash, on the spot.  

<5> Now, We Are Ready to Start 

Please read this instruction carefully. It is very important that you understand these instructions. 

Should you have any questions, please feel free to ask us. 

Once we start explaining the instructions, you are not allowed to talk to any other participants. You 

can only talk to us, the experimenters, if necessary. You are not allowed to look at the other 

participants’ PC screens. This no talking and no peeking rule is very important for the validity of our 

experiments. Not conforming to this rule would jeopardize the quality of our experiments. 
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