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Abstract: This paper investigates how the introduction of social preferences affects
players’ equilibrium behavior in both the one-shot and the infinitely repeated version of
the Prisoner’s Dilemma game. We show that fairness concerns operate as a ”substitute”
for time discounting in the infinitely repeated game, as fairness helps sustain cooperation
for lower discount factors. In addition, such cooperation can be supported under larger
parameter values if players are informed about each others’ social preferences than if they are
uninformed. Finally, our results help to identify conditions under which cooperative behavior
observed in recent experimental repeated games can be rationalized using time preferences
alone (patience) or a combination of time and social preferences (fairness).
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1. Introduction

Inspired by a large volume of experimental evidence, there has been much recent work on social, as
opposed to individual, preferences reflecting individuals’ concern for fairness in the income distribution;
see for instance, Fehr and Schmidt (1999) and Bolton and Ockenfels (2000). Much of this literature has
examined how such social preferences might facilitate cooperation among individuals who interact in
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sequential move, strategic environments, such as worker-employee, principal-agent or investor-trustee
relationships. However, there has been comparatively little application of social preferences to
simultaneous-move games, and in particular, to infinitely repeated versions of those games.1

This paper contributes to the literature by investigating how social preferences might facilitate
cooperation among players interacting in the canonical simultaneous-move game—the Prisoner’s
Dilemma—which is appropriate for the study of strategic environments with extreme competitive
incentives.2 Surprisingly, we have found no literature exploring the effects of social preferences in
infinitely repeated games.3 We analyze the interaction between time and social preferences, and provide
conditions under which observed cooperation in experimental settings can be explained using either
social or time preferences alone, or a combination of both types of preferences.

We first show that by introducing social preferences into a one-shot Prisoner’s Dilemma game we
can rationalize mutual cooperation in equilibrium, but only when both players assign a sufficiently
high value to other individuals’ payoffs. We then show in the infinitely repeated version of the game,
how social preferences work as a “substitute” for time preferences (discounting) since higher concerns
about fairness reduce the minimum discount factor necessary to support cooperative outcomes in the
repeated game. Our results help to rationalize experimental observations where players cooperate under
relatively low discount factors—values for which the “Folk theorem” for repeated games would not
predict cooperation.

In addition, we investigate how equilibrium play is affected by the introduction of incomplete
information about players’ social preferences. We begin by analyzing a signaling version of the
twice-repeated prisoner’s dilemma game in which the player who is informed about his type (concern for
fairness) uses first-period actions to convey or conceal his social preferences to the uninformed player.
We identify a pooling equilibrium in which the informed player cooperates in the first period of the
game regardless of his type. The unconcerned player chooses to cooperate, in order to “mislead” the
uninformed player about his true type. If priors about types are sufficiently high, this misleading strategy
induces the uninformed player to cooperate in the subsequent period, while informed players who are
unconcerned about fairness defect in the second and final period.4 Interestingly, this pooling equilibrium
provides an explanation for a relatively common observation in experimental settings wherein subjects

1See however, Fischbacher and Gächter (2010) who use a strategy method to find direct evidence of social preferences in a
linear voluntary contribution experiment that involves simultaneous decisions by groups of four players interacting repeatedly
for a finite number of periods (no discounting).

2Note that the Prisoner’s Dilemma game is strategically equivalent to a voluntary contribution or “public good” game with
a finite set of actions. Thus, all our analysis is also applicable to this public good game as well. In the last section of the
paper, we extend our results to a larger class of games.

3Montero (2007) introduces inequity aversion in the Baron and Forejohn (1989) legislative bargaining game, showing that
individuals’ social preferences might actually lead to more inequality. Intuitively, during the bargaining process the responder
experiences a greater disutility from being left outside the winning coalition when he is envious than when he is not, which
induces him to accept lower offers thereby increasing payoff inequality. In our model there is no such risk, which eliminates
the possibility of this kind of result.

4Healy (2007) identifies a similar result in the context of finitely-repeated gift-exchange games where the firm manager
does not observe the worker’s type (either reciprocator or selfish). The equilibrium in which informed players “mislead”
uninformed players can, nonetheless, be supported under different parameter conditions in the simultaneous and sequential
versions of the game. Duffy and Munoz-Garcia (2011) elaborate on this difference.
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defect in the last period of interaction, despite a previous history of cooperation.5 We then extend our
analysis to infinitely repeated games with incomplete information, where we show that cooperation
becomes more difficult to support relative to the case of complete information.

Finally, we analyze the set of feasible, individually rational payoffs that can be achieved when playing
the infinitely repeated game and we examine how this set is affected by changes in players’ social
preferences.6 In particular, we find that the set of feasible, individually rational payoffs shrinks as
individuals become more concerned about fairness.7 Interestingly, this implies a potential confusion in
the experimental literature on the source of observed cooperation on repeated games. Indeed, it suggests
that such cooperation may not be due to players’ high discount factors alone, but could instead arise from
a combination of individuals’ time and social preferences. We suggest a method for inferring whether
the mechanism supporting cooperative behavior in the infinitely repeated game can be explained using
time preferences alone or when reliance must be placed on both time and social preferences in order to
rationalize cooperative play.

Related literature. Our results are related to those in Kreps et al. (1982), who consider the role
of informational asymmetries about players’ types in the finitely repeated Prisoner’s Dilemma game.
Specifically, in their model a “rational” player may assign some probability to the possibility that
his opponent “irrationally” plays a conditionally cooperative, tit-for-tat strategy, showing that there
is a sequential equilibrium of the finitely repeated game in which the “rational” player imitates the
“irrational” player by also playing tit-for-tat. Similarly, in this paper, we demonstrate that the existence
of social preferences may lead to cooperation among players in situations where cooperation would
not exist among self-interested players. However, we develop our result from a simpler, behavioral
primitive—social preferences, specifically inequity aversion—which is supported by strong empirical
evidence; see for instance, Fehr and Fischbacher (2002) or Camerer (2003).8 Further, we also develop
our result in the infinitely repeated Prisoner’s Dilemma game (Kreps et al. (1982) only study the
finitely repeated version), and we relate fairness concerns to time preferences. The study of cooperation

5See for instance, Selten and Stoecker (1986) and Andreoni and Miller (1993) for the prisoner’s dilemma game,
McKelvey and Palfrey (1992) for the centipede game, Camerer and Weigelt (1988), Brandts and Figueras (2003) for the
borrower-lender game, and Anderhub, Engelmann and Güth (2002) for the finitely-repeated trust game. Importantly, this
informational explanation for cooperative behavior is quite distinct from bounded rationality arguments in which some players
misunderstand strategic incentives.

6In this sense, our paper is also related to Rabin (1997), who analyzes the introduction of concerns about fairness in
finitely repeated games under complete information. Similarly to Rabin (1997), we find that players’ preferences for fairness
facilitate their coordination to play equilibrium outcomes with Pareto superior payoffs. However, Rabin’s (1997) results can
only be supported when the per-period payoffs are negligible, and he does not investigate the substitutability between social
and temporal preferences.

7This result provides an effect opposite to that shown by Abreu et al. (1990), wherein the set of equilibrium payoffs in the
infinitely repeated game weakly increases with increases in the discount factor. Chade et al. (2008) present a result in line with
that in our paper for hyperbolic (present-biased) preferences where, in the case of the Prisoner’s Dilemma game, an increase
in players’ discount factor expands the set of equilibrium payoffs whereas an increase in players’ hyperbolic preferences
shrinks this set. Similarly, Yamamoto (2010) demonstrates that the set of equilibrium payoffs does not necessarily expand in
the discount factor if players cannot observe a public randomization.

8The term “social preferences” encompasses several different formulations, besides inequity aversion including
preferences for reciprocity, unconditional kindness (altruism) and spiteful preferences; see for instance, Fehr and Fischbacher
(2002). By “social preferences” we will mean inequity aversion as in the formulation of Fehr and Schmidt (1999).
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in infinitely repeated Prisoner’s Dilemma games has recently become the subject of much study by
experimentalists (see, among others, Dal Bó (2005), Normann and Wallace (2006), Aoyagi and Fréchette
(2009), Duffy and Ochs (2009), Camera and Casari (2009) and Dal Bó and Fréchette (2011), Blonski et
al. (2011) and Fudenberg et al. (2012)) and so an understanding of the mechanisms by which cooperation
can be sustained in such environments is both important and timely.

The paper is organized as follows. In the next section we introduce the model. Section 3 then analyzes
equilibrium behavior under complete information, while Section 4 extends our results to incomplete
information contexts. Similarly, Section 5 extends our analysis to more general simultaneous-move
games—including games with asymmetric payoff structures—and to a more general class of social
preferences. Section 6 elaborates on the set of feasible payoffs and the potential confound we might
observe between social and time preferences under certain parameter values. Section 7 concludes.

2. Model

Consider the stage game shown similarly to. To make this a Prisoner’s Dilemma game, both players’
payoffs must satisfy the restriction b > a > d > c. In that case, both players’ best response in the
one-shot game is to choose D, “defect,” either when the other player chooses C, “cooperate” (given that
b > a), or when the other player defects as well (since d > c). Hence, the strategy profile (D,D) is the
unique equilibrium of the one-shot stage game.

Player 2
C D

Player 1 C a,a c,b
D b,c d,d

In this paper, however, we analyze players who possess Fehr and Schmidt (1999)-type social
preferences, a now standard specification. (Section 5 extends our results to other social preferences).
For the case of two players, Fehr and Schmidt’s (1999) utility function reduces to:

Ui(xi, xj) = xi − αimax {xj − xi, 0} − βimax {xi − xj, 0}

where xi is player i’s payoff, and xj is the payoff of his opponent (player j). The parameter αi represents
the disutility from allocations that are disadvantageously unequal for player i due to envy about player
j’s higher payoff, while the parameter βi captures the disutility from allocations that are advantageously
unequal for player i due to guilt over earning a higher payoff than player j. Additionally, Fehr and
Schmidt (1999) assume that players’ envy is always stronger than their guilt. We capture this by
assuming that αi ≥ βi and 1 > βi ≥ 0.9 We will contrast this case of “social preferences” (which we
also refer to throughout as “concerns for fairness”) with the more standard, self-regarding preferences
where αi = βi = 0 for all i.

9Intuitively, αi ≥ βi implies that players (weakly) suffer more from inequality directed at them than inequality directed
at others. On the other hand, βi ≥ 0 means that players dislike being better off than others (this assumption rules out cases in
which individuals are status seekers but serves to simplify the analysis). Finally, βi < 1 suggests that when player i’s payoff
is higher than that of player j’s by one unit (e.g. a dollar), player i is never willing to give up more than one unit in order to
reduce this inequality. For a more detailed explanation of these assumptions, see Fehr and Schmidt (1999).



Games 2012, 3 60

Taking social preferences into account, the stage game can be reformulated as follows:

Player 2
C D

Player 1 C a, a c− α1(b− c), b− β2(b− c)
D b− β1(b− c), c− α2(b− c) d,d

Notice in particular, that every player i’s utility level decreases when he is either: the player with the
highest payoff in the group (due to guilt), e.g., player 1 under outcome (D,C), or when he is the player
with the lowest payoff in the group (due to envy), e.g., player 1 under outcome (C,D).

3. Complete Information about Social Preferences

3.1. Stage Game

In this section we briefly analyze equilibrium behavior in the one-shot Prisoner’s Dilemma game
under the assumption of complete information about social preferences. Section 3.2 examines players’
equilibrium strategies in the infinitely repeated version of the game, whereas Section 4 focuses on the
incomplete information game.

Lemma 1. In the one-shot Prisoner’s Dilemma game where players have social preferences
(αi > βi ≥ 0), the following strategy profiles can be supported as Nash equilibria of the game:

1. (D,D), if βi ≤ b−a
b−c for any player; and

2. (C,C), (D,D) and a mixed strategy Nash equilibrium where every player i randomizes according
to probability q(αj, βj) =

d−c+αj(b−c)
a+d−c−b+(αj+βj)(b−c) if βi > b−a

b−c for both players.

Hence, if at least one player has relatively low concerns about guilt, the unique Nash equilibrium
of the one-shot game, (D,D), coincides with that of the one-shot game where players have no concerns
about the fairness of the payoff distribution (standard preferences); see Figure 1.

However, when both individuals are sufficiently concerned about fairness—the shaded area of Figure
1—we can identify three different Nash equilibria: one in which both players defect, one in which both
players cooperate, and a mixed strategy Nash equilibrium.10 The introduction of sufficient concerns
about fairness by both players thus transforms the payoff structure of the game from a Prisoner’s
Dilemma to a Pareto-rankable coordination game.11

10Note that βj > b−a
b−c is a sufficient condition for probability cutoff q(αj , βj) to satisfy q(αj , βj) ∈ (0, 1).

11In particular, every player’s best response is to select the same action as his opponent, but both players strictly prefer
(C,C) to (D,D). Note that this best response function is similar to what Cooper et al. (1996) call “best response altruists,”
namely players for whom cooperate (defect) is their best response to cooperation (defection, respectively), as opposed to what
Cooper et al. (1996) refer to as “dominant strategy altruists” for whom cooperation is always a best response, regardless of
other players’ strategies. Our results in the unrepeated game are also connected with those in Bolton and Ockenfels (2000),
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Figure 1. Equilibria in the simultaneous game under complete information.

3.2. Infinitely Repeated Game

Let us now focus on equilibrium strategies in the infinitely repeated version of the Prisoner’s Dilemma
game under social preferences and complete information.12 We consider that every player i discounts
future payoffs according to a discount factor 0 < δi < 1.

Proposition 1. In the infinitely repeated Prisoner’s Dilemma game where players have concerns for
fairness (“F” or βi > 0), mutual cooperation can be sustained as the subgame perfect Nash equilibrium
(SPNE) of the infinitely repeated game by use of the following grim-trigger strategy by every player i:
start cooperating in the first period of the game, and cooperate as long as all players have cooperated
in previous periods, but defect otherwise, for any discount factor 1 > δi ≥ δFi (βi), where

δFi (βi) ≡

{
δNFi − βi(b−c)(d−a)

(b−d)[βi(b−c)−b+d] for any βi ≤ b−a
b−c

0 otherwise

and δNFi ≡ b−a
b−d denotes the minimal discount factor supporting cooperation in the infinitely repeated

game in the case where individuals are not concerned about fairness (“NF”).
Figure 2 provides an illustration of how the minimum discount factor supporting mutual cooperation

in the infinitely repeated game when players have concerns for fairness, δFi (βi), varies with βi. To
facilitate comparison, Figure 2 also includes the discount factor sustaining cooperation in the infinitely
repeated game in the case where players are not concerned about fairness, δNFi . Notice that when
players do not assign any value to fairness (when βi = 0, at the vertical intercept of Figure 2), the

who allow for every individual’s payoff thresholds to be private information. Unlike our model, however, their paper does
not explicitly consider infinitely repeated games, and how equilibrium predictions in such a setting differ when players are
symmetrically or asymmetrically informed about each others’ social preferences.

12For simplicity, we focus on the case in which players’ concerns for fairness are not extreme, i.e., αi, βi < b−d
b−c for all

player i. In particular, this guarantees that the utility from reverting to the pure strategy Nash equilibrium of the stage game
is still lower than that from playing the mixed strategy Nash equilibrium of the stage game.
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minimal discount factors necessary to support mutual cooperation, δFi (βi) and δNFi coincide. For strictly
positive values of βi, Figure 2 can be divided into two regions. First, for relatively low concerns
about fairness, βi ≤ b−a

b−c , every player has incentives to unilaterally deviate from the cooperative
outcome since b − βi(b − c) ≥ a, as in the standard Prisoner’s Dilemma game. Each player’s
incentive to deviate is, however, reduced by the guilt he experiences from obtaining a higher payoff
than other players, βi(b − c). This result is illustrated by the fact that δFi (βi) ≤ δNFi and that δFi (βi)
decreases in βi. Mutual cooperation can then be sustained under a broader set of parameter values
when players possess social preferences than when they do not. For relatively high concerns about
fairness, βi > b−a

b−c , players have no incentives to unilaterally deviate from the cooperative outcome since
a > b − βi(b − c), which implies that cooperation can now be sustained for all discount factors, as
illustrated in Figure 2 for βi > b−a

b−c .

Figure 2. Discount factors δFi (βi) and δNFi .

Hence, players’ concerns about fairness make the Folk theorem for repeated games with discounting
(see, e.g., Fudenberg and Maskin (1986)) applicable under a broader range of parameter values (discount
factors).13 This result can help to explain experimental findings such as those reported by Murnighan and
Roth (1983, Table 4), Dal Bó (2005, Table 5) and Dal Bó and Fréchette (2011, Tables 3-4) where a small
but significant fraction of experimental subjects playing an indefinitely repeated Prisoner’s Dilemma
game are observed to cooperate even when continuation probabilities (induced discount factors) do
not support such cooperation as an equilibrium of the repeated game under standard, self-interested
preferences. Our result showing that fairness concerns may “substitute” for patience can be used to
rationalize such experimental observations.14 Section 6 discusses how to disentangle time and social
preferences as mechanisms for sustaining cooperation in experimental settings.

13Mutual cooperation can also be supported as the SPNE of the infinitely repeated game by the use of other type of
strategies, such as those in which defection is punished only during a limited number of time periods, or other reciprocal
strategies like “tit-for-tat.” In this section, we focus for simplicity in one type of strategy in order to analyze how social
preferences can work as substitute for temporal preferences.

14Other potential explanation of this observed behavior could include incomplete information among the players or
learning.
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4. Incomplete Information about Social Preferences

4.1. Signaling Private Concerns about Fairness

In this section we relax the assumption of complete information about social preferences. We use a
standard signaling game information structure in which one player’s social preferences are commonly
known while the other “informed” player’s social preferences are his private information, i.e., we study
the case of one-sided asymmetric information. Specifically, suppose that nature selects player i’s concern
for fairness, βi, either βHi with probability q, or βLi with probability 1− q, where βHi > b−a

b−c > βLi ≥ 0,
and such realization is the private information of player i only. If an informed player i has βi = βHi
(βi = βLi ) we refer to him as the “concerned” (“unconcerned,” respectively) player. Note that we allow
for βLi = 0. By contrast, player j’s guilt parameter, βj , is common knowledge for both players and βj >
b−a
b−c .15 In order to focus on the possibility that player i signals his guilt concern, βi, to the uninformed
player j, let us assume that both individuals’ envy concerns, αi and αj , are also common knowledge.
Hence, player i holds private information about his guilt parameter βi alone, since the precise value of
αi, either high αi = αHi or low αi = αLi , where αHi > αLi ≥ βHi > βLi , is common knowledge.

Duffy and Munoz-Garcia (2011) describe equilibrium behavior in the twice-repeated game with
one-sided asymmetric information among players. Specifically, separating strategy profiles cannot be
supported as Perfect Bayesian Equilibrium (PBE) of the signaling game for any prior q, whereas a
pooling strategy profile can be sustained as a PBE in which both types of informed player i cooperate in
the first period if priors are sufficiently high q ≥ q(αj, βj).16 The uninformed player j cooperates both
in the first period (given the relatively high prior) and in the second period, conditional on observing
that player i cooperated in the first stage. Hence, by cooperating in the first period, the highly concerned
player i guarantees outcome (C,C) in the second period of the game. In contrast, the unconcerned
player i “disguises” himself as a player with high concerns for fairness who will cooperate in the
following period. This misleading strategy induces player j to cooperate in the second period, where
the unconcerned player i takes the opportunity to defect, yielding outcome (D,C). This “backstabbing”
result might account for observed behavior in experimental settings, as in the literature suggested in
the introduction, where subjects initially cooperate but choose to defect in the final period of the
repeated game.

15Otherwise, player j would find defection to be a dominant strategy in the second period simultaneous-move game, and
the first-period player i’s actions would not affect his opponent’s future play.

16Since players interact during only two periods, we consider no discounting. In addition, note that we use “pooling”
equilibrium to refer to strategy profiles in which both types of player i cooperate during the first-period game. In particular,
Duffy and Munoz-Garcia (2011) show that cutoff q(αj , βj) is q(αj , βj) =

d−c+αj(b−c)
a+d−c−b+(αj+βj)(b−c) . For robustness, the

authors also show that this pooling equilibrium survives the Cho and Kreps’ (1987) Intuitive Criterion.
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4.2. Repeated Game under Incomplete Information

We next analyze the infinitely repeated version of the incomplete information game described in the
previous section with discounting of future payoffs, i.e., player i’s discount factor is δi ∈ (0, 1). Unlike
in the previous section, we now allow for two-sided asymmetric information about guilt parameters,
i.e., every player i’s guilt is either βi = βHi > b−a

b−c with probability qi ∈ (0, 1) or βi = βLi < b−a
b−c

with probability 1 − qi. We further assume that it is common knowledge that αi = αj = α, and
that player i’s and j’s discount factors are δi and δj , entailing that the only element of uncertainty that
a given player faces is his opponent’s guilt parameter. Let us consider the case in which first-period
actions transmit valuable information about a player’s concern for fairness by examining the strategy
profile where players cooperate during the first period of the game if and only if their discount factor is
sufficiently high.17 Following the first period of the game, players observe payoffs which allow them to
perfectly infer the true type of their opponent. Incomplete information thus plays a role during the first
period of the game alone, since in all subsequent periods, players’ concerns for fairness are perfectly
inferred from their first-period actions.18 Furthermore, this information allows every player to predict
whether his opponent will cooperate in the continuation game. In particular, if player i’s discount factor
δi is sufficiently high, i.e., if δi ≥ δF (βLi ) ≥ δF (βHi ), then player i cooperates in the continuation game
both when βi = βLi and when βi = βHi . Similarly, if player i’s discount factor is sufficiently low, he
defects regardless of his type, i.e., when δF (βLi ) ≥ δF (βHi ) > δi. If, instead, player i’s discount factor is
intermediate, he cooperates when he has high concerns for fairness, δi ≥ δF (βHi ), but defects otherwise,
δF (βLi ) > δi, i.e., δF (βLi ) > δi ≥ δF (βHi ). In the first two cases there is no information transmission
from first-period actions since all player types either cooperate or defect in the continuation game. By
contrast, in the third case, first-period actions can communicate information about the players’ type.
Therefore, we focus on the latter case where δF (βLi ) > δi ≥ δF (βHi ).

Proposition 2. In the infinitely repeated Prisoner’s Dilemma game with two-sided uncertainty, the
following strategy profile can be supported as a PBE of the game:

1. In the first period play of the stage game, every player i cooperates when his guilt parameter is
high, βi = βHi , but defects when his guilt parameter is low, βi = βLi , if and only if his discount
factor, δi, satisfies δUFi (α, βLi ) > δi ≥ δUFi (α, βHi ), where

δUFi (α, βi) ≡ 1 +
(d− a)qj

d− c+ qj(b+ c− 2d)− (b− c)[qjβi + (qj − 1)α]
for any βi = {βLi , βHi }

17If, in contrast, both players select cooperate or both select defect during the first period of the game, then first-period
actions do not communicate information about player i’s type. In such cases, every player’s period payoffs would not depend
on the other player’s type, and the introduction of incomplete information would not substantially modify our complete
information analysis.

18We assume that every player compares his stage game payoff at every time period with that of his opponent, in order
to evaluate the disutility from envy or guilt. Such information is typically available to subjects in experimental studies of
indefinitely repeate games. Oechssler (2011) has recently proposed an alternative approach to incorporating social preferences
into finitely repeated games where players compare their own discounted aggregate payoff at the end of the game with that of
their opponent under complete informaiton. By contrast, under incomplete information our period-by period approach allows
for dynamic strategies to arise due to the inequality that individuals experience over the course of the game. The alternative
approach where player compare payoff at the end of the repeated game only allows for the emergence of dynamic strategies
across supergames. We therefore prefer our approach of comparing invidual payoffs period-by-period.
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2. In subsequent period plays of the stage game, every player i cooperates if and only if all players
cooperated in all prior periods for any discount factor δi ≥ δFi (β

H
i ) when his guilt parameter is

high, βi = βHi , and for any discount factor δi ≥ δFi (β
L
i ) when his guilt parameter is low, βi = βLi .

In addition, δUFi (α, βi) is decreasing in guilt aversion, βi, but is increasing in envy aversion, α.
Furthermore, δUFi (α, βi) ≥ δFi (βi) for any βi = {βLi , βHi }; δUFi (α, βi) = δFi (βi) as qj → 1, and
δUFi (α, βi) = 1 as qj → 0.

As suggested above, this strategy profile prescribes that every player i starts cooperating if his discount
factor is sufficiently high, δi ≥ δUFi (α, βi), and continues cooperating as long as his opponent has
cooperated in the past. Otherwise, players revert to defection thereafter. Two points are noteworthy.

First, the minimum discount factor supporting cooperation δUFi (α, βi) is decreasing in βi, confirming
the “substitutability” between time preferences and guilt found earlier for the complete information
version of the infinitely repeated game. However, the minimum discount factor, δUFi (α, βi), is now
increasing in α. Intuitively, larger concerns about envy raise the minimum discount factor needed to
sustain cooperation during the first stage of the game. Specifically, under incomplete information about
fairness concerns, players face the possibility that his opponent does not cooperate during that first stage,
reducing the equilibrium payoff of the former from a to c− αi(b− c).

Second, the minimum discount factor inducing an uninformed player to cooperate in the first period,
δUFi (α, βi), is higher (more demanding) than under complete information, δFi (βi). As the probability of
facing a cooperative player j tends to zero, qj → 0, player i’s minimum discount factor supporting
cooperation approaches one, indicating that cooperation is very unlikely to occur. This minimum
discount factor is decreasing in qj , and approaches the minimum discount factor for the complete
information environment, δFi (βi), when the probability of facing a cooperative opponent approaches
one, i.e., qj → 1. Finally, note that the results in Proposition 2 about two-sided asymmetric information
embody one-sided asymmetric information as a special case, where qj = 1 while qi ∈ (0, 1). In this
context, player j is uninformed about player i’s type but player i observes βj = βHj , entailing that
player j cooperates in the first period of the infinitely repeated game if his discount factor δj satisfies
δUFj (α, βLj ) > δj ≥ δUFj (α, βHj ) since he is still uninformed about his opponent’s type, while player i
cooperates if δi satisfies δFi

(
βLi
)
> δi ≥ δFi (β

H
i ) given that he is informed.

5. Extension to More General Games and Preferences

In this section we analyze equilibrium strategies in a more general class of infinitely repeated games.
In particular, we consider simultaneous-move games with complete information and a finite number of
players and actions. For simplicity, we restrict attention to games where players can choose cooperative
action choices that improve their per-period payoffs relative to those in the Nash equilibrium of the
stage game which we denote by x̃i.19 That is, we consider games where there exists an action profile

19Similar to previous sections, we focus on the case in which players are not extremely concerned about social preferences,
so that the utility from the pure strategy Nash equilibrium of the stage game is higher than that from the mixed strategy
equilibrium of the stage game. As a consequence, minmax payoffs when players are concerned about fairness coincide
with those when players are not concerned. For simplicity, we consider the existence of a unique Nash equilibrium in the
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a = (ai, a−i) with payoff Ui(ai, a−i) = xi, where xi > x̃i, for every player i.20 When players do not
assign a value to fairness, i.e., βi = αi = 0, mutual cooperation can be sustained as a SPNE of the
infinitely repeated game for any discount factor δi such that δi ≥ δNFi for all i; see, e.g., Friedman
(1971). Similarly, as we have shown, when players with social preferences assign a value to fairness,
mutual cooperation can be supported for any discount factor δi such that δi ≥ δFi (βi). This section
examines the conditions for which δFi (βi) ≤ δNFi , i.e., that cooperation can be supported under a larger
set of parameter values when players are concerned about fairness than when they are not.

We begin by defining a “weak symmetry” condition that we will make use of in Proposition 3 similarly
to. Specifically, a game satisfies “weak symmetry” if and only if all players’ payoffs coincide when they
play the Nash equilibrium of the stage game, i.e., x̃i = x̃j , as well as when they play the cooperative
outcome in the repeated game, xi = xj . For instance, in the Prisoner’s Dilemma game, this weak
symmetry assumption implies that players 1 and 2 earn the same payoff when they both choose to defect
and when they both choose to cooperate. Hence, if both individuals’ payoffs coincide under these two
strategy profiles, then utility levels when players are concerned about fairness will not be diminished
(since there is no inequality in the payoff distribution). Note that weak symmetry is not as restrictive as
stronger forms of symmetry, whereby player i’s payoff coincides with that of player j at every strategy
profile.

Proposition 3. If the stage game’s payoff structure satisfies the weak symmetry condition, then
δFi (βi) ≤ δNFi holds for all parameter values, αi and βi. Otherwise, δFi (βi) ≤ δNFi if and only if

maxai Ui (a)− xi
maxai Ui (a)− x̃i

≥ maxai U
F
i (a)− xFi

maxai U
F
i (a)− x̃iF

This result confirms our previous intuition from the Prisoner’s Dilemma game: cooperation can be
supported for weakly broader conditions when players are concerned about fairness than when they are
not. In particular, when the game is weakly symmetric in players’ payoffs, and players are concerned
about fairness, their utility from deviating is reduced by the guilt they experience from being the player
with the higher payoff. Importantly, this result can be applied to many simultaneous-move games besides
the Prisoner’s Dilemma game, including voluntary contribution (public good) games, and coordination
games. By contrast, when the game does not satisfy the weak symmetry condition, cooperative outcomes
can be supported with a weakly lower discount factor only if the above condition is satisfied. Intuitively,
this condition holds if a player’s incentives to deviate from the cooperative outcome are relatively
stronger when he is unconcerned about fairness than otherwise. The following corollary shows that
the result of Proposition 3 can be extended to players with social preferences different from those in
Fehr and Schmidt (1999).

stage game. Our results can be extended to stage games with multiple Nash equilibria, and use x̃i to denote the payoff that
individuals obtain in the Nash equilibrium providing the highest payoff.

20For simplicity, we assume that payoffUi(ai, a−i) = xi can be achieved using pure strategies. Otherwise, one can suppose
that any randomization producing payoff xi is publicly observed by all players, thus allowing deviations to be detected by
every player.
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Corollary 1. The result from Proposition 3, δFi (βi) ≤ δNFi , holds both under linear and non-linear
social preferences.

Proposition 3 therefore holds not only for the linear, Fehr and Schmidt (1999) specification of social
preferences, where every unit of payoff inequality induces the same disutility (either in the form of envy
or guilt), but also for more general (possibly non-linear) social preferences, such as those suggested by
Neilson (2006):

Ui(x) = xi − αi
∑
i 6=j

u(xi − xj)

where u is any continuous function of the level of payoff inequality, xi−xj , and αi is player i’s sensitivity
to such payoff inequality. Specifically, we can assume that u is increasing in xi − xj whenever xi > xj ,
i.e., individuals experience a disutility (guilt) from receiving a higher payoff relative to other players in
the population. Further, the disutility from guilt can be either increasing in payoff inequality (if u is a
convex function), or decreasing in payoff inequality (if u is a concave function). Our results are thus
applicable to players with relatively general social preferences.

6. Feasible and Individually Rational Payoffs

Let us finally examine how our previous results translate into the set of feasible payoffs for the
infinitely repeated game. For simplicity, we focus on the two-player Prisoner’s Dilemma game.
Figure 3(a) similarly to represents the set of feasible payoffs for the case where individuals do not assign
any value to fairness considerations, βi = 0, i.e., payoff pairs within the quadrilateral with vertices
(a,a), (b,c), (d,d) and (c,b).21 Let us denote this set of feasible payoffs by FPNF , where, as before, the
subscript NF denotes that players are not concerned about fairness. Formally, the set of feasible payoffs
is defined as the convex hull of all payoffs x ∈ R2

+ feasible under the set of available actions a ∈ A, i.e.,
FP =convex hull {x | there exists a ∈ A such that U(a) = x}.

Figure 3(b), additionally, shades the set of feasible payoffs that are individually rational, i.e., all
those payoffs such that xi > x̂i for both players, where x̂i is the reservation utility (or minmax value)

x̂i = min
aj

[
max
ai

Ui (ai, aj)

]
. Hence, the shaded area in Figure 3(b) depicts the set of feasible,

individually rational payoffs, where the minmax payoff pair is (d, d).
Let us now analyze how the feasible set is affected as players’ concerns about fairness increase. In

particular, Figure 4 similarly to illustrates sets of feasible payoffs for players with positive concerns
about fairness, βi > 0, and compares those with the set of feasible payoffs for a player who assigns no
value to fairness, FPNF .

21For simplicity, Figures 3ab consider the case where d < b+c
2 < a. We would obtain similar figures under alternative

parametric restrictions.
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Figure 3. 3(a). Set of feasible payoffs. 3(b). Individually rational payoffs.

Figure 4 reveals that as fairness concerns increase, the set of feasible payoffs shrinks like a fan
closing its arms along the main diagonal, with its end at the pair of payoffs resulting from mutual
cooperation, (a, a). Specifically, the blue set (long-dash) of feasible payoffs, FP1, illustrates players
with low concerns about fairness, i.e., β1, β2 ∈

(
0, b−a

b−c

]
. Further increases in fairness concerns are

represented by the red set (short-dash) of feasible payoffs, FP2, where β1, β2 ∈
(
b−a
b−c ,

b−d
b−c

]
. Note that

at FP1 defection is still a best response to cooperation. At FP2, however, cooperation becomes a best
response to cooperation.

Figure 4. Set of feasible payoffs for βi > 0.

Next, for the FP2 set of feasible payoffs illustrated in Figure 4, Figure 5 shades the portion of that
set representing feasible and individually rational—FIR—payoffs. (Other FIR sets given FP sets are
constructed similarly). Notice first that the FIR payoffs when players are concerned about fairness
are not simply the payoffs to the northeast of the payoff pair (d, d), as in the case where individuals
are not concerned about fairness (possess standard, self-interested preferences). Instead, when players
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are concerned about fairness, they now experience a disutility from all payoffs that lie away from
the main diagonal (unequal payoff vectors), which results in the set of FIR payoffs becoming more
compressed around egalitarian payoffs. We identify the set of FIR payoffs in the case where players are
concerned with fairness, in particular the constraining payoff vectors xi as illustrated in Figure 5, in the
following corollary.

Figure 5. Effects of higher αi on the FIR set.

Corollary 2. In the infinitely repeated Prisoner’s Dilemma game where individuals have social
preferences, every player i’s individually rational payoffs (within the set of feasible payoffs) must satisfy
xi > vi, where vi ≡ d

1+αi
+ αi

1+αi
xj for every player i. Additionally, vi is increasing in the envy

parameter, αi.

Hence, as individuals become more envious (as αi increases), the lower bound of the set of FIR
payoffs, vi, shifts (downwards for player 1, v1, and upwards for player 2, v2) shrinking this set from
above and below, respectively—resulting in the shaded area, as illustrated in Figure 5. Furthermore,
increases in players’ guilt aversion βi must satisfy the preference assumption that αi ≥ βi. Thus, higher
βi will serve to shrink the size of the FIR set, as illustrated in Figure 5. If, in contrast αi, βi → 0,
Corollary 2 reveals that the FIR set coincides with that illustrated in Figure 3(b) for selfish players,
vi = vj = d.

Note the different roles played by envy and guilt concerns in the repeated game. On the one hand,
Proposition 1 indicates that the minimal discount factor necessary to support cooperation in the infinitely
repeated game decreases with players’ guilt concerns (βi). On the other hand, increases in individual’s
envy concerns (αi) affect how egalitarian the payoff distribution in the repeated game must be, provided
that players choose to cooperate in the repeated game, i.e., as Corollary 2 describes, an increase in αi
shrinks the set of FIR payoffs. Therefore, guilt serves as a “tool” for supporting cooperation under
larger parameter values, whereas envy allows players to reach more equitable payoffs, provided that
cooperative behavior can be sustained.
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Hence, we can conclude that the set of FIR payoffs in the infinitely repeated game weakly shrinks
as players become more concerned with fairness. This finding may be contrasted with that of Abreu et
al. (1990), who show, in the context of infinitely repeated games in which players are not concerned
about fairness, that the set of FIR payoffs weakly expands with increases in players’ discount factor
(i.e., as players assign a higher value to future payoffs, the set of FIR payoffs that can be supported
as equilibria of the repeated game expands). Thus our result complements that of Abreu et al. (1990)
by suggesting the existence of an opposing force affecting the size of the set of FIR payoffs: higher
discount factors weakly expand this set, while higher concerns about fairness serve to shrink the same
set. In other words, our results show that the introduction of considerations about fairness work as a tool
to reduce the multiplicity of strategy profiles that can be sustained as perfect equilibria in the infinitely
repeated game.22

6.1. Patience or Fairness? Experimental Evidence

The above results suggest that a certain pair of payoffs can be sustained with a continuum of discount
factors and concerns about fairness (different combinations of δi and βi). Importantly, this implies that
observed cooperation between players in infinitely repeated games could be due to a mix of these two
factors.23 Hence, our results suggest the possibility of some confusion as to which concern it is that
leads players to sustain cooperation over time in repeated game experiments: is it patience alone (high
δi values), is it fairness alone (high βi values), or is it a combination of the two?

Our previous results provide a partial answer to this question. In the area in which no overlap occurs
(the unshaded area of FPNF in Figure 5 which does not overlap with FP2, for instance, and within
boundaries v1 and v2), players’ cooperation is sustained because of individuals’ time preferences alone.
However, in the overlapping regions (the shaded area of FPNF coinciding with that of FP2 in Figure 5),
players’ cooperation in repeated games could be supported by combinations of discount factors and/or
concerns about fairness.

Let us relate this theoretical prediction to some experimental data from an indefinitely repeated
Prisoner’s Dilemma game experiment reported in Duffy and Ochs (2009). In Figure 6 we show FIR
payoffs for the parameterization of the indefinitely repeated Prisoner’s Dilemma game that Duffy and
Ochs implemented in the laboratory.24 We then add average payoff data (from Duffy and Ochs’s
fixed pairings, indefinitely repeated game treatment) so as to compare these realized payoffs with our
equilibrium predictions. In this figure we use black dots to represent the average payoffs accruing to
fixed pairs of subjects over all rounds played in an indefinitely repeated Prisoner’s Dilemma game.

22Similarly to the standard literature on repeated games, however, our results still predict multiple strategy profiles being
supported in the subgame perfect equilibrium of the game. Nonetheless, our results help eliminate equilibria where per-period
payoffs are relatively asymmetric if players are highly concerned about social preferences.

23We suspect that a confound between patience and fairness concerns also exists in finitely repeated games, which are more
frequently studied in the experimental literature.

24Duffy and Ochs (2009) parameterize the stage game using a = 20, b = 30, c = 0 and d = 10. These numbers correspond
to payoffs in US$ cents per round played. They use a continuation probability, δ = .90, to test whether repeated interaction
and learning lead to further cooperation. For details see Duffy and Ochs (2009).
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Figure 6. Comparison with observed behavior.

In particular, Figure 6 compares our predictions with respect to observed behavior for the case where
players’ social preferences are moderate, β1 = β2 = 1

3
, labeled FP2. As Figure 6 reveals, individual

subject behavior in the experiment can be explained: (1) by relying on individuals’ time preferences
alone (see the average payoff values lying outside the set of shaded FIR payoffs in Figure 6 but within
the FPNF set); or (2) relying both on individuals’ time and social preferences (payoffs lying within
the shaded set of FIR payoffs in Figure 6). In particular, we observe that most of the experimental
observations on payoffs (64%) lie within this FIR set. Such payoff observations can be supported using
either social or time preferences, or some combination of both. The rest of the experimental observations,
lying outside the FIR set, cannot be sustained using social preferences alone (or a combination of social
and time preferences) but can be supported based on time preferences alone. As concerns about fairness
become more extreme, however, the set of FIR payoffs shrinks. As a consequence, more payoff pairs
start to lie outside the FIR set of players sustaining social preferences, but still lie within the FIR set for
players who are not concerned about fairness as represented in Figure 3(b). Hence, such payoff outcomes
can be rationalized on the basis of time preferences alone.25

7. Conclusions

In this paper we have investigated how the introduction of social preferences and fairness concerns
may affect players’ equilibrium behavior in both one-shot and infinitely repeated versions of the
Prisoner’s Dilemma game. In particular, we analyze how fairness concerns modify players’ incentives
to cooperate in both versions of the game. In the one-shot stage game, we show that introducing players
who are concerned about fairness might lead to cooperative outcomes in equilibrium, but only if both
players assign a sufficiently high value to guilt. We then show that, in the infinitely repeated version of
the game, the cooperative outcome can be sustained in equilibrium for lower discount factors when

25Note that, as in other experimental tests of infinitely repeated games, the game is repeated a finite number of times and
hence players’ observed average payoffs can differ from the predicted expected payoffs in the infinitely repeated game.
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players are concerned about fairness than when they are not. This finding is consistent with some
experimental evidence from indefinitely repeated games where the induced discount factor is too low
to support cooperation under the assumption of rational, self-interested players.

We then investigate information transmission when players interact in a twice-repeated simultaneous
prisoner’s dilemma game with one-sided asymmetric information about one player’s concerns for
fairness. A pooling equilibrium can be supported in which an informed player unconcerned about
fairness initially cooperates in order to mislead his uninformed opponent. Specifically, this misleading
strategy induces the uninformed player to cooperate in the subsequent game, when the unconcerned
player takes the opportunity to defect. This pooling equilibrium might explain incidences of end-game
or “last-minute” defections in experimental settings. We also examine the infinitely repeated version of
the two-sided incomplete information game, showing that cooperation becomes more difficult to sustain
under incomplete than under complete information.

Finally, our findings suggest a potential confound in the interpretation of experimental results showing
high levels of cooperative behavior in infinitely (indefinitely) repeated games, which has recently become
the subject of much study in the experimental literature. First, our findings can be used to rationalize
observed cooperative behavior in experimental settings with low induced discount factors where the Folk
theorem for repeated games with discounting (under standard preferences) would predict an absence of
cooperative behavior. Second, even in settings where this Folk theorem applies, we have shown how
observed cooperation frequencies may be explained by time preferences alone or by a combination of
time and social preferences. As a first step toward disentangling these two effects, we provide payoff
vectors for which cooperation in the repeated game may only be rationalized using time discounting.
Nonetheless, more experimental research on this topic is clearly needed, in order to clarify this
potential confound.

Appendix

Proof of Lemma 1
Let us first analyze player i’s best response function. If βi ≤ b−a

b−c then defect is a strictly dominant
strategy for player i. Indeed if player j cooperates, player i prefers to defect since a ≤ b − βi(b − c)
given that βi ≤ b−a

b−c , and if player j defects player i prefers to defect because c − αi(b − c) < d given
that c−d

b−c < 0 ≤ αi by definition. If instead βi > b−a
b−c , then player i’s best response to cooperation is to

cooperate since a > b − βi(b − c) for all βi > b−a
b−c , but his best response to defection is to defect given

that c − αi(b − c) < d for all c−d
b−c < 0 ≤ αi. Thus in this case where βi > b−a

b−c , player j may cooperate
with probability q so as to make player i indifferent between cooperating and defecting:

qa+ (1− q)[c− αi(b− c)] = q[b− βi(b− c)] + (1− q)d

which yields q = d−c+αi(b−c)
a+d−c−b+(αi+βi)(b−c) ≡ q(αi, βi). In addition, note that the probability cutoff q(αi, βi)

is positive and smaller than one since βi > b−a
b−c . Given players’ best responses, if either βi ≤ b−a

b−c or
βj ≤ b−a

b−c , then the unique Nash equilibrium of the game is (D,D). Otherwise (if both βi > b−a
b−c and

βj >
b−a
b−c ), then both players’ best response to C is C, and both players’ best response to D is D. Hence,

when βi, βj > b−a
b−c (C,C) and (D,D) are Nash equilibria of the game in pure strategies. We now must
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check for the existence of mixed strategy equilibria. We know that if βi > b−a
b−c , then player i is indifferent

between selecting C and D if player j randomizes with probability q = q(αi, βi), as described above.
By symmetry, there is a mixed strategy Nash equilibrium where player i cooperates with probability
q(αj, βj) and player j cooperates with probability q(αi, βi).

Proof of Proposition 1
Consider a representative period and suppose that both players have cooperated in all prior periods.

If player i deviates to D (the best response to player j choosing C when βi < b−a
b−c ), then player j’s

trigger strategy specifies the play of D for all future periods following the deviation. Thus in this case,
the deviation by player i in that period yields him the discounted payoff of [b− βi(b− c)] + δi

1−δid.

By contrast, if player i does not deviate in that period, so that both individuals continue cooperating,
player i obtains a discounted payoff of 1

1−δia. Comparing these two payoffs, we find that the deviation by
player i is unprofitable if and only if δi ≥ (b−a)−βi(b−c)

(b−d)−βi(b−c) ≡ δFi (βi) for every player i. Note that, in the case
that players do not assign any value to guilt, βi = 0, we have δFi (0) = b−a

b−d ≡ δNFi . In addition, δFi (βi)

is decreasing in βi given that ∂δFi (βi)

∂βi
= − (b−c)(a−d)

[d−cβ+b(β−1)]2 is negative since b > c and a > d. Furthermore,

δFi (βi) > 0 for all βi < b−a
b−c . We can then express δFi (βi) as a function of δNFi , as follows:

(b− a)− βi(b− c)
(b− d)− βi(b− c)

=
b− a
b− d

− βi(b− c)(d− a)
(b− d) [βi(b− c)− b+ d]

Notice further that the difference δNFi − δFi (βi) =
βi(b−c)(d−a)

(b−d)[βi(b−c)−b+d] is positive for all βi < b−d
b−c , and

that δFi (βi) becomes zero for βi ≥ b−a
b−c .

Finally, we need to show that a player would choose D forever, once either individual deviated in an
earlier period. In order to prove this, note that if player j deviates, then he would be required to play D
in all future periods. Further, player i’s best response to individual j’s playing D is to play D himself
(we showed that in lemma 1). Therefore, the trigger strategies defined above comprise a subgame perfect
equilibrium of this infinitely repeated Prisoner’s Dilemma game.

Proof of Proposition 2
First note that, if players’ concerns about fairness can be perfectly inferred from their choices during

the first period of the game, then beginning with the second period, the game is one of complete
information, resembling the one addressed in Proposition 1. In particular, after the first period of
the game player i either: (1) cooperates regardless of his type if and only if his discount factor δi is
sufficiently high, i.e., if δi ≥ δF (βLi ) ≥ δF (βHi ); (2) defects regardless of his type if and only if his
discount factor is sufficiently low, i.e., if δF (βLi ) ≥ δF (βHi ) > δi; or (3) cooperates if his concern for
fairness is high, δi ≥ δF (βHi ), but defects if his concern for fairness is low, δi < δF (βLi ), which occurs
when his discount factor is intermediate, i.e., when δF (βLi ) > δi ≥ δF (βHi ). In the first two cases there
is no information transmission from player i’s first-period actions to his opponent (player j), since all
types of player i either cooperate or defect in the continuation game. By contrast, in the third case,
first period actions may communicate information about the player i’s type. We focus on this case next.
(Recall that the envy parameter α and players’ discount factors are common knowledge among players).
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Every player i cooperates during the first period of the game when his preferences for fairness are high
βi = βHi > b−a

b−c , if

qj

[
a+

δi
1− δi

a

]
+ (1− qj)

[
c− α(b− c) + δi

1− δi
d

]
≥ qj

[
b− βHi (b− c) +

δi
1− δi

d

]
+ (1− qj)

[
d+

δi
1− δi

d

]
where qj denotes the probability that βj = βHj > b−a

b−c , while 1− qj is the probability of βj = βLj <
b−a
b−c .

Solving for δi, we obtain that cooperation can be supported if and only if

δi ≥ 1 +
(d− a)qj

d− c+ qj(b+ c− 2d)− (b− c)[qjβHi + (qj − 1)α]
≡ δUFi (α, βHi )

If player i’s preferences for fairness are low, βi = βLi <
b−a
b−c , defection during the first stage of the game

can be supported if

qj

[
a+

δi
1− δi

a

]
+ (1− qj)

[
c− αi(b− c) +

δi
1− δi

d

]
< qj

[
b− βLi (b− c) +

δi
1− δi

d

]
+ (1− qj)

[
d+

δi
1− δi

d

]
which simplifies into δi < δUFi (α, βLi ), where δUFi (α, βLi ) ≥ δUFi (α, βHi ). Therefore, player i’s discount
factor δi must satisfy δUFi (α, βLi ) > δi ≥ δUFi (α, βHi ) for this equilibrium to be sustained. Finally, note
that

∂δUFi (α, βi)

∂βi
= − (b− c)(a− d)qj

[c− d− qj(b+ c− 2d) + (b− c)(qjβi + (qj − 1)α)]2
< 0

and
∂δUFi (α, βi)

∂α
= − (b− c)(a− d)(qj − 1)qj

[c− d− qj(b+ c− 2d) + (b− c)(qjβi + (qj − 1)α)]2
> 0

Proof of Proposition 3
Let us first consider the case in which players do not exhibit social preferences. Assume that there is

an action profile a = (ai, a−i) with payoff U(a) = x, where x ∈ X and xi > x̃i for every player i, and
consider the following strategy profile: in period zero each player i plays ai. Each player i continues to
play ai so long as a was played in all previous periods. If at least one player did not play according to a,
then every player i reverts to the minmax action for the rest of the game, with associated payoff x̃i. This
strategy profile is a Nash equilibrium of the infinitely repeated game for discount factors, δi, such that

1

1− δi
xi ≥ max

ai
Ui (a) +

δi
1− δi

x̃i ⇐⇒ δi ≥
maxai Ui (a)− xi
maxai Ui (a)− x̃i

= δNFi

This strategy profile is subgame perfect, given that, in every subgame off-the-equilibrium path, the
strategies are to play x̃i forever, the Nash equilibrium of the stage game. Finally, note that when player
i is concerned about fairness, his maximal benefit to a deviation from cooperation, maxai U

F
i (a), is

weakly lower than that when he is not concerned about fairness, maxai Ui (a), because of the guilt he
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experiences from being the player with the highest payoff, i.e., maxai U
F
i (a) ≤ maxai Ui (a), Hence,

δNFi ≥ δFi (βi) is satisfied if and only if

maxai Ui (a)− xi
maxai Ui (a)− x̃i

≥ maxai U
F
i (a)− xFi

maxai U
F
i (a)− x̃iF

where we do not impose any assumption on the symmetry of payoffs, i.e., allowing for xi 6= xFi and
x̃i 6= x̃i

F for any αi, βi > 0. Otherwise, when the payoff structure satisfies weak symmetry, so that both
xi = xFi and x̃i = x̃i

F hold, this implies that the above inequality becomes

maxai Ui (a)− xi
maxai Ui (a)− x̃i

≥ maxai U
F
i (a)− xi

maxai U
F
i (a)− x̃i

which can be simplified to maxai Ui (a) (xi − x̃i) ≥ maxai U
F
i (a) (xi − x̃i), which is satisfied for any

parameter values, since maxai Ui (a) ≥ maxai U
F
i (a) and xi > x̃i. Therefore, δNFi ≥ δFi (βi).

Proof of Corollary 1
Note that social preferences are introduced in the proof of Proposition 3 by considering that a player’s

maximal benefit to a deviation from cooperation when he is concerned about fairness, maxai U
F
i (a),

is weakly lower than that when he is not concerned about fairness, maxai Ui (a), i.e., maxai U
F
i (a) ≤

maxai Ui (a). No conditions are assumed about the players’ payoffs xi and xFi , or about x̃i and x̃i
F .

These assumptions embody both linear and non-linear social preferences.

Proof of Corollary 2
First, note that the payoff from the pure strategy Nash equilibrium of the stage game, d, exceeds that

from the mixed strategy Nash equilibrium of the stage game if and only if βi < b−d
b−c , which holds in this

section. Payoffs pairs (xi, xj) above the reservation utility for player i imply that xi − βi(xi − xj) > d

when payoffs satisfy xi ≥ xj , imply that xi − αi(xj − xi) ≥ d when instead payoffs satisfy xi < xj .
More compactly we have

xi ≥
d

1− βi
− βi

1− βi
xj for all i and j, if xi > xj and

xi ≥
d

1 + αi
+

αi
1 + αi

xj for all i and j, if xi < xj

respectively. These two lower bounds cross at payoff xj = d; the first is below the second for all xj > d,
and similarly for player j. Consider the lower bounds for player i. For all xi > d, the first bound is
below the second, and hence only the second inequality is binding for every player i. Therefore, the
set of individually rational payoffs can be defined by xi ≥ d

1+αi
+ αi

1+αi
xj . Differentiating with respect

to αi we obtain ∂xi
∂αi

=
xj−d

(1+αi)
2 , which is positive for all xj > d in the relevant region of the set of

FIR payoffs.
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