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Abstract: Costly signaling is a mechanism through which the honesty of signals can be
secured in equilibrium, even in interactions where communicators have conflicting interests.
This paper explores the dynamics of one such signaling game: Spence’s model of education.
It is found that separating equilibria are unlikely to emerge under either the replicator
or best response dynamics, but that partially communicative mixed equilibria are quite
important dynamically. These mixtures are Lyapunov stable in the replicator dynamic and
asymptotically stable in the best response dynamic. Moreover, they have large basins of
attraction, in fact larger than those of either pooling or separating equilibria. This suggests
that these mixtures may play significant, and underappreciated, roles in the explanation of
the emergence and stability of information transfer.
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1. Introduction

How can the honesty of communication between two agents be ensured when their interests do not
coincide? This is one way of framing the question Spence [1] posed in his seminal paper about job
market signaling. His famous answer was that a particular structure of costly signaling can guarantee
honesty in equilibrium. However, a complication typical of signaling models in this tradition is that they
often have an infinite number of equilibria. Such an abundance of equilibria makes equilibrium selection
a daunting task. Those seeking to address this issue have often posited equilibrium refinements with the
aim of identifying only a small number of plausible equilibrium outcomes.1

1Nöldeke and Samuelson [2] and Jacobsen et al. [3] are exceptions. Their findings are outlined in Section 2 and related to
the results of this study in Section 5.



Games 2013, 4 164

This paper takes a different approach to equilibrium selection in Spence’s original model of education.
Instead of applying an equilibrium refinement, Spence’s game will be embedded into two common game
dynamics: the replicator and best response dynamics. These dynamics arise from very different modeling
assumptions. The replicator dynamic is a paradigm example of an unsophisticated process of imitation,
whereas the best response dynamic is an archetype of myopic rational behavior. Nonetheless, both
have been proposed as models of learning in games [4,5]. In order to study equilibrium selection and
maintenance, the dynamic stability of the equilibria in Spence’s model and the sizes of the basin of
attraction of each attractor will be investigated under both these dynamics.

Section 2 reviews Spence’s game and Section 3 carries out this study into the dynamics. It is found
that mixed equilibria, which are largely ignored in the signaling literature, play a very important role in
the emergence and stability of information transfer. It is proven that these mixtures are Lyapunov stable
in the replicator dynamic and asymptotically stable in the best response dynamic. It is also shown that
these mixtures have large basins of attraction; so large, in fact, that randomly chosen initial conditions
are more likely to lead to a mixture than to one of the pure equilibria, which are those generally selected
by standard refinements. Since both dynamics are most easily interpreted as models of large populations,
these mixtures are naturally interpreted as polymorphic market states. Additionally, when multiple
separating equilibria are present in the model, only the separating equilibrium in which high quality
senders use the cheapest signal that is too costly for low quality types to profit by duplicating—called
the Riley equilibrium—is stable under the best response dynamic. The Riley equilibrium also has
the largest basin of attraction, at least when compared with other separating possibilities, under the
replicator dynamic.

These results are discussed and connected to the literature in Section 5. It is suggested that this class
of mixed equilibria may play a significant, and under-appreciated, role in the explanation of information
transfer in competitive markets. Due to the fact that costly signaling games arise also in models of
various biological [6,7] and linguistic phenomena [8–11], these results indicate that attention to mixed
equilibria may be fundamental for an understanding of the evolution of communication more generally.

2. Job Market Signaling

The standard presentation of Spence’s [1] model of education takes the form of a signaling game
with two players: a worker (the sender) and an employer (the receiver); see, e.g., [12], [13], or [14] for
textbook accounts. The worker knows her ability level θ, but her prospective employer does not. After
observing θ, the worker chooses some level of education e ∈ R+ to purchase. The worker incurs a cost
c(θ, e) obtaining this education. It is assumed that the value of the worker to the employer is θ, and that,
after observing the worker’s message (choice of e), the employer pays the worker a wage w that is equal
to the employer’s expectation of θ. To model this assumption the employer is frequently presumed to
seek to minimize the quadratic difference between the wage and θ, hence the payoff to the employer is
given as −(w − θ)2. The payoff to the employee is w − c(θ, e).

To simplify analysis, it is typically assumed that employees are one of two types; i.e., θ ∈ {θL, θH}.
Denote the probability of a worker being of these types pL and pH (with pH = 1 − pL). Following
Spence’s original article, let c(θ, e) = e

θ
, θL = 1, and θH = 2, so that c(θL, e) = e and c(θH , e) = e

2
.
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These assumptions are not necessary for the equilibrium analysis of Spence’s model, but they make the
dynamical analysis of the next section tractable, so for ease of exposition they are made now.

It is well known that this game has an infinite number of perfect Bayesian equilibria. Coupled with the
appropriate beliefs, they come in three flavors: pooling, separating, and hybrid. In a pooling equilibrium
both types of worker send the same message e∗ and the employer offers the wagew∗ = pL+2pH = 1+pH

upon the receipt of this message. In this sort of equilibrium the worker does not reveal any information
about her type. In a separating equilibrium, type θH workers send message e∗ ∈ [1, 2] and type θL
workers send eL = 0. The employer then offers the wage 2 upon receipt of message e∗ and 1 upon
receipt of message eL. Education level functions as a perfect indicator of worker productivity in a
separating equilibrium.

Hybrid equilibria are mixtures in which one type of worker chooses one level of education with
certainty and the other type randomizes between pooling and separating. In these mixed equilibria,
education level carries some information, but information transfer is imperfect. An example of a
particular hybrid equilibrium is given in the following section. Hybrid equilibria are often ignored in
discussions of Spence’s signaling game 2, but the dynamic analysis presented in the rest of this paper
suggests that they may play an important role in the informational structure of markets.

So there are three types of equilibria and a continuum of each type. Many refinements have been
proposed to limit this variety to just the reasonable equilibria. Indeed, the signaling and screening
refinement literature is so immense that it is impossible to summarize even a small fraction of it here.
Here, however, are two influential refinements. Riley [17] showed (in a more general model) that there
is a unique equilibrium that Pareto dominates the family of separating equilibria, and this equilibrium
(sometimes called the Riley equilibrium) is one in which high quality senders use the cheapest signal
that is too costly for low quality senders to duplicate. In light of this fact, it is natural to think that if a
market finds its way to a separating equilibrium, we should expect it to be the Riley equilibrium. After
all, why would high quality senders invest in a more expensive signal than is necessary? In terms of
Spence’s model as described above, the Riley equilibrium is the separating equilibrium with e∗ = 1.
In a different approach to equilibrium selection, Cho and Kreps [18] suggested refining beliefs off
the equilibrium path. Their Intuitive Criterion, as applied to Spence’s model, has a great deal of
bite. It eliminates all equilibrium outcomes except the Riley equilibrium. In a related paper Cho and
Sobel [16] analyze another refinement of off equilibrium path beliefs that selects the Riley equilibrium
in this game.3

Nöldeke and Samuelson [2] pioneered an alternative approach to equilibrium selection in Spence’s
model. Finding inspiration in Spence’s remark that certain equilibrium outcomes would not survive
a dynamic process of belief and strategy revision coupled with arbitrarily small perturbations, they
investigated such a dynamic model explicitly. Their “Spencian” dynamic leads to one of three types
of recurrent sets. One such set is the Riley equilibria. Another contains pooling equilibria. The third
contains a two period cycle. The cycles consists of type θH senders always sending the message e∗

2They are not mentioned in either Fudenberg and Tirole [12] or Osborne and Rubinstein [14], and are not discussed in
Spence [1]. Similarly, in his expansive survey of screening and signaling research, Riley [15] does not cover these mixtures.
They are, however, discussed in Cho and Sobel [16] and Gibbons [13],

3Furthermore, in the pruned Spence game that is introduced in the next section, their refinement selects the hybrid
equilibrium when a separating equilibrium does not exist.



Games 2013, 4 166

and type θL senders switching between sending e∗ and eL on each iteration of the dynamic. These
cycles roughly correspond to the hybrid equilibria described above, and Nöldeke and Samuelson show
that this cycle exists if an only if there is a mixed sequential equilibrium of the variant of Spence’s
model developed in [18]. This approach has been further pursued by Jacobsen et al. [3], who extended
Young’s [19] stochastic dynamic for agents with limited memories to games of incomplete information.
They found that this stochastic process yields a strong prediction: whenever the signaling game has
separating equilibria, in the long-run this system’s limiting distribution will put almost all its weigh on
the Riley equilibrium.

Here a complementary approach is pursued. Instead of investigating a dynamic tailor-made for
Spence’s game (like Nöldeke and Samuelson [2]) or the limiting distribution of a Markov process
(like Jacobsen et al. [3]), I will simply embed this game into the two most vanilla learning dynamics
around (the replicator and best response dynamics). Section 5 compares the results yielded by these
different approaches.

3. Pruning Spence’s Game

The previous section reviewed how it is that message cost structure can allow honest signaling
in equilibrium. However, a purely static analysis limited to a game’s equilibrium structure leaves
some important questions unanswered. For example, how likely is it that a population of senders and
receivers ends up at a separating equilibrium instead of at pooling or at a mixture? Another unaddressed
question is whether or not such a population is guaranteed to converge to an equilibrium. Nöldeke
and Samuelson’s discrete-time revision protocol did not always converge to an equilibrium, but what
about more run-of-the-mill dynamical systems? Such dynamics are known to exhibit complex behavior
in some circumstances. For example, neither the replicator dynamic nor the best response dynamic is
guaranteed to converge to the mixed Nash equilibrium of generalized rock-paper-scissors. Instead, the
population may cycle around the equilibrium or spiral outward toward the boundary of phase space
under the replicator dynamic, or end up oscillating endlessly in a stable limit cycle under the best
response dynamic [20]. In any case, results of this sort demonstrate the importance of understanding
out-of-equilibrium play and how it can lead to—or deviate from—equilibrium.

However, in order to study the dynamics here in detail, it is necessary to prune the strategy space
of Spence’s game because there is not a thoroughly developed theory of adaptive dynamics for games,
and in particular asymmetric Bayesian games, with infinite strategy spaces. If the important dynamical
question is understanding how a system evolves to either pooling, separating, partial communication,
or non-convergence, then an obvious way to shrink the strategy space is to limit workers to just two
messages: the costless message eL = 0 and a more expensive message e∗. Then it is natural to focus
on just three pure strategies for the worker: pool by always sending eL, separate by sending eL when
type θL and e∗ when type θH , and pool by always sending e∗. Call these strategies Low, Sep, and High.
This restriction enables us to focus on just two pure employer strategies: act as though the signal carries
no information about type by offering the pooling wage 1 + pH , and act as though the signal perfectly
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identifies the type (i.e., offer 1 if eL is received and offer 2 if e∗ is received). Call the former strategy
Pool and the latter Sep. This pruned extensive form game is shown in Figure 1.4

Figure 1. The extensive form representation of Spence’s game in which workers choose
from only two levels of education and employers either act as though senders are pooling
(P ) or act as though the message indicates low quality (L) or act as though the message
indicates high quality (H).
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Both the replicator dynamic and the best response dynamic are infinite population models, and payoffs
to strategy types are given by the type’s expected payoff when matched with a random member of the
population. Therefore, we can now focus analysis on the 3× 2 normal game shown in Table 1 in which
the payoffs are the expectations of payoffs from the extensive form game. Notice that if the receiver
plays Pool, the sender’s unique best response is to play Low. Likewise, the receiver’s best response to
Low is to play Pool. Thus, the profile (Low, Pool) is a strict Nash equilibrium. It corresponds to a
pooling equilibrium in Spence’s original game; workers do not purchase education and employers do not
listen to signals.

Similarly, the receiver’s unique best response toHigh is to play Pool. Likewise, the receiver’s unique
best response to a sender who separates is to play Sep herself. These best response relationships are
independent of the cost of the more expensive message, e∗. To determine the equilibrium structure of
this game, It only remains to determine sender’s best response to a receiver playing the pure strategy Sep.
Sep will be the sender’s unique best response if and only if 1 < e∗ < 2. Accordingly, when 1 < e∗ < 2,
the profile (Sep, Sep) corresponds to a separating equilibrium in the full game.

On the other hand, if 0 < e∗ < 1 then this separating profile is not an equilibrium. Nonetheless, an
important mixed equilibrium exists for these values of e∗. The profile in which the sender randomizes

4Note that the interaction here is modeled as a two-player game. One player is the worker, and nature chooses her type.
As was pointed out by a referee, in some economic applications it may be more natural to treat different worker types as
different players. Although this is true, such a model would not be amenable to straightforward analysis in the dynamics
considered here.
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between Sep and High with probabilities pL and pH , and the receiver randomizes between Pool and
Sep with probabilities 1− e∗ and e∗ respectively is a Nash equilibrium when 0 < e∗ < 1. It corresponds
to a hybrid equilibrium in the original game in which high productivity workers send message e∗ with
certainty and low productivity workers randomize between separating from and pooling with the high
type. The mixed strategy space and best response correspondences for both cases are drawn in Figure 2.
These correspondences are crucial for analyzing the best response dynamic below.

Table 1. The pruned Spence signaling game.

Pool Sep

Low 1 + pH ,−pLpH 1,−pH

Sep 1 + pH − pHe
∗

2
,−pLpH 1 + pH − pHe

∗

2
, 0

High 1 + pH − pLe∗ − pHe
∗

2
,−pLpH 2− pLe∗ − pHe

∗

2
,−pL

Figure 2. Best response correspondences for the pruned Spence signaling game with (a)
1 < e∗ < 2 and (b) 0 < e∗ < 1. The sender’s best reply is shown by the thick line. The
receiver’s best reply is shown by the translucent surface. x2 signifies the probability that the
sender plays Sep, x3 the probability that the sender plays High, and y2 the probability that
the receiver plays Sep. Nash equilibria are highlighted by black dots.
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Although this 3 × 2 game has eliminated an infinite number of sending and receiving strategies, it
still captures the spirit of Spence’s model. Pooling is always an equilibrium outcome, and separating
can be an equilibrium if the high quality types send a sufficiently costly message. Thus, just like in
Spence’s model, a costly education can signal high quality and secure high wages even though education
itself may not increase productivity. Now that we have a two player normal form game that retains some
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of the structure of Spence’s original model, it is possible to proceed in analyzing the dynamics of job
market signaling.

4. Dynamics

The adaptive dynamics considered here are the two-population replicator and best response dynamics.
The first population is the population of workers. Denote the proportion that chooses each strategy Low,
Sep, and High as x1, x2, and x3. The second population consists of employers. Let y1 and y2 be the
proportions of the population that play Pool and Sep. Because x1 + x2 + x3 = 1 and y1 + y2 = 1, the
dynamics for this system live in the three dimensional space ∆3×∆2 where ∆n is the n−1 dimensional
simplex {(p1, . . . , pn) | pi ≥ 0,

∑
pi = 1}. Coordinates in phase space will be written (x2, x3, y2).5

The replicator dynamic for the pruned game is given by the three differential equations

ẋ2 = x2 [(Ay)2 − x · Ay]

ẋ3 = x3 [(Ay)3 − x · Ay]

ẏ2 = y2 [(Bx)2 − y ·Bx]

(RE)

where A is the sender’s 3 × 2 payoff matrix and B is the receiver’s 2 × 3 payoff matrix. Although
this dynamic was originally formulated by [21] to model natural selection in an asexually reproducing
population, it also provides a model of cultural learning in economic situations. In this context, the
equations give the fluctuations in strategy distributions as agents imitate successful members of their
population. In other words, these equations describe large populations of employers and workers
in which individual agents, when called on to revise their strategy choice, choose to imitate a more
prosperous player [22].

An advantage of focusing on the replicator dynamic is that stability analysis of its rest points can
provide information about the stability of these points under all two population uniformly monotone
selection dynamics. This family of game dynamics is characterized by a positive linear correlation
between relative growth rates and payoff differences. Since a rest point is asymptotically stable for
the replicator dynamic if and only if it is asymptotically stable under every two population uniformly
monotone selection dynamic ([23], Theorem 3.5.3), studying this process provides an understanding of
the behavior of this larger class of selection dynamics.

The best response dynamic for the pruned game is written as

ẋ2 = BR(y)− x2
ẋ3 = BR(y)− x3
ẏ2 = BR(x)− y2

(BR)

where BR(y) = {x̂ ∈ ∆3 | x̂ · Ay ≥ x · Ay for all x ∈ ∆3} and BR(x) is defined similarly.6 The
usual interpretation of this dynamic is that a small fraction of each large population revises their strategy
at each time interval. Upon revision, they choose a best reply to the current state. A complication in

5It is convenient here to work directly with x2, x3, and y2 instead of x1 or y1.
6Since BR is a set-valued function, the best response dynamic is not technically a dynamical system. Instead it is a

differential inclusion.
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analyzing this system is that it is not in general differentiable at rest points (Nash equilibria) because it
is at these points where BR abruptly changes and is often many-valued. However, an analytic virtue of
this dynamic is that piecewise linear solutions can be constructed from any initial condition. This is due
to the fact that, at every state, the best response dynamic moves the population in a straight line toward
the current best reply profile; see, e.g. [24] or [23]. This fact will be used in the constructions below.

4.1. Separating Equilibria

When 1 < e∗ < 2 the dynamics of the pruned game shown in Table 1 are straightforward. There
are two strict Nash equilibria: (Low, Pool) and (Sep, Sep). Therefore, the corresponding states (0, 0, 0)

and (1, 0, 0) are asymptotically stable under both dynamics. Furthermore, the pure sending strategy
High is strictly dominated by the pure strategy Sep. Pure strategies that are strictly dominated by other
pure strategies are driven to extinction by both dynamics. Thus every initial condition in the interior
of phase space is brought to the x3 = 0 boundary face. On this boundary face there is a mixed Nash
equilibrium at (pH , 0,

e∗

2
). Through linearization (for the replicator dynamic) or inspection of the best

response correspondences (for the best response dynamic), it is easy to see that this mixed equilibrium is
unstable. Phase portraits for both systems are illustrated in Figure 3. Additionally, since asymptotically
stable rest points in the replicator dynamic are asymptotically stable for every two population uniformly
monotone selection dynamic, we can immediately conclude that the pooling and separating equilibria
are asymptotically stable under all such dynamics.

Figure 3. Phase portraits showing the dynamics of the pruned Spence signaling game with
1 < e∗ < 2 for (a) the replicator dynamic and (b) the best response dynamic. Black and grey
dots indicate stable and unstable rest points respectively.
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A noteworthy feature of these systems is just how small the basin of attraction for the separating
equilibrium is. For the replicator dynamic, it is necessary to use numerical integration to estimate the
proportion of phase space that converges to each of the strict Nash equilibria. On the other hand, for some
values of pH that make the geometry relatively simple, the size of the basin of attraction for separating
under the best response dynamic can be found analytically. The basin of attraction for separating is the
portion of phase space contained within the two two-dimensional separatrices that lead directly to the
unstable rest point, so for the best response dynamic it is possible to find the exact size of the basin that
leads to separating by decomposing the space on the separating side of these separatrices into simple
geometric figures and finding their combined volume. A chart of the proportion of phase space that leads
to separating under both dynamics is shown in Figure 4.

Figure 4. The proportion of phase space that converges to separating under both dynamics
with pH = .5. Each data point for the replicator dynamic is the average of 1000 randomly
chosen initial conditions.
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4.2. Hybrid Equilibria

When 0 < e∗ < 1, the dynamics become more complex. (Low, Pool) remains a strict Nash
equilibrium and hence asymptotically stable. There are also two other rest points, each mixtures. One,
at coordinates (pH , 0,

e∗

2
), is unstable. The other rest point lies at H = (pL, pH , e

∗). This rest point
corresponds to the hybrid equilibrium in which high quality workers always send e∗ and low quality
workers flip a biased coin to determine whether to send e∗ or 0. Unfortunately, establishing the stability
of this state is nontrivial. Linear stability analysis is inconclusive for the replicator dynamic because the
rest point is not hyperbolic. Neither is linear stability analysis feasible for the best response dynamic
because the dynamic is not differentiable at this location. However, the point H is indeed stable under
the replicator dynamic.

Theorem 1. The hybrid equilibrium H = (1 − pH , pH , e
∗) is neutrally stable under the replicator

dynamic when 0 < e∗ < 1.

Proof. See the appendix.

Hirsch et al. [25] call rest points like H “spiral centers.” Initial conditions near H quickly spiral
toward the x1 = 0 boundary face. Then, once on this face, they cycle endlessly in closed periodic orbits
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centered on H . Thus, the hybrid equilibrium H is neutrally stable. Figure 5 shows a phase portrait
for this system. Unfortunately, since H is not a hyperbolic rest point, nothing can be concluded about
the stability of H under all uniformly monotone selection dynamics. A perturbation to the dynamic
will change the system’s qualitative behavior, sending orbits, for instance, either spiraling into or away
from H .

Figure 5. Phase portraits showing the dynamics of the pruned Spence signaling game with
0 < e∗ < 1 for (a) the replicator dynamic and (b) the best response dynamic. Black and grey
dots indicate stable and unstable rest points respectively.
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Although the stability of H under the best response dynamic is not as delicate, it is also not
straightforward to demonstrate. Because the pruned Spence game is a non-degenerate 2 × n game, the
best response dynamic must approach an equilibrium [26]. This rules out the possibility that the system
will enter a cycle, but does not tell us whether or not the hybrid equilibrium is stable. Nevertheless, it can
be proved using a Poincaré map that H is in fact asymptotically stable under the best response dynamic.

Theorem 2. The hybrid equilibrium H = (1 − pH , pH , e
∗) is asymptotically stable under the best

response dynamic.

Proof. See the appendix.

The system’s phase portraits are shown in Figure 5. Since H is not an attractor under the replicator
dynamic, we cannot ask how much of phase space is attracted to H . However, since the linearization of
H does have one negative eigenvalue, it is possible to investigate how much of phase space is attracted
onto the x1 = 0 boundary face. Once again, it is possible to solve for the exact proportion of phase
space that is attracted to H under the best response dynamic (at least for some values of pH for which
the geometry is not too complex). Figure 6 shows the sizes of these basins of attraction for H under both
dynamics. Notice that, for all values of e∗, a greater fraction of phase space ends in either at H or in
oscillations centered on H than ended at the separating equilibrium above.



Games 2013, 4 173

Figure 6. The proportion of phase space that converges to the x1 = 0 boundary face under
both dynamics with pH = .5. Each data point for the replicator dynamic is the average of
1000 randomly chosen initial conditions.
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4.3. Separating vs. Hybrid Equilibria

The above showed that hybrid equilibria are stable under both dynamics and have large basins of
attraction. However, so far this equilibrium type has only been pitted against pooling. Will players
adopt a hybrid equilibrium even when a separating equilibrium is also an option? To approach this
question, it is possible to study a slightly larger strategic form game in which pooling, separating, and
hybrid equilibria all coexist. This enlarged game is shown in Table 2. In the interaction captured by
this expanded game, each worker sends one of three messages: 0, e∗1, or e∗2 with e∗1 < e∗2. The natural
sending strategies include separating with high quality workers sending e∗1 (Sepe∗1) and separating with
those workers sending e∗2 (Sepe∗2). The corresponding receiver strategies interpret all messages less than
e∗1 as originating from a low quality worker (Sepe∗1) and interpret all messages less than e∗2 as indicating
low productivity (Sepe∗2).

Table 2. The expanded pruned Spence signaling game with pH = 1
2
.

Pool Sepe∗1 Sepe∗2

Low 3
2
,−1

4
1,−1

2
1,−1

2

Sepe∗1
3
2
− e∗1

4
,−1

4
3
2
− e∗1

4
, 0 1− e∗1

4
,−1

2

Highe∗1
3
2
− 3e∗1

4
,−1

4
2− 3e∗1

4
,−1

2
1− 3e∗1

4
,−1

2

Sepe∗2
3
2
− e∗2

4
,−1

4
3
2
− e∗2

4
,−1

2
3
2
− e∗2

4
, 0

Both the replicator and best response dynamics for this game live in the five dimensional space
∆4 × ∆3. For 0 < e∗1 < 1 < e∗2 < 2, there are three stable rest points corresponding to the types
of equilibria. The pooling profile (Low, Pool) and the separating profile (Sepe∗2 , Sepe∗2) are strict Nash
equilibria and hence asymptotically stable states. There is also a hybrid equilibrium in which the sender
randomizes between Sepe∗1 and Highe∗1 and the receiver randomizes between Low and Sepe∗1 . This
equilibrium is neutrally stable under the replicator dynamic and asymptotically stable under the best
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response dynamic. In fact, the replicator dynamics from Sections 4.1 and 4.2 above are recaptured on
boundary faces of the replicator dynamic for the expanded game in Table 2.

It is convenient to use the logit dynamic to estimate the proportion of the space attracted to each rest
point under the best response dynamic. For small values of η, this dynamic, given here by

ẋi =
exp

(
(Ay)i
η

)
∑3

j=1 exp
(

(Ay)j
η

) , ẏi =
exp

(
(Bx)i
η

)
∑2

j=1 exp
(

(Bx)j
η

)
approximates the best response dynamic [27]. Figure 7 shows the number of randomly chosen initial
conditions that converged to the pooling, separating, and hybrid equilibria. Notice that for all values of
e∗1, the hybrid face attracts a larger portion of phase space than the separating equilibrium. Indeed, even
under the best of conditions, perfect communication seems a relatively unlikely outcome of the dynamic
process. Most initial states lead to partial information transfer or to no communication at all.

Figure 7. The number of randomly chosen initial conditions that converged to pooling,
separating, and the hybrid face under both the replicator dynamic and the logit dynamic with
η = .01. e∗2 is held fixed at 1.025 while e∗1 is varied.
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4.4. Riley Equilibria

It is also possible to use the expanded game from Table 2 to investigate which of two separating
equilibria the dynamics is most likely to lead to. When 1 < e∗1 < e∗2 < 2, the sending strategy Highe∗1
can be excluded to ease analysis since it is strictly dominated by Sepe∗1 . This leaves three sending
strategies—Low, Sepe∗1 , and Sepe∗2—with two strict Nash equilibria—(Low, Pool) and (Sepe∗1 , Sepe∗1).
These states are asymptotically stable under both the replicator and best response dynamics (and
hence also under every two population uniformly monotone selection dynamic). There is also a Nash
equilibrium component in which the sender plays Sepe∗2 and the receiver plays Sepe∗2 with probability
q > 1

2
(e∗2 − e∗1) and Sepe∗1 with probability 1− q.

Although this Nash component constitutes a set of connected rest points under the best response
dynamic, it is unstable. To see why, Figure 8 shows a phase portrait for a reduced system without
the strategies Low and Pool. Because the strategy profile (Sepe∗2 , Sepe∗2) is unstable, the best response
dynamic provides a rather strong device for equilibrium selection. If the system evolves to a separating
equilibrium, it will be the one in which high quality senders use the cheapest signal that is too costly for
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low quality senders to gain by sending. In other words, the best response dynamic here predicts that the
system will arrive at what [2] call the Riley equilibrium.

Figure 8. Phase portraits for the game in Table 2 limited to the sending and receiving
strategies Sepe∗1 and Sepe∗2 for (a) the replicator dynamic and (b) the best response dynamic.
The horizontal direction shows the sending population and the vertical direction shows the
receiving. Black, grey, and white dots indicate asymptotically stable, neutrally stable, and
unstable rest points respectively.
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This Nash component is also part of a line of rest points connecting the receiver strategies Sepe∗1
and Sepe∗2 under the replicator dynamic. Here, unlike the flow for the best response dynamic, every
point on the interior of this component is neutrally stable. Figure 8 provides some visual intuition, and
Figure 9 shows the fraction of randomly chosen initial conditions that ended at each attracting set for
the replicator dynamic. Notice that, although the stable line can have a rather large basin of attraction, it
is still true that the separating state with the cheaper signal attracts a larger proportion of the space. So
although the replicator dynamic does not provide as strong of prediction as the best response dynamics,
the results suggest that the Riley equilibrium is the most likely separating outcome.

Figure 9. The number of randomly chosen initial conditions that converged to each stable
set under the replicator dynamic. For all trials, e∗2 = 1.9 and pH = .5.
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5. Discussion

The previous section showed that the usual predictions of equilibria refinements applied to Spence’s
game are not validated by dynamic analysis in two respects. First, contrary to influential refinements
such as the Intuitive Criterion, pooling is a likely result of both adaptive processes investigated above.
As much as optimists may hope to rule out such uninspired states in which no information is conveyed,
these non-communicative states may be the norm rather than the exception. Second, mixtures may be
more likely than previously thought. Refinements often exclude hybrid equilibria from being considered
rational solutions to Spence’s game. However, the dynamic analysis above demonstrates that mixtures
are likely outcomes of learning and evolution. Although the hybrid is not asymptotically stable under
the replicator dynamic, its boundary face can attract a large proportion of initial conditions. Even more
strikingly, under the best response dynamic the hybrid is asymptotically stable and, for small values of
e∗, attracts almost all of phase space.

It is not implausible that a greater appreciation of hybrid equilibria may contribute to a more thorough
understanding of real-life social interactions. Imagine that the job market was actually in an equilibrium
in which types separated. In such a world, education would function as a perfect indicator of worker
type, but this is perhaps somewhat unrealistic. In the actual world, for example, it is not always the case
that only the highest quality workers invest the most in education. It seems perhaps more plausible that
education level acts a noisy signal of type. High productivity workers invest in education, but some less
productive workers pay the cost too and thereby masquerade as high quality. This is the picture of a
market at a hybrid equilibrium, and it seems, prima facie, a more sober description of behavior actually
seen in the world. Refinements have been too quick to exclude these mixed equilibria from consideration.

This moral is also relevant to game theoretic models of communication in biology. Spence’s model
of job market signaling bears a remarkable resemblance to the structure of costly signaling models from
biology. Zahavi [6] proposed that extravagant characteristics, such as the peacock’s tail, evolved because
they honestly signal quality to prospective mates. According to this theory of sexual signaling, the
peacock can be thought of as investing in the production of a gaudy tail in order to win access to peahens.
Thus, the peacock’s tail plays the role of education in Spence’s model. Grafen [7] spelled out Zahavi’s
proposal with a mathematical framework that is structurally similar to Spence’s game. However, Zahavi’s
costly signaling hypothesis has recently been questioned. Arguments leveled against it include the charge
that signaling equilibria leave all participants worse off [28] and the observation that signal cost is not
necessary in equilibrium if there are costs imposed on out-of-equilibrium play [29].

This paper’s results suggest yet another criticism of the costly signaling hypothesis. Perhaps it is
the case that, from a dynamic point of view, costly signaling is just a very unlikely outcome of the
evolutionary process. Of course, this research does not immediately transfer to biological models, but
studying the dynamics of such systems would be an interesting next step, the beginnings of which have
recently been taken by Huttegger and Zollman [30], who have investigated the evolution of signaling in
a related interaction known as the Sir Philip Sidney game. This is a costly signaling game developed
as a model of begging behavior between mother birds and their chicks [31]. Using methods similar to
those in this paper, Huttegger and Zollman have shown that the basin of attraction for the separating
equilibrium in this game can be quite small, at least under the replicator dynamic. Their result echoes
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what has been shown above: although separating may be a Nash equilibrium, it may be a very unlikely
outcome of evolutionary and learning dynamics. Thus, if we want to understand costly signals seen in
nature, it might be prudent to look beyond separating equilibria to the game’s hybrid equilibria.

This conclusion can also be adapted for costly signaling models found in linguistics. Spence’s game
has been co-opted to provide a first shot at a theory of politeness [8], the assumption being that polite
messages are more costly to utter. However, although politeness may be a strict Nash equilibrium, the
results seen here indicate that it may be an infrequent outcome of social learning. Similarly, linguists
often use common-interest signaling games with costly signals to model a range of phenomena [9–11].
The conditions under which these games have evolutionarily stable and neutrally stable strategies are
known [11], but the results seen here reveal that this static picture only provides part of the story. In
addition to understanding the equilibrium structure (and even in addition to knowing which states have
basins of attraction), we would like to know which are likely outcomes of the evolution or learning. The
case study here shows that partially communicative mixed strategies may have large basins, and such
information cannot be obtained through an analysis of equilibrium structure alone.

On the other hand, at least one prediction of more traditional game-theoretic analysis is recaptured
through the dynamic approach above. Namely, this paper provides further evidence for the claim that
the Riley equilibrium is the most likely separating outcome. Less efficient separating equilibria have
much smaller basins under the replicator dynamic and are not even stable under the best response
dynamic. These results buttress those from both Nöldeke and Samuelson [2] and Jacobsen et al. [3].
Nöldeke and Samuelson showed that under their Spencian dynamic the Riley equilibrium is the only
stable separating equilibrium. Jacobsen et al. showed that in Young’s [19] stochastic dynamic, the Riley
equilibrium is the only separating equilibrium with any weight in the system’s limiting distribution.
Thus the observation that the Riley equilibrium is the most likely separating outcome is robust across a
variety of models.
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Appendix

A. Proofs

Proof of Theorem 1. At H , the Jacobian matrix of the replicator dynamic for the pruned Spence
signaling game reduces to

J =


1
2
(p2He

∗ − pHe∗) 1
2
(p2He

∗ − pHe∗) −p3H + 2p2H − pH
−1

2
e∗p2H −1

2
e∗p2H p3H − 2p2H + pH

e∗pH − e∗2pH −e∗ + e∗2 + 2e∗pH − 2e∗2pH 0


The characteristic equation det(J − λI) = 0 has solutions λ1 = −1

2
pHe

∗ and

λ2,3 = ±
√
−pHe∗ (e∗ − 1) (pH − 1)3

These solutions are the eigenvalues of J . 0 < pH < 1 and, by hypothesis, 0 < e∗ < 1. Therefore
(e∗ − 1) < 0 and (pH − 1) < 0, and consequently (e∗ − 1)(pH − 1)3 > 0. Therefore, λ1 is real and
negative, and both λ2 and λ3 are purely imaginary.

From the Center Manifold Theorem [32,33] it follows that there exists a stable manifold tangent to
λ1’s eigenspace and a center manifold tangent to the eigenspace corresponding to λ2 and λ3. According
to the Center Manifold Theorem, since J has no eigenvalues with positive real part, the stability of rest
point H depends solely on the dynamics upon the center manifold.

The center eigenspace here is simply the x1 = 0 boundary face of phase space (indeed, the center
manifold is identical to this boundary face). From inspecting the pruned game, it is easy to see that this
face is characterized by a best response cycle. Indeed, the dynamics on this face are the dynamics of
matching pennies. Under the two population replicator dynamic, it is well known that matching pennies
yields closed periodic orbits centered on the mixed Nash equilibrium [22–24]. Thus, this is also the
behavior of the system on the center manifold. Since the mixed Nash is neutrally stable in matching
pennies, the hybrid equilibrium is neutrally stable in the pruned Spence signaling game.

Proof of Theorem 2. This result will be shown by the construction of a first return map from Σ1 to Σ1

such that iteration of the map leads to H . Let

Σ1 =
{

(x2, x3, y2) ∈ R3 |x2 = pH + αx3, 0 < x3 < pH , e
∗ < y2 < 1

}
if pH > e−1

e−2 and

Σ1 =

{
(x2, x3, y2) ∈ R3 |x2 = pH + αx3, 0 < x3 < pH , e

∗ < y2 <
e(pH − 1)

2pH − 1

}
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otherwise. This adjustment when pH < e−1
e−2 is necessary to guarantee that a point on Σ1 returns to Σ1

instead of converging to the pooling equilibria. Likewise let

Σ2 =

{
(x2, x3, y2) ∈ R3 | 0 < x2 < 1− pH ,max

[
0,
x2 − pH

α

]
< x3 < 1− x2, y2 = e∗

}
Σ3 =

{
(x2, x3, y2) ∈ R3 |x2 = pH + αx3, 0 < x3 < pH ,

e∗

2
< y2 < e∗

}
Σ4 =

{
(x2, x3, y2) ∈ R3 | pH < x2 < 1, 0 < x3 < min

[
1− x2,

x2 − pH
α

]
, y2 = e∗

}
with α = 1−2pH

pH
. These surfaces (shown in Figure 10) are the locations at which the solution trajectories

to the best response dynamic abruptly change direction.

Figure 10. The surfaces Σ1,Σ2,Σ3, and Σ4 are illustrated in (a) along with a solution orbit
starting from Σ1. The iteration of the first return map and convergence to H is demonstrated
in (b).
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Due to the piecewise linear nature of the solution orbits, every orbit leaving each of these surfaces
travels in a straight line toward the current best response profile. For instance, a solution from an initial
condition on Σ1 will travel in a line toward (0, 1, 0) until it intersects Σ2 at which point the solution
changes direction to point to (1, 0, 0) until intersecting Σ3, and so on. Working all this out, one can
see that an initial condition on Σ1 at coordinates (x2, x3, y2) will intersect Σ2 at coordinates (x′2, x

′
3, e
∗)

given by the linear equation

(x′2, x
′
3, e
∗)T = (−pH − αx3, 1− x3,−y2)T

(
y2 − e∗

y2

)
+ (pH + αx3, x3, y2)

T

Then the solution will be carried to Σ3 with an intersection at

(x′′2, x
′′
3, y
′′
2)T = (1− x′2,−x′3,−e∗)T

(
pH − x′2 + αx′3
1− x′2 + αx′3

)
+ (x′2, x

′
3, e
∗)T

Next, the solution aims to Σ4 with an intersection at

(x′′′2 , x
′′′
3 , e

∗)T = (1− x′′2,−x′′3, 1− y′′2)T
(
e∗ − y′′2
1− y′′2

)
+ (x′′2, x

′′
3, y
′′
2)T
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Finally, the solution returns to Σ1 at the location given by

(x′′′′2 , x
′′′′
3 , y

′′′′
2 )T = (−x′′′2 , 1− x′′′3 , 1− e∗)T

(
pH − x′′′2 + αx′′′3
α(x′′′3 − 1)− x′′′2

)
+ (x′′′2 , x

′′′
3 , e

∗)T

Putting the four linear components together, the first return of a state on Σ1 with coordinates x(n)3 and
y
(n)
2 will be at the location given by the two dimensional map

x
(n+1)
3 =

pH(e∗ − e∗x(n)3 + e∗2x
(n)
3 − y

(n)
2 )

e∗ − e∗pH + e∗2pH − y(n)2

y
(n+1)
2 =

e∗(e∗ + e∗pHy
(n)
2 − pHy

(n)
2 − y

(n)
2 )

e∗ − e∗pH + e∗2pH − y(n)2

As this fractional linear recurrence is iterated, the coordinates of the nth return to Σ1 are

x
(n)
3 =

npH(e∗ − y(0)2 )− pHe∗x(0)3 + e∗2x
(0)
3

n(e∗ − y(0)2 )− e∗pH + e∗2pH

y
(n)
2 =

ne∗(e∗ − y(0)2 )− e∗pHy(0)2 + e∗2pHy
(0)
2

n(e∗ − y(0)2 )− e∗pH + e∗2pHy
(0)
2

.

This solution (as well as all of the above linear algebra) can be easily verified in Mathematica. Looking
at asymptotic behavior one sees that, limn→∞ x

(n)
3 = pH and limn→∞ y

(n)
2 = e∗, so any initial

condition on Σ1 will be taken to H under the best response dynamic. Therefore, the point H is
asymptotically stable.
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