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Abstract: Agents located from downstream to upstream along an estuary and exposed to
a flooding risk have to invest in facilities like a seawall (or dike). As the benefits of that
local public good increase along the estuary, upstream agents have to bargain for monetary
compensation with the most downstream agent in exchange for more protection effort. The
paper analyses different bargaining protocols and determines the conditions under which
agents are better off. The results show that upstream agents are involved in a chicken game
when they have to bargain with the most downstream agent.
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1. Introduction

Hirshleifer [1] shows with his “Anarchia Island” fable that citizens have successfully agreed to build
seawalls (or dikes) to protect themselves from storms threatening to flood the coastline despite the
weakest-link structure of that local public good. The seawall is known as a particular public good in
which the level of effective protection for the whole island depends on the citizen who has constructed
the lowest seawall. This paper analyses a similar problem of flood-protection when agents are located
subsequently from downstream to upstream along an estuary (exposed to flooding risk). In that case,
flood protection does not only consist in building the highest seawall, it also requires the construction
of other facilities, such as a first seawall to break the wave, the use of wetland as flood water retention
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land, a network of small rivers to control the flood or a second seawall. This estuarine geography feature
implies that when the sea enters, the protection effort implemented by an agent will be a public good
for all of the agents who are located upstream from him. At the two ends of the spectrum, the most
downstream agent (the closest to the sea) gets nothing from the public good, while the most upstream
agent benefits from the efforts made by all of his downstream neighbors. Thus, our seawall bargaining
game is no longer a problem of public good with a weakest-link aggregation technology, but a public
good with positive externalities that are increasing along the estuary. Since the benefit of the public good
an agent gets depends on where he is located, it makes cooperation harder to achieve. To ensure a high
level of effort from the most downstream agent, upstream agents have to make monetary transfers. To
model such negotiations, the most obvious approach is to base the analysis on what is know as bargaining
theory with the Rubinstein alternating-offers model. Rubinstein [2] describes the process through which
negotiating agents can reach an agreement. The agent opening the negotiations makes an offer. The other
agent can either accept the offer, in which case the negotiation ends, or reject it and make a counter-offer,
which may also be accepted or rejected with a new counter-offer. In our framework, an offer will cover
two variables related to the effort of sea-flood protection and a monetary transfer.

The seawall bargaining game can be modeled as a particular case of global public good in which
all agents benefit from the action of the other players, whatever their location. In the literature on
international environmental agreements, for instance, results show that for identical agents, only a very
small number of players will form a coalition. Seminal papers using this approach are Carraro and
Siniscalco [3] and Barrett [4], and a survey can be found in Finus [5]. However, this approach often
ignores the negotiating process in terms of offers and counter-offers that characterize all negotiations
between self-interested agents. Our framework shares, in common with the “sharing river” model,
the downstream/upstream agent structure in which downstream agents create negative externalities to
upstream agents. This literature is based on cooperative game theory and, more precisely, on the core
(see Ambec and Sprumont [6] and Beal et al. [7] for a survey). The objective is to set up a burden-sharing
rule able to favor the cooperation of all. The sharing rule aims at preventing any individual agent, but
also any sub-group of agents, from having no incentive to leave the agreement. It is crucial to thoroughly
describe the bargaining process that designs the most likely burden-sharing rule (Carraro et al., [8]).
Wang [9] analyses a market-based approach using trading water rights, but restricts the bilateral trading
to neighboring agents. Houba [10] computes the Rubinstein bargaining solution in a bilateral case,
and Houba et al. [11] apply the asymmetric Nash bargaining solution. Our framework also assumes
Rubinstein bargaining when several agents are involved and analyses the different bargaining protocols
that are preferred by agents.

The rest of the paper is organized as follows. We start in Section 2 by analyzing the model and the
cooperative and non-cooperative outcomes. Section 3 is devoted to the analysis of single and double
negotiations. In Section 4, a specific example shows the main results of the paper.

2. The Model

Considering a three-agent framework is enough to put forward the main results of the paper. Every
agent is located in a lexicographic ordering. Agent 1 is the most downstream agent and agent 3 is the
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most upstream agent. We note ei, the effort of protection realized by agent i; their respective payoffs are
defined as the difference between the concave benefit function (B′i > 0 and B′′i < 0) and the convex cost
function (C ′i > 0 and C ′′i > 0):

π1(e1) = B1 (e1)− C1(e1) (1)

π2(e1, e2) = B2 (e1 + e2)− C2(e2) (2)

π3(e1, e2, e3) = B3 (e1 + e2 + e3)− C3(e3) (3)

Equations (2) and (3) show that in addition to their own efforts, agent 2 benefits from the effort made by
agent 1 and agent 3 from the efforts of both agents 1 and 2. On the opposite side, agent 1 gets nothing
from the others. Costs are private.

Cooperative outcome: The cooperative solution is given by the program:

max
ei

3∑
i=1

πi(e)

Effort levels are solution of:

B′1(e1) +B′2(e1 + e2) +B′3(e1 + e2 + e3) = C ′1(e1) (4)

B′2(e1 + e2) +B′3(e1 + e2 + e3) = C ′2(e2) (5)

B′3(e1 + e2 + e3) = C ′3(e3) (6)

It returns a unique vector of efforts ec = {ec1, ec2, ec3}. An additional unit of effort by agent i exerts an
additional benefit for him and for agents upstream of his position. At the equilibrium, the marginal cost
of that unit equalizes the sum of his marginal benefit and the marginal benefit of the upstream agents.

Non-cooperative outcome: Whenever agents act in a non-cooperative way, the optimality
conditions are:

B′1(e1) = C ′1(e1) (7)

B′2(e1 + e2) = C ′2(e2) (8)

B′3(e1 + e2 + e3) = C ′3(e3) (9)

and give the non-cooperative efforts enc = {enc1 , enc2 , enc3 }. Each agent equalizes his marginal benefit to
his marginal cost.

The differences between the two systems of optimality conditions, (4)–(6) and (7)–(9), suggest that
agents 1 and 2 will realize more effort in the cooperative case than in the non-cooperative case, because
they take into account the positive impact of their action on agents located upstream. Indeed for agent
2, two effects are at stake. The additional effort of agent 1 in the cooperative case reduces agent 2’s
incentives to do likewise, but due to the positive impact that 2 exerts on agents upstream, agent 2 tends
to increase his effort in the cooperative case. This latter effect dominates the former, since enci < eci for
both agents i = 1, 2. However, this is the opposite for the most upstream agent. His effort is reduced in
the cooperative case, since he benefits from the effort made by the previous downstream agents, leading
to ec3 < enc3 . The aggregate effort is higher in the cooperative case than in the non-cooperative case.
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In terms of payoffs, agents 2 and 3 are better off in the cooperative case, unlike the most upstream
agent, whose payoff only depends on his effort. It turns that agent 1 has to make a higher effort in
the non-cooperative case, and this substantially reduces his payoff. It yields πci > πnci for i = 2, 3 but
πc1 < πnc1 . This is the main feature of the estuarine geography. The dominant strategy of agent 1 is to
implement his non-cooperative effort regardless of the action of the upstream agents. Hence, moving
from the non-cooperative case to the cooperative case will never be profitable for the most downstream
agent, even if the aggregate payoff in the cooperative case is higher than in the non-cooperative case.

3. Negotiation Protocols

Negotiation is a solution to improve the payoffs of all of the agents and, in particular, for the most
downstream agent, who has no incentive to increase his effort. The negotiation can take place between
agents over an extra amount of effort that an agent will implement in exchange for a monetary transfer or
compensation. However, several protocols must be considered given the multiplicity of pairs of agents.
Bargaining between two agents consists in an effort and a transfer, denoted hereafter by oi = (ei, τij) for
i = 1, 2. j 6= i. Negotiations take place under perfect information. It is assumed that there is no authority
able to impose an agreement or a particular protocol on private agents. The simplest negotiation only
concerns two players, either agent 1 with 2 or 3 or between 2 and 3. In all cases, agent 3 maximizes his
individual payoff by setting his effort e3. Payoffs are denoted by V1(e1) = B1(e1)−C1(e1), V2(e1, e2) =
B2(e1 + e2)− C2(e2), V3(e1, e2, e3) = B3(e1 + e2 + e3)− C3(e3).

In a three-agent case, the general bargaining framework is given by the following net payoff function:

π1(o1, t) = πnc1 + δt1 (V1(e1)− πnc1 + τ12 + τ13)

π2(o1, o2; t) = πnc2 + δt2 (V2(e1, e2)− πnc2 − τ12 + τ23)

π3(o1, o2, e3; t) = πnc3 + δt3 (V3(e1, e2, e3)− πnc3 − τ13 − τ23)

where 0 < δi < 1 stands for the discount factor of agent i.

Proposition 1. When the negotiation is over a simple pair (ei, τij) of effort and transfer between agents
i (the proposer) and j (the responder) for i = 1, 2, j = 2, 3, j 6= i and j 6= k, the optimal vector of
efforts e satisfies:

B′i(e) +B′j(e) = C ′i(ei)

B′j(e) = C ′j(ej)

B′k(e) = C ′k(ek)

and the associated payoffs are:

π∗i (e) = πnci +
(1− δj)
(1− δiδj)

π

π∗j (e) = πncj +
δj(1− δi)
(1− δiδj)

π

π∗k(e) = πnck + (V ∗k − πnck )

where π = V ∗i − πnci + V ∗j − πncj > 0 stands for the created surplus.
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Proof. See the proof in Section 6.1.

Simple negotiations refer to the following cases: 1 bargains with 3 over (e1, τ13); 1 bargains with
2 over (e1, τ12) and 2 bargains with 3 over (e2, τ23). In each case, the outsider of the negotiation acts
non-cooperatively. When 2 or 3 bargains with 1, the negotiation implies a higher effort for 1, ec1 > e∗1 >

enc1 and lower efforts for 2 or 3 ecj < e∗j < encj , j = 2, 3. When the negotiation is between 2 and 3, 2
increases his effort at the expense of 3, such that e∗2 > ec2 > enc2 and ec3 < e∗3 < enc3 , while the effort of 1
remains unchanged e∗1 = enc1 . When agents bargain, they get a share of the surplus that they have created,
while the outsider acts as a free-rider and benefits from the public good, except when the outsider is the
most downstream agent, since his payoff equals his non-cooperative outcome. This particular case refers
to the maximization of the aggregate payoff under the constraint that the most downstream agent gets his
non-cooperative payoff. In the limit when the time between bargaining rounds vanishes δ = δi → 1 ∀i,
the created surplus is shared equally. In that case, the Rubinstein solution converges to the Nash solution.
It turns out that agent 2 is better off when 3 bargains with 1, and by symmetry, 3 is better off when 2
bargains with 1.

Expecting that the created surplus can be higher when all agents are at the negotiation table, we
assume that the three agents negotiate in two bilateral negotiations. This structure ensures the uniqueness
of the subgame perfect equilibrium (SPE) 1. Two cases are considered. Firstly, 3 bargains twice over
(e1, τ13) with 1 and over (e2, τ23) with 2 (setting τ12 = 0). Secondly, 2 bargains twice over (e1, τ12) with
1 and over (e2, τ23) with 3 (setting τ13 = 0).

The first negotiation yields the following proposition.

Proposition 2. When 3 bargains as a proposer with 1 over (e1, τ13) and with 2 over (e2, τ23), the
Rubinstein bargaining solution shows that:

1. The optimal vector of efforts e satisfies:

B′1 (e1) +B′3(e1 + e2 + e3) = C ′1 (e1)

B′2(e1 + e2) +B′3(e1 + e2 + e3) = C ′2(e2)

B′3(e1 + e2 + e3) = C ′3(e3)

2. Equilibrium payoffs after transfers are:

π∗i = πnci +
δi (1− δj) (1− δ3)

η
π, i = 1, 2 and j 6= i

π∗3 = πnc3 +
(1− δ1) (1− δ2)

η
π

where π = V ∗1 − πnc1 + V ∗2 − πnc2 + V ∗3 − πnc3 > 0 stands for the created surplus and η =

(1− δ1δ3) (1− δ2δ3)− δ1δ2 (1− δ3)2 > 0.

1 As shown by Shaked and reported by Sutton [12], the use of Rubinstein model in a multilateral bargaining framework
may yield multiple equilibria under the unanimity rule.
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Proof. See the proof in Section 6.2.

The second negotiation yields the following proposition.

Proposition 3. When 2 bargains simultaneously as a proposer with 1 over (e1, τ12) and with 3 over
(e2, τ23), the Rubinstein bargaining solution shows that:

1. The optimal vector of efforts e satisfies:

B′1 (e1) +B′2(e1 + e2) = C ′1 (e1)

B′2(e1 + e2) +B′3(e1 + e2 + e3) = C ′2(e2)

B′3(e1 + e2 + e3) = C ′3(e3)

2. Equilibrium payoffs (after transfers) are:

π∗i = πnci +
δi (1− δ2) (1− δj)

φ
π, i = 1, 3 and j 6= i

π∗2 = πnc2 +
(1− δ1) (1− δ3)

φ
π

where π = V ∗1 − πnc1 + V ∗2 − πnc2 + V ∗3 − πnc3 > 0 stands for the created surplus and
φ = (1− δ1δ2) (1− δ2δ3)− δ1δ3 (1− δ2)2 > 0.

Proof. See the proof in Section 6.3.

In both negotiations, agents 1 and 2 will increase their efforts, such that
ec1 > e∗1 > enc1 and e∗2 > ec2 > enc2 , implying a decrease in the effort for the most upstream
agent enc3 > e∗3 > ec3 with respect to his non-cooperative effort. Agents get a share of the surplus that
they have created, but the agent who is always the proposer has a first mover advantage. However, in
the limit associated with instantaneous negotiations δ = δi → 1 ∀i, they all get one third of the surplus.
The two negotiations show that agents are better off than with the non-cooperative case π∗1 > πnc1 > πc1
and πci > π∗i > πnci for i = 2, 3. However, in both cases, the size of the created surplus is different, since
equilibrium efforts did not satisfy the same optimality conditions.

4. Results

With the will to make tractable comparisons between the negotiation protocols, we assume that agents
have identical benefit and cost functions, but differ in their location along the estuary:

B(z) = az − b

2
z2, a, b > 0

C(z) =
c

2
z2, c > 0

It is also assumed that δ = δi → 1 ∀i. Based on Tables 2 to 4 in Section 6.4, which summarize the
outcome for all bargaining protocols under the previous assumptions, several assertions can be drawn
from the results.
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Result 1: The cooperative outcome that gives the highest aggregate effort and payoff cannot be
reached by a particular negotiation protocol. This result comes from the structure of the model. The
dominant strategy of the most downstream agent is to act non-cooperatively. It turns out that an extra
effort will always decrease his payoff. Only a constrained cooperative solution can be obtained. This
solution consists in maximizing the aggregate outcome under the constraint than the most downstream
agent gets his non-cooperative outcome. However, results show that agents are always better off when
negotiations over efforts and a set of transfers exist.

Result 2: In a single negotiation, agent 2 (respectively, 3) prefers to free ride and be the outsider of
a negotiation between 1 and 3 (respectively, 2). This conflict of interest between agents 2 and 3 comes
from the presence of the public good. Each agent would rather benefit from the efforts realized by the
other at no cost, as shown in Table 1. The three-agent seawall bargaining game can be summarized
in normal form where the space of strategies of each agent consists in either the acceptance (A) or the
refusal (R) of negotiations. Si = {A,R} for i = {1, 2, 3}. Notation i ↔ j means that i negotiates with
j. It follows:

Table 1. The seawall bargaining game.

S1 = A

2\3 S3 = A S3 = R

S2 = A π
{2↔1,3}
1 , π

{2↔1,3}
2 , π

{2↔1,3}
3 π

{1↔2}
1 , π

{1↔2}
2 , πF3

S2 = R π
{1↔3}
1 , πF2 , π

{1↔3}
3 πnc1 , π

nc
2 , π

nc
3

S1 = R

2\3 S3 = A S3 = R

S2 = A πnc1 , π
{2↔3}
2 , π

{2↔3}
3 πnc1 , π

nc
2 , π

nc
3

S2 = R πnc1 , π
nc
2 , π

nc
3 πnc1 , π

nc
2 , π

nc
3

We consider that if agent 1 refuses to bargain while the strategies of 2 and 3 are to accept, then 2
and 3 bargain between themselves. Then, the seawall bargaining game shows that there exists two Nash
equilibria in pure strategies (S1, S2, S3) = (A,R,A) and (A,A,R). In both cases, agent 1 always accepts
to negotiate, since his payoff is higher than his non-cooperative payoff, π{1↔2}

1 > πnc1 and π{1↔3}
1 > πnc1 .

Concerning the behavior of agents 2 and 3, they are better off when they act as free riders, πFi > π
{2↔1,3}
i

and π{1↔i}i > πnci for i = 2, 3. The structure of the seawall bargaining game corresponds to a chicken
game, as in Carraro and Siniscalco [3]. agent 2 (respectively, 3) prefers that his opponent bargains with
1 and benefits from the outcome of the negotiation without bearing any cost.
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In double negotiation, the conflict is over the position of the proposer, but this is a direct consequence
of the Rubinstein alternating offer model. When the time between bargaining rounds vanishes, this first
mover advantage disappears.

Result 3: It is socially optimal to ask agent 2 to manage the two negotiations with the most
downstream and the most upstream agents. It can be shown that the surplus in double negotiation is
higher than single negotiation. The size of the created surplus increases with the number of negotiators.
Moreover, results show that the surplus is higher when 2 bargains twice instead of 3. A negotiation
between 2 and 1 yields a higher effort of agent 1 in comparison with a negotiation between 3 and 1. This
higher effort increases the benefit of the public good for 2 and 3. When 3 bargains twice, efforts made
by 1 or 2 are substitutable, leading 3 to bargain a higher effort with 2 than with 1. This result can be
generalized to n agents. Individual payoffs will be better off for all agents when n negotiates with n− 1,
n− 1 with n− 2, ..., until 2 with 1.

5. Conclusions

Hirshleifer [1] shows that cooperation over the building of a seawall can be achieved even if the
seawall is known as a weakest-link public good. The seawall example has been revisited in another
geographic structure where agents are located from downstream to upstream and have to decide their
effort to protect themselves from sea floods. This feature implies that the benefit of the public good
increases along an estuary. In a simplified three-agent framework, our results show that there does not
exist a bargaining protocol that can be preferred by all of the agents. Agents located after the most
downstream agent always prefer free riding rather than entering in single negotiations over an additional
effort from the most downstream agent. This case refers to a chicken game. When the negotiation
involves all of the agents, our results show that it is more profitable for society to give the right to the
agent located in the middle of the estuary to conduct negotiations with both the most downstream and
the most upstream agent.

6. Proofs

6.1. Proposition 1

Consider the single negotiation between 1 and 2 over (e1, τ12) with τ13 = τ23 = 0. agents 1 and 2
make offers and counteroffers over o(j)1 =

(
e
(j)
1 , τ

(j)
12

)
, where o(j)1 denotes the offer made by j = 1, 2.

The subgame perfect equilibrium (SPE) offers solve the two indifference conditions (Muthoo [13]):

π1(o
(2)
1 , 0) = π1(o

(1)
1 , 1)

π2(o
(1)
1 , o2; 0) = π2(o

(2)
1 , o2; 1)

so that each agent is indifferent between accepting the current offer of his opponent and making a
counteroffer in the next period. Specifically, the offers satisfy:

V1(e
(2)
1 ) + τ

(2)
12 = (1− δ1)πnc1 + δ1

(
V1(e

(1)
1 ) + τ

(1)
12

)
(10)

V2(e
(1)
1 , e2)− τ (1)12 = (1− δ2)πnc2 + δ2

(
V2(e

(2)
1 , e2)− τ (2)12

)
(11)
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The optimal offer of agent 1 to agent 2 (o(1)1 ) has to maximize his payoff under the constraint (11) for
2. Substitute the expression of the transfer τ (1)12 ; the offer of 1 satisfies:

B′1 (e1) +B′2(e1 + e2) = C ′1 (e1)

It can be shown that the optimal offer of 2 to 1 satisfies the same condition. Assume that 1 is the proposer;
the equilibrium transfer is τ ∗12 = τ

(1)
12 :

τ ∗12 = −
(1− δ1)δ2
(1− δ1δ2)

(V ∗1 − πnc1 ) +
(1− δ2)
(1− δ1δ2)

(V ∗2 − πnc2 )

and the equilibrium payoffs:

π∗1 = πnc1 +
(1− δ2)
(1− δ1δ2)

(V ∗1 − πnc1 + V ∗2 − πnc2 )

π∗2 = πnc2 +
(1− δ1)δ2
(1− δ1δ2)

(V ∗1 − πnc1 + V ∗2 − πnc2 )

Agents 2 and 3 maximize their payoffs after transfers, leading to the optimality conditions:

B′2(e1 + e2) = C ′2 (e2)

B′3(e1 + e2 + e3) = C ′3(e3)

The bargaining involving 1 and 3 over (e1, τ13) with τ12 = τ23 = 0 is based on the same method. When
the negotiation takes place between 2 and 3, the SPE offers solve the two indifference conditions for 2
π2(o1, o

(3)
2 ; 0) = π2(o1, o

(2)
2 ; 1) and for 3 π3(o1, o

(2)
2 , e3; 0) = π3(o1, o

(3)
2 , e3; 1).

6.2. Proposition 2

3 bargains with 1 over o(1)1 = (e1, τ13) and with 2 over o2 = (e2, τ23) . The SPE offers solve the two
systems of two indifference conditions between 1 and 3:

V1(e
(3)
1 ) + τ

(3)
13 = (1− δ1) πnc1 + δ1

(
V1(e

(1)
1 ) + τ

(1)
13

)
(12)

V3(e
(1)
1 , e2, e3)− τ (1)13 − τ23 = (1− δ3) πnc3 + δ3

(
V3(e

(3)
1 , e2, e3)− τ (3)13 − τ23

)
(13)

and between 2 and 3:

V2(e1, e
(3)
2 ) + τ

(3)
23 = (1− δ2) πnc2 + δ2

(
V2

(
e1, e

(2)
2

)
+ τ

(2)
23

)
(14)

V3(e1, e
(2)
2 , e3)− τ13 − τ (2)23 = (1− δ3) πnc3 + δ3

(
V3(e1, e

(3)
2 , e3)− τ13 − τ (3)23

)
(15)

The optimal offer of 1 to 3 (o
(1)
1 ) maximizes his payoff π1(e1) = V1 (e1) + τ13 under Constraint

(13). Substitute the expression of τ13; e(1)1 = e1 satisfy B′1 (e1) + B′3(e1 + e2 + e3) = C ′1 (e1). By
symmetry, the optimal offer of 3 is e(3)1 = e1 = e

(1)
1 . Also by symmetry, the optimal offer of 2 to 3

(o
(2)
2 ) maximizes his payoff under Constraint (15). It yields the optimal offer e(2)2 = e2 that satisfies

B′2(e1 + e2) +B′3(e1 + e2 + e3) = C ′2(e2). The optimal effort of agent 3 is given by B′3(e1 + e2 + e3) =
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C ′3(e3). The associated equilibrium transfers τ13 = τ
(3)
13 and τ23 = τ

(3)
23 , when 3 is the proposer in the two

rounds, are:

τ13 = −
(1− δ1)
(1− δ1δ3)

(V ∗1 − πnc1 ) +
δ1 (1− δ3)
(1− δ1δ3)

(V ∗3 − πnc3 )− δ1 (1− δ3)
(1− δ1δ3)

τ23

τ23 = −
(1− δ2)
(1− δ2δ3)

(V ∗2 − πnc2 ) +
δ2 (1− δ3)
(1− δ2δ3)

(V ∗3 − πnc3 )− δ2 (1− δ3)
(1− δ2δ3)

τ13

Solving returns:

τ ∗13 = −
(1− δ1) (1− δ2δ3)

η
(V ∗1 − πnc1 ) +

δ1 (1− δ2) (1− δ3)
η

(V ∗2 − πnc2 + V ∗3 − πnc3 )

τ ∗23 = −
(1− δ2) (1− δ1δ3)

η
(V ∗2 − πnc2 ) +

δ2 (1− δ1) (1− δ3)
η

(V ∗1 − πnc1 + V ∗3 − πnc3 )

with η = (1− δ1δ3) (1− δ2δ3)− δ1δ2 (1− δ3)2 > 0. Equilibrium payoffs are given in the proposition.

6.3. Proposition 3

The same method applies when 2 bargains with 1 over (e1, τ12) and with 3 over (e2, τ23) . The SPE
offers solve the two systems of two indifference conditions between 1 and 2:

V1

(
e
(2)
1

)
+ τ

(2)
12 = (1− δ1) πnc1 + δ1

(
V1

(
e
(1)
1

)
+ τ

(1)
12

)
V2(e

(1)
1 , e2) + τ23 − τ (1)12 = (1− δ2) πnc2 + δ2

(
V2(e

(2)
1 , e2) + τ23 − τ (2)12

)
and between 2 and 3:

V2(e1, e
(3)
2 ) + τ

(3)
23 − τ12 = (1− δ2) πnc2 + δ2

(
V2(e1, e

(2)
2 ) + τ

(2)
23 − τ12

)
V3

(
e1, e

(2)
2 , e3

)
− τ (2)23 = (1− δ3) πnc3 + δ3

(
V3

(
e1, e

(3)
2 , e3

)
− τ (3)23

)
Optimal equilibrium transfers when agent 2 is the first proposer are:

τ ∗12 =
(1− δ1) (1− δ2δ3)

φ
(V ∗1 − πnc1 ) +

(
δ1 (1− δ2) (1− δ3)

φ

)
(V ∗2 − πnc2 + V ∗3 − πnc3 )

τ ∗23 = −
(1− δ1) (1− δ2) δ3

φ
(V ∗1 − πnc1 + V ∗2 − πnc2 ) +

(1− δ3) (1− δ1δ2)
φ

(V ∗3 − πnc3 )

with φ = (1− δ1δ2) (1− δ2δ3) − δ1δ3 (1− δ2)2 > 0. Optimal emissions and payoffs are in the
proposition.

6.4. Results

Results are summarized in the following table:
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Table 2. Efforts (in e) and payoffs (in be2) in the cooperative and non-cooperative cases.
γ = c/b and e = a/b.

Coop Non-Coop

e1
1+4γ+3γ2

5γ+6γ2+γ3+1
1

1+γ

e2
γ+2γ2

5γ+6γ2+γ3+1
γ

(γ+1)2

e3
γ2

5γ+6γ2+γ3+1
γ2

(γ+1)3

π1
(3γ2+4γ+1)(−γ3+5γ2+5γ+1)

2(γ3+6γ2+5γ+1)2
1

2(γ+1)

π2
6γ2+5γ+1

2(γ3+6γ2+5γ+1)

(3γ3+6γ2+4γ+1)
2(γ+1)4

π3
(11γ5+46γ4+62γ3+37γ2+10γ+1)

2(γ3+6γ2+5γ+1)2
(5γ5+15γ4+20γ3+15γ2+6γ+1)

2(γ+1)6

When γ = 0 (for c = 0), e1 = e, while ei = 0 for i = 2, 3 and πi = (b/2) e2 ∀i in both cooperative and
non-cooperative cases. It can be shown that e1 decreases with γ, while ei = 0 for i = 2, 3 first increases,
reaches a maximum and then decreases. Payoffs always decrease with γ. A low value of γ means a low
marginal cost and/or a high marginal benefit, implying higher efforts and payoffs. On the opposite side,
a high value of γ means a high marginal cost (c) and/or a low marginal benefit (b), implying lower efforts
and payoffs. These patterns are the same for all of the negotiation protocols.

The negotiation procedures involving only two agents are summarized in the following table 2:

Table 3. Efforts (in e) and payoffs (in be2) in the two-by-two negotiation process.

2↔ 3 1↔ 3 1↔ 2

e1
1

1+γ
1+2γ+2γ2

3γ+4γ2+γ3+1
1+2γ

3γ+γ2+1

e2
γ+2γ2

4γ+4γ2+γ3+1
γ+γ2

3γ+4γ2+γ3+1
γ

3γ+γ2+1

e3
γ2

4γ+4γ2+γ3+1
γ2

3γ+4γ2+γ3+1
γ2

4γ+4γ2+γ3+1

π1 − πnc1 0
γ6(γ4+3γ3−2γ−1)

4(γ+1)5(γ3+4γ2+3γ+1)2
γ4

4(γ+1)3(γ2+3γ+1)

π2 − πnc2
γ6

4(γ+1)5(γ2+3γ+1)

γ5(2γ3+7γ2+6γ+2)
2(γ+1)3(γ3+4γ2+3γ+1)2

π1 − πnc1

π3 − πnc3 π2 − πnc2 π1 − πnc1
(2γ2+5γ+2)γ6

2(γ+1)5(γ2+3γ+1)2

2 The created surplus in the negotiation between 1 and 3 is positive for γ > 0.89.
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Negotiation protocols consisting in two bilateral negotiations are summarized in the following table:

Table 4. Efforts (in e) and payoffs (in be2) in double negotiation.

3←→ 1,2 2←→ 1,3

e1
1+3γ+2γ2

4γ+5γ2+γ3+1
1+4γ+2γ2

5γ+5γ2+γ3+1

e2
γ+2γ2

4γ+5γ2+γ3+1
γ+2γ2

5γ+5γ2+γ3+1

e3
γ2

4γ+5γ2+γ3+1
γ2

5γ+5γ2+γ3+1

πi − πnci
(4γ5+23γ4+38γ3+30γ2+12γ+2)γ5

6(γ+1)5(γ3+5γ2+4γ+1)2
(4γ4+17γ3+15γ2+7γ+1)γ4

6(γ+1)5(γ2+4γ+1)2

Comparing the different outcomes gives in terms of individuals 3 and aggregate efforts:

• ec1 > e
{1←→2}
1 > e

{2←→1,3}
1 > e

{1←→3}
1 > e

{3←→1,2}
1 > enc1 = e

{2←→3}
1

• e{2←→3}
2 > e

{3←→1,2}
2 > e

{2←→1,3}
2 > ec2 > enc2 > e

{1←→3}
2 > e

{1←→2}
2

• enc3 > e
{1←→3}
3 > e

{2←→3}
3 = e

{1←→2}
3 > e

{3←→1,2}
3 > e

{2←→1,3}
3 > ec3

•
∑

i e
c
i >

∑
i e
{2←→1,3}
i >

∑
i e
{3←→1,2}
i >

∑
i e
{1←→2}
i =

∑
i e
{2←→3}
i >

∑
i e
{1←→3}
i >

∑
i e
nc
i

The individual and aggregate payoffs are:

• π{2←→1,3}
1 > π

{3←→1,2}
1 > π

{1←→2}
1 > π

{1←→3}
1 > πnc1 = π

{2←→3}
2 > πc1

• πc2 > π
{1←→3}
2 = πF2 > π

{2←→1,3}
2 > π

{3←→1,2}
2 > π

{1←→2}
2 > π

{2←→3}
2 > πnc2

• πc3 > π
{1←→2}
3 = πF3 > π

{2←→1,3}
3 > π

{3←→1,2}
3 > π

{2←→3}
3 > π

{1←→3}
3 > πnc3

•
∑

i π
c
i >

∑
i π
{2←→1,3}
i >

∑
i π
{3←→1,2}
i >

∑
i π
{1←→2}
i >

∑
π
{1←→3}
i >

∑
π
{2←→3}
i >

∑
i π

nc
i

Acknowledgments

This study received funding from the French ministry of Ecology, Sustainable Development and
Energy, in the “Eaux et Territoires” research program of 10/16/2010, convention No. 2100 170 383
and the French National Research Agency as part of the project, ADAPTEAU (ANR-11-CEPL-008), in
the frame of the Cluster of Excellence COTE (ANR-10-LABX-45).

3 For agent 2, the rank holds for γ > γ∗ = 1
2

(
1 +
√
5
)

and for γ ≥ 1 : e
{1,3←→2}
2 ≥ enc2 , for γ ≥ 0.815 : ec2 ≥ e

{1←→3}
2

and for γ ≥ 0.52 : e
{1,3←→2}
2 ≥ e{1←→3}

2
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