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Abstract: Our study analyzes theories of learning for strategic interactions in networks. 

Participants played two of the 2 × 2 games used by Selten and Chmura [1]. Every 

participant played against four neighbors. As a distinct aspect our experimental design 

allows players to choose different strategies against each different neighbor. The games 

were played in two network structures: a lattice and a circle. We analyze our results with 

respect to three aspects. We first compare our results with the predictions of five different 

equilibrium concepts (Nash equilibrium, quantal response equilibrium, action-sampling 

equilibrium, payoff-sampling equilibrium, and impulse balance equilibrium) which represent 

the long-run equilibrium of a learning process. Secondly, we relate our results to four different 

learning models (impulse-matching learning, action-sampling learning, self-tuning EWA, 

and reinforcement learning) which are based on the (behavioral) round-by-round learning 

process. At last, we compare the data with the experimental results of Selten and Chmura [1]. 

One main result is that the majority of players choose the same strategy against each 

neighbor. As other results, we observe an order of predictive success for the equilibrium 

concepts that is different from the order shown by Selten and Chmura and an order of 

predictive success for the learning models that is only slightly different from the order 

shown in a recent paper by Chmura, Goerg and Selten [2]. 
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1. Introduction 

In their 2008 paper, Reinhard Selten and Thorsten Chmura (henceforth SC) [1] analyze a set of  

12 different 2 × 2 games. For 6 constant and 6 non-constant sum games they compare the predictive 

success of five stationary concepts. The five concepts compared are: (1) Nash equilibrium (Nash);  

(2) Quantal response equilibrium (QRE) [3]; (3) Action-sampling equilibrium (ASE) [1];  

(4) Payoff-sampling equilibrium (PSE) [4]; and (5) Impulse balance equilibrium (IBE) [5,6]. Since 

these concepts are explained in detail in SC [1], we do not explain them here. In their study, the 

randomly matched participants played the games over 200 rounds, which allows an interpretation of 

the concepts “... as stationary states of dynamic learning models” ([1], p. 940). In our study we put the 

focus on learning in networks. 

We recall a point made often and in many situations, that learning occurs in social contexts. When 

analyzing learning in economic decision-making, most studies deal with repeated interactions between 

two or more randomly matched players. In real life, learning in networks seems to be more natural. 

More precisely, in many applications, local interaction in which most of the players interact most of 

the time with only a subset of the population seems to be a more appropriate approach. Therefore, we 

analyze whether or not there are differences in behavior (or learning) in networks compared to 

behavior (learning) in an environment of random matching. 

We first analyze our experimental results in relation to the long-run equilibrium of the learning 

process, predicted by the five different equilibrium concepts to check for such differences. We relate 

our results to the predictions of different learning models tested in a recent paper of Chmura et al. 

(henceforth CGS) [2] to shed light on the learning process itself. The four learning models used are: 

(1) Action-sampling learning (ASL) [2]; (2) Impulse-matching learning (IML) [2]; (3) Self-tuning 

experience-weighted attraction learning (EWA) [7]; and (4) Reinforcement learning (REL) [8]. Since 

one can find a detailed description of the learning models we use in CGS [2], we do not explain  

them here. 

We change the neighborhood from random matching to a network structure to test the impact of this 

parameter. As a distinctive aspect our experimental design is such that players are allowed to choose 

different strategies with their different neighbors. From this it follows that every pair of linked players 

can play each game as an isolated game. This distinguishes our design from most other studies of 

games on networks, where players are forced to choose the same strategy with their neighbors. Thus, 

the question of whether players actually choose different strategies against their network partners is 

another topic which is investigated in this study. 

While in a random matching environment players can mix strategies over time, in our network they 

can additionally mix strategies within one period by playing different strategies against their 

neighbors. Learning in network structures also occurs via indirect neighbors whose decisions also 

affect direct neighbors.1 

In our study, we design a neighborhood game in an exogenously fixed network, where the players 

cannot choose their neighbors but can choose different strategies against each of the exogenously 

given neighbors. We run two different games used by SC as baseline games in a network. The 

                                                 
1 Aspects of network formation, and learning in networks have been the center of attention in many studies (see, e.g., [9–11]). 
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experimental results we present allow us to analyze on the one hand how network structures affect 

learning, and on the other hand how to control for the predictive success of different equilibrium 

concepts and of different models of learning. Our analysis is guided by four key questions: 

Key question 1. Do the participants (actually) mix strategies? 

Key question 2. Does the structure of the network affect learning in the games? 

Key question 3. Are the equilibrium concepts tested by Selten and Chmura [1] good predictors for the 

participants’ behavior in network games? 

Key question 4. Are the learning models tested by Chmura et al. [2] good predictors for the 

participants’ learning process in network games?2 

Based on the games used by SC (a constant and a non-constant sum game), we construct 

neighborhood games, where each player has four direct neighbors. With respect to the idea that players 

have to decide how they interact with their partners and how they adjust their behavior over time, the 

participants in our experiment could choose different strategies for each neighbor. In contrast to most 

other studies on behavior in networks, participants in our framework have the opportunity to mix 

strategies both inter-temporally and intra-temporally. 

Guided by the findings of Berninghaus et al. [12], where the players’ behavior was affected by 

different network structures, we used two different structures: a lattice and a circle. 

We address our first key question by analyzing how often the players use the ability provided, to 

play different strategies against their neighbors (to mix strategies within one round). 

Comparing the participants’ behavior in the two different network structures, we answer our second 

key question. Additionally, comparing our observed results with those of SC, we want to provide 

evidence that learning in networks differs from learning in a random matching environment. 

To answer our third key question, we compare our experimental results with the predictions of the 

five learning concepts. The results of SC were revised in studies by Brunner et al. [13] (henceforth 

BCG) and by Selten et al. [14]. To ensure that the results are comparable, we use the same statistical 

techniques as these studies to analyze our data. 

As benchmarks for our analyses we use the mean frequencies for each model of learning reported 

by CGS, the mean frequencies predicted by the equilibrium concepts, and the observed frequencies in 

the experiment reported by SC. In the study of Chmura et al. [2], the mean frequencies for the models 

of learning result from the run of simulations.3 

As one of our main results we show that learning in networks is different from learning in random 

matching. However, we find no significant difference between the two network structures. In line with 

this result, we observe an order of predictive success for the five equilibrium concepts that differs from 

the order given by SC, which means that learning in networks has a significant impact on the long-run 

                                                 
2 We thank one of our anonymous referees for suggesting this analysis. 
3 Since we do not estimate parameters the fit of models using free parameters might improve if we would  

estimate parameters. 
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equilibrium, which occurs in the process of learning in networks. This result is supported by our 

finding regarding the predictions of the four different models of learning. While CGS shows that  

self-tuning EWA outperformed the other models of learning in random matching, we observe that 

action-sampling learning best predicts behavior in the network games we used. 

As another remarkable result, we find that the majority of players choose the same strategy against 

each neighbor, i.e., players do not really mix strategies. This holds for both network structures 

employed in our experiments. Moreover, the average number of players not mixing strategies is 

slightly higher in the circle network. 

2. Description of the Experiment 

In our study we use two games (see Figure 1) taken from SC. The main reason we use these games 

is that they generate clearly distinct predictions for the five equilibrium concepts. Figure 2 shows the 

theoretical predictions of these concepts for the constant sum game and Figure 3 for the non-constant 

sum game. Figure 4 (Figure 5) shows the predictions of the four learning models for the constant sum 

game (non-constant sum game) we relate our experimental results to.4 

Figure 1. The constant and the non-constant sum game. 

 

Figure 2. Theoretical equilibria in the constant sum games. 

 

                                                 
4 As benchmarks we use the predictions of the five equilibrium concepts reported by Selten and Chmura [1] and in  

Brunner et al. [13] and the predictions of the four learning models reported by Chmura et al. [2]. 
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Figure 3. Theoretical equilibria in the non-constant sum games. 

 

Figure 4. Predictions of the learning models for the constant sum games. 
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Figure 5. Predictions of the learning models for the non-constant sum games. 

 

2.1. The Baseline Games 

We use two games, a constant and a non-constant sum game, as baseline games. As explained by 

SC, both games form a pair that is characterized by having the same best response structure.5 

Because we want, on the one hand, to turn the focus to learning by analyzing the impact of different 

network structures, and on the other hand to refer to the results of SC and BCG, we took the games 

from SC and extended them to neighborhood games in different network structures. 

2.2. The Neighborhood Games and Network Structures 

Following Berninghaus et al. [12], we ran the games in exogenously given fixed network structures 

where each player has four direct neighbors. To accomplish this, 16 players were allocated into two 

different network structures. The 2 × 2 games described in Section 2.1 represent the baseline games. 

Based on these games, the neighborhood game was constructed such that each player interacts with her 

four direct (local) neighbors. Suitably to our first key question, in our experiment each player could 

use a different strategy against each of her neighbors in each round.  

Since it is well known in the literature that network structures affect the players’ behavior in games 

(see, e.g., [12,15,16]) we used two different structures. Guided by the findings of Berninghaus et al. [12] 

regarding the behavior of players in a coordination game, we used two different network structures: a 

lattice and a circle. Figures 6 and 7 provide schematic illustrations of both network structures. 
  

                                                 
5 One can find detailed descriptions of the five concepts and the determination of the equilibria in Selten and Chmura [1] 

and in Brunner et al. [13]. 
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Figure 6. Network structure 1–a lattice. 

 

Figure 7. Network structure 2–a circle. 

 

It is obvious that in both structures each player interacts with four direct neighbors. The difference 

between the structures is given by the number of indirect neighbors on the level of indirect interactions.  

There might be more equilibria in the network game as we present in Figures 2 and 3. Since we 

want to compare the players’ behaviors in the two different network structures as well as with the 

experimental results of SC, we use the equilibria presented in Section 2.1 as benchmarks. 
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2.3. Exemplary Explanations of the Interaction Structures 

In the Lattice (Figure 6), player 1 interacts directly with player 2 as her right, player 4 as her left, 

player 13 as her top, and player 5 as her bottom neighbor6. On the first level of indirect interactions, 

player 1 has six indirect neighbors (players 16, 14, 3, 8, 6, and 9). On the second level of indirect 

interactions, player 1 has four indirect neighbors (players 15, 7, 12, and 10), and one indirect neighbor 

(player 11) on the third level of indirect interactions. 

In the Circle (Figure 7), player 1 interacts directly with player 8 and player 16 as her left neighbors 

and with player 2 and player 10 as her right neighbors. On the first level of indirect interactions player 

1 has five indirect neighbors (players 9, 7, 15, 11, and 3). On the second level of indirect interactions, 

player 1 has four indirect neighbors (players 6, 14, 12, and 4), and she has two indirect neighbors 

(players 13 and 5) on the third level of indirect interactions. 

3. Experimental Procedure 

In order to compare our results with the results of SC, we designed our experiment to be as similar 

as possible to theirs. 

We ran the experiments at the MaXLab, the experimental laboratory at the University of Magdeburg. 

For each neighborhood game, four sessions were conducted with 16 participants each. The participants 

were randomly matched on a position in the network. We told them that the matching could (but did 

not have to) change during the experiment—which did not, in fact, happen. We ran the games over  

100 rounds. In each round the players could choose a different strategy against each of the four direct 

neighbors. After each round the players were informed about the payoffs from each 2 × 2 game, i.e., 

about the total payoff from the last round and about the accumulated payoffs over all rounds.7 

The payoffs were presented by “points” which were converted into Euro at an exchange rate of four 

payoff points equaling 1 Eurocent. An experimental session lasted about 1 to 1.5 h and the average 

earnings of a participant were about 10 Euro. The 256 participants in our experiment were recruited 

using ORSEE software [17] from a pool of mostly students from various faculties. To program our 

experiments we used the experimental software z-Tree [18].8 

4. Experimental Results 

To compare our experimental results with the theoretical predictions of the five concepts, and also 

with the results of SC, in Table 1 we show the observed relative frequencies of playing Up (strategy 

“up” in the 2 × 2 games) and Left (strategy “left” in the 2 × 2 games), played in the two different 

network structures. 
  

                                                 
6 As one can see, players at the edges of the lattice have their neighbors on the opposite edges. 
7 We provided the same feedback as the players received in the experiment of Selten and Chmura [1].  
8 All instructions were provided in German. An English translation of the written instructions is shown in the Appendix. 
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Table 1. The relative frequencies of playing Up and Left in the baseline games. 

Constant Sum Game 

  Session 1 Session 2 Session 3 Session 4 Average Variance 

Lattice 
Up 0.032 0.053 0.061 0.045 0.048 0.000153 
Left 0.784 0.702 0.587 0.692 0.691 0.006529 

Circle 
Up 0.036 0.054 0.048 0.059 0.049 0.000098 
Left 0.779 0.683 0.756 0.641 0.715 0.004092 

Non-Constant Sum Game 

  Session 1 Session 2 Session 3 Session 4 Average Variance 

Lattice 
Up 0.062 0.138 0.143 0.100 0.111 0.001425 
Left 0.677 0.764 0.795 0.741 0.744 0.002500 

Circle 
Up 0.115 0.107 0.110 0.051 0.096 0.000901 
Left 0.724 0.836 0.863 0.672 0.774 0.008223 

Key question 1. Do the participants (actually) mix strategies? 

Unlike in other studies, the participants in our experiment could choose different strategies against 

each opponent in each period. Thus, the participants were able to mix their strategies within one round. 

As shown in Table 2, the participants did not use this opportunity very frequently. 

Table 2. Average No. of players choosing the same strategy against each neighbor over 

100 rounds. 

Average No. of Players Choosing the Same Strategy against Each Neighbor over 100 Rounds 

 Lattice Circle 

Constant sum game 81.03% 85.69% 
Non-constant sum game 81.16% 86.22% 

The majority of players chose the same strategy for each neighbor. We do not find any difference in 

the strategy selection for the base games, but there are slight differences between the two different 

network structures. In terms of learning, or adjusting behavior, the results show that the frequency of 

choosing the same strategy against each neighbor increases over time (see Table 3). 

Table 3. Average No. of players choosing the same strategy in the first fifty and in the 

second fifty rounds. 

Average No. of players choosing the same strategy against each neighbor over rounds 1-50 

 Lattice Circle 

Constant sum game 78.34% 83.06% 
Non-constant sum game 76.66% 83.09% 

Average No. of players choosing the same strategy against each neighbor over rounds 51-100 

 Lattice Circle 

Constant sum game 83.72% 88.31% 
Non-constant sum game 85.66% 89.34% 

Result 1. Participants did not mix strategies within one round. 
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Key question 2. Does the structure of the network affect learning in games? 

To find differences in learning between the Lattice network and the Circle network, we first analyze 

strategy selection in the baseline game. Based on the relative frequencies of playing Up and Left (see 

Table 1), we find no significant differences between the two network structures (sign test for any level 

of significance). 

We compare our observed results with the experimental results of SC to analyze if there are at least 

differences between networks as compared to random matching environments with respect to learning 

behavior. Table 4 shows the observed results. 

Table 4. The observed averages of playing Up and Left in games. 

 

Strategy Choices—Observed Averages in: 

Lattice Network Circle Network No Network (SC [1]) 

 Constant Sum Game  

Up 0.048 0.049 0.079 
Left 0.691 0.751 0.690 

  Non-constant Sum Game  

Up 0.111 0.096 0.141 
Left 0.744 0.774 0.564 

As one can see (Figures 8 and 9), our observed averages for both network structures are different 

from the results in the 2 × 2 games with only one randomly matched partner. The data in Figure 9 

show that this is especially true for the non-constant sum game. These findings imply that learning in 

networks actually is different from learning in the 2 × 2 random matching environment used by SC. 

Figure 8. The observed averages of playing Up and Left in the constant sum game. 
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Figure 9. The observed averages of playing Up and Left in the non-constant sum game. 

 

Result 2. We found no significant differences in the participants’ behavior in the two network structures. 

Key question 3. Are the equilibrium concepts tested by Selten and Chmura [1] good predictors for the 

participants’ behavior in network games? 

As we want to answer the question about the predictive success of the five equilibrium concepts in 

the context of learning in networks, we first illustrate the theoretical predictions of the five concepts 

and the experimental results (Figures 10 and 11). 

Figure 10. Theoretical predictions of the five equilibrium concepts and the experimental 

results for the constant sum game. 
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Figure 11. Theoretical predictions of the five equilibrium concepts and the experimental 

results for the non-constant sum game. 

 

We use the corrected theoretical predictions of SC, according to BCG. Table 5 shows the 

corresponding numerical predictions of the five equilibrium concepts. 

Table 5. The theoretical predictions of the five equilibrium concepts and the observed 

relative frequencies of Up and Left strategies. 

 Nash QRE ASE PSE IBE 

Observed 
Average of 
Selten and 
Chmura 

Our 
Observed 

Average in 
the Lattice 

Our 
Observed 

Average in 
the Circle 

 Constant sum game 

Up 0.091 0.042 0.090 0.071 0.068 0.079 0.048 0.049 
Left 0.909 0.637 0.705 0.643 0.580 0.690 0.691 0.751 

 Non-constant sum game 

Up 0.091 0.042 0.090 0.060 0.104 0.141 0.111 0.096 
Left 0.909 0.637 0.705 0.691 0.634 0.564 0.744 0.774 

To measure the predictive success of the equilibrium concepts, we analyze our data according to the 

method used by SC. The analysis is based on pairwise comparisons of the observed and the predicted 

relative frequencies. Table 6 shows the mean squared distances and the sampling variance for both 

base games played in the two network structures. 
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Table 6. Mean squared distances of the five equilibrium concepts. 

 Nash QRE ASE PSE IBE 
Sampling 
Variance 

Constant 
sum game 

Lattice 0.054297 0.007988 0.006986 0.007880 0.017798 0.005011 
Circle 0.042619 0.009241 0.004899 0.008764 0.021652 0.003143 

Non-const. 
sum game 

Lattice 0.030476 0.019173 0.004915 0.008355 0.015144 0.002943 
Circle 0.025158 0.028433 0.011603 0.014969 0.026441 0.006843 

Based on the mean squared distances, it can be seen that there is an ordering of the concepts in 

terms of success: action-sampling equilibrium, payoff-sampling equilibrium, quantal response 

equilibrium, impulse balance equilibrium, and Nash equilibrium. For the non-constant sum game, the 

impulse balance equilibrium performs slightly better than the quantal response equilibrium. 

Following the analyses in SC and in BCG, we test the results of all 16 independent observations 

together as well as separately for the constant and the non-constant sum game. Since the theoretical 

predictions are independent of the network structure, we test the results for both structures together. As 

in SC, we run the Wilcoxon matched-pairs signed rank test to compare the squared distances of the 

five concepts from the observed relative frequencies. In Table 7, we show the p-values of a test 

checking whether the solution concept in the row outperforms the solution concept in the column. The 

bold numbers in the upper line are the p-values of a test using all 16 observations together. The middle 

line gives the p-values for the observations in the constant sum game, and the lower line the p-values 

for the observations in the non-constant game. 

As per the remarks in BCG, we also perform the Kolmogorov-Smirnov two-sample test to  

double-check the significance of the results (p-values are the numbers in brackets given in Table 7). 

Table 7. Predictive success-p-values in favor of the row concepts, above: 16 independent 

observations together, middle: constant sum game (eight independent observations), below: 

non-constant sum game (eight independent observations). 

 PSE QRE IBE Nash 

ASE 
n. s. 
n. s. 
n. s. 

n. s. 
n. s. 
n. s. 

2% (10%) 
10% (10%) 
10% (n. s.) 

0.001% (0.01%) 
0.02% (0.02%) 

5% (n. s.) 

PSE  
n. s. 
n. s. 
n. s. 

10% (n. s.) 
n. s. 
n. s. 

0.05% (2%) 
0.1% (2%) 
10% (n. s.) 

QRE   
n. s. 
n. s. 
n. s. 

1% (5%) 
0.2% (2%) 

n. s. 

IBE    
5% (10%) 
2% (10%) 

n. s. 
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As per the remarks in BCG, we also perform the Kolmogorov-Smirnov two-sample test to  

double-check the significance of the results (p-values are the numbers in brackets given in Table 7). 

When comparing all independent observations, it is obvious that all non-Nash concepts do 

significantly better than Nash.9 

This holds for the constant sum game but not for the non-constant sum game. Moreover, we found 

no significant clear order of predictive success among the four non-Nash concepts. 

Result 3. There is no significant clear order of predictive success among the four non-Nash concepts. 

Key question 4. Are the learning models tested by Chmura et al. [2] good predictors for the 

participants’ learning process in network games? 

After analyzing the long-run equilibrium behavior in a learning process, we next concentrate on the 

round-by-round behavior and relate our observed results to the predictions of the four learning models. 

We first illustrate the predictions of the four learning models used (given by CGS) and the 

experimental results (Figures 12 and 13). 

Figure 12. Predictions of the four learning models and the experimental results for the 

constant sum game. 

 
  

                                                 
9 That the non-Nash concepts outperform Nash is in line with the results of SC and BCG.  
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Figure 13. Predictions of the four learning models and the experimental results for the 

constant sum game. 

 

Table 8 shows the corresponding numerical values of the predictions of the four learning models. 

We use the predictions given by CGS. 

Table 8. The predictions of the four learning models and the observed relative frequencies 

of Up and Left strategies. 

 ASL IML EWA REL

Observed 
Average of 
Selten and 
Chmura 

Our 
Observed 

Average in 
the Lattice

Our 
Observed 

Average in 
the Circle 

 Constant sum game 

Up 0.095 0.063 0.499 0.121 0.079 0.048 0.049 

Left 0.710 0.574 0.499 0.345 0.690 0.691 0.751 

 Non-constant sum game 

Up 0.094 0.098 0.485 0.170 0.141 0.111 0.096 

Left 0.709 0.637 0.564 0.380 0.564 0.744 0.774 

Based on a pairwise comparison of the observed and the predicted relative frequencies we measure 

the predictive success of the four learning models. Table 9 shows the mean squared distances and the 

sampling variances. 
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Table 9. Mean squared distances of the four learning models. 

 IML ASL EWA REL Sampling Variance 

Constant 
sum game 

Lattice 0.007596 0.018992 0.130266 0.245598 0.005011 
Circle 0.005259 0.023143 0.145006 0.251966 0.003143 

Non-const. 
sum game 

Lattice 0.004467 0.014609 0.139132 0.175497 0.002943 
Circle 0.011039 0.025549 0.167395 0.202354 0.006843 

Using the mean squared distances as a measure for predictive success, the following order  

can be derived: action-sampling learning, impulse-matching learning, reinforcement learning, and  

self-tuning EWA. 

Following the analyses regarding the predictive success of the (long-run) equilibrium concepts, we 

use the Kolmogorov-Smirnov two-sample test to check for significance of the derived order of 

predictive success. We test the results for both structures together. Table 10 shows the p-values of the 

test of all 16 independent observations together as well as separately for the constant and the  

non-constant sum game. Table 10 is equally structured as Table 7, meaning we show the p-values of a 

test checking whether the learning model in the row outperforms the learning model in the column. 

Table 10. Predictive success-p-values in favor of the row concepts, above:  

16 independent observations together, middle: constant sum game (eight independent 

observations), below: non-constant sum game (eight independent observations). 

 IML REL EWA 

ASL 
3.5% 
8.7% 

66.0% 

<0.1% 
<0.1% 
<0.1% 

<0.1% 
<0.1% 
<0.1% 

IML  
<0.1% 
<0.1% 
<0.1% 

<0.1% 
<0.1% 
<0.1% 

REL   
0.3% 
0.2% 
8.7% 

When comparing all 16 independent observations together, it is obvious that the results of  

the tests support our derived order of predictive success, i.e., action-sampling learning predicts the 

round-by-round behavior best. This holds for the constant sum game but not for the non-constant sum 

game. For the non-constant sum game the predictions of action-sampling learning and impulse-matching 

learning are not significantly different. 

Result 4. There is a significant clear order of predictive success among the four learning models, 

which is: (1) action-sampling learning, (2) impulse-matching learning, (3) reinforcement learning, 

and (4) self-tuning EWA. 
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5. Conclusions 

In this paper, we analyzed learning in networks. Therefore, we added network structures to the 2 × 2 

games taken from Selten and Chmura [1]. Starting with two different games (a constant and a 

non-constant sum game) we construct a neighborhood game with two different network structures (a 

lattice and a circle), where each player has four direct (local) neighbors. Unlike in other studies, the 

participants in our experiment could choose a different strategy against each neighbor. 

As our study is related to that of SC, we compare our observed results to their experimental results, 

and to the theoretical predictions of five (long-run) equilibrium concepts (Nash-equilibrium, quantal 

response equilibrium, action-sampling equilibrium, payoff-sampling equilibrium, and impulse balance 

equilibrium). We additionally relate our results to the predictions of four learning models (action-sampling 

learning, impulse-matching learning, reinforcement learning, and self-tuning EWA), used by  

Chmura et al. [2], to shed some light on the learning process. 

Guided by our key questions, we first analyze our data to check if the participants really play mixed 

strategies. Because the majority of players choose the same strategy against each neighbor, we 

conclude that the participants did not mix their strategies in a round. 

In a second step, we consider the influence of different network structures on the behavior of the 

participants. The differences between our results and the experimental results of SC provide evidence 

that learning in network differs from learning in 2 × 2 games with only one randomly matched partner. 

Unlike in other studies, we find no significant difference in the behavior of the participants in the two 

network structures we use. We find only slight differences in the number of participants choosing the 

same strategy against each neighbor. 

Concerning our third key question, we show that none of the five equilibrium concepts provides an 

exact prediction for the participants’ behavior in our experiment. We show that all non-Nash concepts 

outperform the Nash concept. The order of predictive success of the four non-Nash concepts is 

different for the constant sum and the non-constant sum game. It is perhaps notable that action-sampling 

equilibrium and payoff-sampling equilibrium strategies do better than impulse balance equilibrium 

when both games are combined. Aside from this, there is no clear ranking among these four  

non-Nash concepts. 

With respect to our forth key question, we show that none of the learning models exactly predicts 

the round-by-round behavior of the participants in our experiment. It becomes obvious, that there is a 

clear order of predictive success among the four learning models, with action-sampling learning as 

best and self-tuning EWA as least prediction model. This order is derived when comparing the data of 

both games together. While this order of predictive success holds for the constant sum game, it does 

not hold for the non-constant sum game. Here, action-sampling learning predicts as good as  

impulse-matching learning. However, our derived order of predictive success supports the general 

findings of CSG using aggregate frequencies. 

For future research it looks promising to further develop theories and test different network 

structures in addition to further replications. 
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Appendix 

Written Instructions (Translation) 

Welcome to our today’s experiment! Below, you can find the description of the experiment and 

then you are asked to make a series of decisions. Please read the following information very carefully. 

If you have any questions, please ask before you start the experiment. Please note that during the 

whole experiment, communication with the other participants is not allowed. Thank you! 

In total, 16 players take part in this experiment. Each participant plays either as a Player 1 type or as 

a Player 2 type. They maintain that role throughout the duration of the experiment. 

You play the games over 100 rounds. 

In every round, each Player 1 type plays with four Player 2 types and each Player 2 type plays  

with four Player 1 types. The combination of players can randomly change (but did not have to) in 

every round. 

On the screen you see four matrices (for each pair of players, a matrix) with four fields. As the 

screenshot show, in each round and in each of the four matrices, you can decide between the two 

possible strategies (Strategy A or Strategy B). 

 

The payoff of the row player can be found in the upper left corner and of the column player in the 

lower right corner. Your (possible) payoffs are displayed with a round frame. Your payoff depends on 

your own choice and the choices of the other players. After making your choice, your selected line 

turns red. After the selection of the other players, in each matrix the field with the payoff you receive 

turns yellow. 

1 of 200
Periode

payoff
matrix I A B

A
10

8

0

18

B
9

9

10

8

payoff
matrix II A B

A
10

8

0

18

B
9

9

10

8

payoff
matrix III A B

A
10

8

0

18

B
9

9

10

8

payoff
matrix IV A B

A
10

8

0

18

B
9

9

10

8

your decision in payoff matrix I A
B

your decision in payoff matrix III A
B your decision in payoff matrix IV A

B

your decision in payoff matrix II A
B

4 Points = 1 Cent

make decision
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After each round you will be notified which payoff (for each pairing/matrix) you received in the last 

round. In addition, you are informed about the total payoff (cumulated over all played matrices in the 

already played rounds. The conversion rate for your received payoffs will be announced on the screen. 
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