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Abstract: Type structures are a simple device to describe higher-order beliefs. However, how can we
check whether two types generate the same belief hierarchy? This paper generalizes the concept of a
type morphism and shows that one type structure is contained in another if and only if the former
can be mapped into the other using a generalized type morphism. Hence, every generalized type
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make reference to belief hierarchies. We use our results to characterize the conditions under which
types generate the same belief hierarchy.
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1. Introduction

Higher-order beliefs play a central role in game theory. Whether a player is willing to invest in a
project, for example, may depend on what he or she thinks that his or her opponent thinks about the
economic fundamentals, what he or she thinks that his or her opponent thinks that he or she thinks, and
so on, up to arbitrarily high order (e.g., [1]). Higher-order beliefs can also affect economic conclusions in
settings ranging from bargaining [2,3] and speculative trade [4] to mechanism design [5] . Higher-order
beliefs about actions are central to epistemic characterizations, for example, of rationalizability [6,7],
Nash equilibrium [8,9] and forward induction reasoning [10]. In principle, higher-order beliefs can
be modeled explicitly, using belief hierarchies. For applications, the type structures introduced by
Harsanyi [11] provide a simple, tractable modeling device to represent players’ higher-order beliefs.

While type structures provide a convenient way to represent higher-order beliefs, it may be
difficult to check whether types generate the same belief hierarchy. The literature has considered the
following question: given two type structures, T and T ′, is it the case that for every type in T , there is
a type in T ′ that generates the same belief hierarchy? That is, is the type structure T contained in T ′?1

The literature has considered two different tests to address this question, one based on hierarchy
morphisms and one based on type morphisms. Hierarchy morphisms can be used to give a complete
answer to this question: a type structure T is contained in T ′ if and only if there is a hierarchy
morphism from the former to the latter. A problem with this test is that hierarchy morphisms make
reference to belief hierarchies, as we shall see. Therefore, this test requires us to go outside the purview
of type structures. The second test uses type morphisms. Type morphisms are defined solely in terms

1 We follow the terminology of Friedenberg and Meier [12] here. A stronger condition for T to be contained in T ′ is that T
can be embedded (using a type morphism) into T ′ as a belief-closed subset [13]. Our results can be used to characterize
conditions under which T is contained in T ′ in this stronger sense in a straightforward way.
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of the properties of the type structures. However, the test based on type morphisms only provides a
sufficient condition: if there is a type morphism from T to T ′, then T is contained in T ′ [14]. However,
as shown by Friedenberg and Meier [12], the condition is not necessary: it may be that T ′ contains
T , yet there is no type morphism from T to T ′. The work in [12] also provides a range of conditions
under which the condition is both necessary and sufficient. However, they do not directly address the
question of whether there might be an alternate test (which provides conditions that are both necessary
and sufficient) that does not require us to describe the belief hierarchies explicitly.

This paper provides such a test, by generalizing the notion of a type morphism. We show that
a type structure is contained in another if and only if there is a generalized type morphism from the
former to the latter. Therefore, a generalized type morphism is a hierarchy morphism and vice versa.
Unlike the definition of hierarchy morphisms, the definition of generalized type morphisms does not
make reference to belief hierarchies. Therefore, this test can be carried out without leaving the purview
of type structures. Using this result, it is straightforward to verify whether two types generate the
same belief hierarchy, as we show.

Hierarchy morphisms are used in a number of different settings. For example, they can be used
to check whether types have the same rationalizable actions [15] and play an important role in the
literature on the robustness to misspecifying the parameter set more generally; see, e.g., Ely and
Peski [16] and Liu [17]. Hierarchy morphisms are also used to study the robustness of Bayesian-Nash
equilibria to misspecifications of players’ belief hierarchies [18,19] and in epistemic game theory.
The current results make it possible to study these issues without describing players’ belief hierarchies
explicitly, using that every hierarchy morphism is a generalized type morphism and conversely.

A critical ingredient in the definition of a generalized type morphism is the σ-algebra on a
player’s type set, which separates his or her types if and only if they differ in the belief hierarchy that
they generate. Mertens and Zamir ([13], p. 6) use this σ-algebra to define non-redundant type
structures, and this σ-algebra also plays an important role in the work of Friedenberg and Meier [12],
where it is used to characterize the conditions under which hierarchy morphisms and type morphisms
coincide. The work in [13] provides a nonconstructive definition of this σ-algebra, and [12] show
that the σ-algebra defined by [13] is the σ-algebra generated by the functions that map types into
belief hierarchies. We provide a constructive definition of this σ-algebra, by means of a type partitioning
procedure that does not make reference to belief hierarchies.

While many of the ingredients that underlie our results are known in some form or another,
we view the contribution of this paper as combining these ideas in a new way to generalize the concept
of a type morphism, so that it provides a necessary and sufficient condition for a type structure to be
contained in another that does not refer to belief hierarchies.

A number of papers has shown that the measurable structure associated with type structures can
impose restrictions on reasoning [12,20–23]. This paper contributes to that literature in two ways. First,
we elucidate the connection by constructing the measurable structure on type sets that is generated by
players’ higher-order beliefs. Second, we provide tools to easily go from the domain of type structures
to the domain of belief hierarchies and vice versa.

The outline of this paper is as follows. The next section introduces basic concepts. Section 3
discusses type morphisms and hierarchy morphisms. Section 4 defines our generalization of a type
morphism and proves the main result. Section 5 applies this result to characterize the conditions under
which types generate the same belief hierarchy. Section 6 considers the special case where players have
finitely many types. Proofs are relegated to the Appendix A.

2. Belief Hierarchies and Types

In this section, we show how belief hierarchies can be encoded by means of a type structure.
The original idea behind this construction goes back to Harsanyi (1967). We first provide the definition
of a type structure and subsequently explain how to derive a belief hierarchy from a type in a
type structure. We conclude the section with an example of two type structures that are equivalent,
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in the sense that they produce exactly the same sets of belief hierarchies for the players. This example
thus shows that the same belief hierarchy can be encoded within different type structures.

2.1. Type Structures

Consider a finite set of players I. Assume that each player i faces a basic space of uncertainty
(Xi, Σi), where Xi is a set and Σi a σ-algebra on Xi. That is, Xi = (Xi, Σi) is a measurable space.
The combination X = (Xi, Σi)i∈I of basic uncertainty spaces is called a multi-agent uncertainty
space. The basic space of uncertainty for player i could, for instance, be the set of opponents’ choice
combinations, or the set of parameters determining the utility functions of the players, or even a
combination of the two.

A belief hierarchy for player i specifies a probability measure on Xi, the first-order belief,
a probability measure on Xi and the opponents’ possible first-order beliefs, the second-order belief,
and so on. As is standard, we encode such infinite belief hierarchies by means of type structures.

For any measurable space (Y, Σ̂), we denote by ∆(Y, Σ̂) the set of probability measures on (Y, Σ̂).
We endow ∆(Y, Σ̂) with the coarsest σ-algebra that contains the sets:

{µ ∈ ∆(Y, Σ̂) | µ(E) ≥ p} : E ∈ Σ̂, p ∈ [0, 1].

This is the σ-algebra used in Heifetz and Samet [14] and many subsequent papers; it coincides
with the Borel σ-algebra on ∆(Y, Σ̂) (induced by the weak convergence topology) if Y is metrizable and
Σ̂ is the Borel σ-algebra. Product spaces are endowed with the product σ-algebra. Given a collection of
measurable spaces (Yi,Yi), i ∈ I, write Y for the product σ-algebra

⊗
j∈I Yj and Y−i for the product

σ-algebra
⊗

j 6=i Yj, where i ∈ I.

Definition 1. (Type structure) Consider a multi-agent uncertainty space X = (Xi, Σi)i∈I . A type structure
for X is a tuple T = (Ti, ΣTi , bi)i∈I where, for every player i,

(a) Ti is a set of types for player i, endowed with a σ-algebra ΣTi , and

(b) bi : Ti → ∆(Xi × T−i, Σ̂i) is a measurable mapping that assigns to every type ti a probabilistic belief
bi(ti) ∈ ∆(Xi × T−i, Σ̂i) on its basic uncertainty space and the opponents’ type combinations, where
Σ̂i = Σi ⊗ ΣT−i is the product σ-algebra on Xi × T−i.

Finally, if f : Y → (Y′, Σ′) is a function from Y to the measurable space (Y′, Σ′), then σ( f ) is
the σ-algebra on Y generated by f , that is, it is the coarsest σ-algebra that contains the sets {y ∈ Y :
f (y) ∈ E} for E ∈ Σ′.

2.2. From Type Structures to Belief Hierarchies

In the previous subsection, we have introduced the formal definition of a type structure. We
now show how to “decode” a type within a type structure, by deriving the full belief hierarchy that
it induces.

Consider a type structure T = (Ti, ΣT
i , bi)i∈I for X . Then, every type ti within T induces an

infinite belief hierarchy:
hTi (ti) = (µT ,1

i (ti), µT ,2
i (ti), . . .),

where µT ,1
i (ti) is the induced first-order belief, µT ,2

i (ti) is the induced second-order belief, and so on.
We will inductively define, for every n, the n-th order beliefs induced by types ti in T , building upon
the (n− 1)-th order beliefs that have been defined in the preceding step.

We start by defining the first-order beliefs. For each player i, define:

H1
i := ∆(Xi, Σi)
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to be the set of beliefs about Xi, and for every type ti ∈ Ti, define its first-order belief µT ,1
i (ti) by:

µT ,1
i (ti)(Ei) := bi(ti)(Ei × T−i) for all Ei ∈ Σi.

Clearly, µT ,1
i (ti) ∈ ∆(Xi, Σi) for every type ti. Define hT ,1

i (ti) := µT ,1
i (ti). The mapping µT ,1

i from
Ti to H1

i is measurable by standard arguments. For n > 1, suppose the set Hn−1
i has been defined

and that the function hT ,n−1
i from Ti to Hn−1

i is measurable. Let Σ̂n−1
i be the product σ-algebra on

Xi × ×j 6=i Hn−1
j , and define:

Hn
i := Hn−1

i × ∆(Xi × Hn−1
−i , Σ̂n−1

i ).

For every type ti, define its n-th-order belief µT ,n
i (ti) by:

for all E ∈ Σ̂n−1
i : µT ,n

i (ti)(E) = bi(ti)({(xi, t−i) ∈ Xi × T−i | (xi, hT ,n−1
−i (t−i)) ∈ E}),

with hT ,n−1
−i (t−i) = (hT ,n−1

j (tj))j 6=i. Since hT ,n−1
j is measurable for every player j, µT ,n

i is indeed a

probability measure on (Xi × Hn−1
−i , Σ̂n−1

i ). Define hT ,n
i (ti) := (hT ,n−1

i (ti), µT ,n
i (ti)). It follows that

hT ,n
i (ti) ∈ Hn

i . Moreover, hT ,n
i is measurable.

Note that, formally speaking, the n-th-order belief µT ,n
i (ti) is a belief about Xi and the opponents’

first-order until (n − 1)-th order beliefs. Moreover, by construction, the n-th and (n + 1)-th order
beliefs µT ,n

i (ti) and µT ,n+1
i (ti) are coherent in the sense that they induce the same belief on Xi and the

opponents’ first-order until (n− 1)-th order beliefs.
Finally, for every type ti ∈ Ti, we denote by:

hTi (ti) := (µT ,n
i (ti))n∈N

the belief hierarchy induced by type ti in T . Furthermore, define Hi to be the set ∆(Xi)××n≥1∆(Xi ×
Hn
−i) of all belief hierarchies. We say that two types, ti and t′i, of player i generate the same belief

hierarchy if hTi (ti) = hTi (t′i). Types ti and t′i generate the same n-th-order belief if µT ,n
i (ti) = µT ,n

i (t′i).
2

2.3. Example

Consider a multi-agent uncertainty space X = (Xi, Σi)i∈I where I = {1, 2}, X1 = {c, d},
X2 = {e, f } and Σ1, Σ2 are the discrete σ-algebras on X1 and X2, respectively. Consider the type
structures T = (T1, T2, Σ1, Σ2, b1, b2) and T ′ = (R1, R2, Σ1, Σ2, β1, β2) in Table 1.

2 Clearly, ti and t′i generate the same n-th-order belief if and only if hT,n
i (ti) = hT,n

i (t′i).
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Table 1. Two equivalent type structures.

Type Structure T
T1 = {t1, t′1, t′′1 }, T2 = {t2, t′2, t′′2 }

b1(t1) =
1
2 (c, t2) +

1
2 (d, t′2)

b1(t′1) =
1
6 (c, t2) +

1
3 (c, t′′2 ) +

1
2 (d, t′2)

b1(t′′1 ) =
1
2 (c, t′2) +

1
2 (d, t′′2 )

b2(t2) =
1
4 (e, t1) +

1
2 (e, t′1) +

1
4 ( f , t′′1 )

b2(t′2) =
1
8 (e, t1) +

1
8 (e, t′1) +

3
4 ( f , t′′1 )

b2(t′′2 ) =
3
8 (e, t1) +

3
8 (e, t′1) +

1
4 ( f , t′′1 )

Type Structure T ′

R1 = {r1, r′1, r′′1 }, R2 = {r2, r′2, r′′2 }

β1(r1) =
1
4 (c, r2) +

1
4 (c, r′′2 ) +

1
2 (d, r′2)

β1(r′1) =
1
2 (c, r′2) +

1
8 (d, r2) +

3
8 (d, r′′2 )

β1(r′′1 ) =
1
2 (c, r′2) +

3
8 (d, r2) +

1
8 (d, r′′2 )

β2(r2) =
1
4 (e, r′1) +

3
4 ( f , r1)

β2(r′2) =
3
4 (e, r′1) +

1
4 ( f , r1)

β2(r′′2 ) =
1
8 (e, r′1) +

1
8 (e, r′′1 ) +

3
4 ( f , r1)

Then, it can be verified that the types t1, t′1, r′1 and r′′1 generate the same belief hierarchy, and so do
the types t′′1 and r1, the types t2, t′′2 and r′2 and the types t′2, r2 and r′′2 . In particular, for every type in T ,
there is another type in T ′ generating the same belief hierarchy, and vice versa. In this sense, the two
type structures T and T ′ are equivalent.

3. Hierarchy and Type Morphisms

The literature has considered two concepts that map type structures into each other,
type morphisms and hierarchy morphisms. Throughout the remainder of the paper, fix two
type structures, T = (Ti, ΣTi , bi)i∈I and T ′ = (T′i , ΣT

′
i , b′i)i∈I on X . The functions that map types

from T and T ′ into belief hierarchies are denoted by hTi and hT
′

i , respectively.

Definition 2. (Hierarchy morphism) For each player i ∈ I, let ϕi be a function from Ti to T′i , such that for
every type ti ∈ Ti, hT

′
i (ϕi(ti)) = hTi (ti). Then, ϕi is a hierarchy morphism (from T to T ′). With some abuse

of notation, we refer to the profile (ϕi)i∈I as a hierarchy morphism.

Therefore, if there is a hierarchy morphism between T and T ′, then every type in T can be
mapped into a type in T ′ in a way that preserves belief hierarchies. We say that the type structure T ′
contains T if, and only if, there is a hierarchy morphism from T to T ′.

Type morphisms are mappings between type structures that preserve beliefs.

Definition 3. (Type morphism) For each player i ∈ I, let ϕi be a function from Ti to T′i that is measurable with
respect to ΣTi and ΣT

′
i .3 Suppose that for each player i, type ti ∈ Ti and E ∈ Σi ⊗ ΣT

′
−i ,

bi(ti)({(xi, t−i) ∈ Xi × T−i | (xi, ϕ−i(t−i)) ∈ E}) = b′i(ϕi(ti))(E). (1)

Then, ϕ := (ϕi)i∈I is a type morphism (from T to T ′).

3 That is, for each E ∈ ΣT′
i , we have {ti ∈ Ti | ϕi(ti) ∈ E} ∈ ΣT

i .
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Heifetz and Samet [14] have shown that one type structure is contained in another whenever
there is a type morphism from the former to the latter.

Proposition 1. ([14], Prop. 5.1) If ϕ is a type morphism from T to T ′, then it is a hierarchy morphism.
Therefore, if there is a type morphism from T to T ′, then T ′ contains T .

Unlike hierarchy morphisms, type morphisms do not make reference to belief hierarchies.
Therefore, to check whether there is a type morphism from one type structure to another, we need to
consider only the type structures. However, the condition that there be a type morphism from one
type structure to another provides only a sufficient condition for the former to be contained in the
latter. Indeed, Friedenberg and Meier [12] show that the condition is not necessary: there are type
structures such that one is contained in the other, yet there is no type morphism between the two.

4. Generalized Type Morphisms

Type morphisms require beliefs to be preserved for every event in the types’ σ-algebra. However,
for two types to generate the same belief hierarchy, it suffices that their beliefs are preserved only
for events that can be described in terms of players’ belief hierarchies. We use this insight to define
generalized type morphisms and show that a type structure contains another if and only if there is a
generalized type morphism from the latter to the former.

The first step is to define the relevant σ-algebra. Mertens and Zamir ([13], p. 6) provide the
relevant condition. We follow the presentation of Friedenberg and Meier [12].

Definition 4. ([12], Def. 5.1) Fix a type structure T and fix a sub-σ algebra Σ̃Ti ⊆ ΣTi for each player i ∈ I.
Then, the product σ-algebra Σ̃T is closed under T if for each player i,

{ti ∈ Ti | bi(ti)(E) ≥ p} ∈ Σ̃Ti

for all E ∈ Σi ⊗ Σ̃T−i and p ∈ [0, 1].

The coarsest (sub-)σ algebra that is closed under T is of special interest, and we denote it by
FT =

⊗
i∈I FTi . It is the intersection of all σ-algebras that are closed under T .4 The work in [13] uses

this σ-algebra to define non-redundant type spaces, and [12] use it to characterize the condition under
which a hierarchy morphism is a type morphism.

Friedenberg and Meier [12] provide a characterization of the σ-algebra FT in terms of the
hierarchy mappings. Recall that σ(hTi ) is the σ-algebra on Ti generated by the mapping hTi . That is,
σ(hTi ) is the coarsest σ-algebra that contains the sets:

{ti ∈ Ti | hTi (ti) ∈ E} : E ⊆ Hi measurable.

Lemma 1. ([12], Lemma 6.4) Let the product σ-algebra FT be the coarsest σ-algebra that is closed under T .
Then, for each player i, FTi = σ(hTi ).

We are now ready to define generalized type morphisms.

4 Since ΣT is closed under T (by measurability of the belief maps bi), the intersection is nonempty. It is easy to verify that the
intersection is a σ-algebra.
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Definition 5. (Generalized type morphism) For each player i ∈ I, let ϕi be a function from Ti to T′i that is
measurable with respect to ΣTi and FT ′i .5 Suppose that for each player i, type ti ∈ Ti and E ∈ Σi ⊗FT

′
−i ,

bi(ti)({(xi, t−i) ∈ Xi × T−i | (xi, ϕ−i(t−i)) ∈ E}) = b′i(ϕi(ti))(E).

Then, ϕ := (ϕi)i∈I is a generalized type morphism (from T to T ′).

Note that a type morphism is always a generalized type morphism, but not vice versa. Like type
morphisms, generalized type morphisms are defined using the language of type structures alone;
the definition does not make reference to belief hierarchies. The difference between type morphisms
and generalized type morphisms is that the former requires beliefs to be preserved for all events in the
σ-algebra Σi ⊗ ΣT

′
−i for player i, while the latter requires beliefs to be preserved only for events in the

σ-algebra Σi ⊗FT
′
−i , and this σ-algebra is a coarsening of Σi ⊗ ΣT

′
−i (Definition 4 and Lemma 1).

Our main result states that one structure is contained in another if and only if there is a generalized
type morphism from the former to the latter.

Theorem 1. A mapping ϕ is a hierarchy morphism from T to T ′ if and only if it is a generalized type morphism
from T to T ′. Hence, a type structure T ′ contains T if and only if there is a generalized type morphism from T
to T ′.

This result establishes an equivalence between generalized type morphisms and hierarchy
morphisms. It thus provides a test that can be used to verify whether one type structure is contained
in the other that does not refer to belief hierarchies.

While the characterization in Theorem 1 does not make reference to belief hierarchies, the result
may not be easy to apply directly. The σ-algebras FT

i are defined as the intersection of σ-algebras that
are closed under T , and there can be (uncountably) many of those. We next define a simple procedure
to construct this σ-algebra.

Procedure 1. (Type partitioning procedure) Consider a multi-agent uncertainty space X = (Xi, Σi)i∈I and a
type structure T = (Ti, ΣTi , bi)i∈I for X .

Initial step: For every player i, let ST ,0
i = {Ti, ∅} be the trivial σ-algebra of his or her set of types Ti.

Inductive step: Suppose that n ≥ 1 and that the sub-σ algebra ST ,n−1
i on Ti has been defined for every player i.

Then, for every player i, let ST ,n
i be the coarsest σ-algebra that contains the sets:

{ti ∈ Ti | bi(ti)(E) ≥ p}

for all E ∈ Σi ⊗ ST ,n−1
−i and all p ∈ [0, 1]. Furthermore, let ST ,∞

i be the σ-algebra generated by the
union

⋃
n ST ,n

i .

A simple inductive argument shows that ST ,n
i refines ST ,n−1

i for all players i and all n; clearly,
ST ,∞

i refines ST ,n
i for any n. The next result shows that the type partitioning procedure delivers the

σ-algebras that are generated by the hierarchy mappings.

Proposition 2. Fix a type structure T , and let i ∈ I. Then, ST ,∞
i = σ(hTi ) and ST ,n

i = σ(hT ,n
i ) for all

n ≥ 1. Therefore, ST ,∞
i = FTi .

5 That is, for each E ∈ FT′
i , we have {ti ∈ Ti | ϕi(ti) ∈ E} ∈ ΣT

i .
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Hence, we can use the type partitioning procedure to construct the σ-algebras, which we need
for our characterization result (Theorem 1). Heifetz and Samet [24] consider a similar procedure
in the context of knowledge spaces to show that a universal space does not exist for that setting.
The procedure also has connections with the construction in Kets [22] of type structures that describe
the beliefs of players with a finite depth of reasoning. In the next section, we use Theorem 1 and the
type partitioning procedure to characterize the types that generate the same belief hierarchies.

5. Characterizing Types with the Same Belief Hierarchy

We can use the results in the previous section to provide simple tests to determine whether two
types, from the same type structure or from different structures, generate the same belief hierarchy.
We assume in this section that Xi is countably generated: there is a countable collection of subsets
En

i ⊆ Xi, n = 1, 2, . . ., such that Σi is the coarsest σ-algebra that contains these subsets. Examples of
countably-generated σ-algebras include the discrete σ-algebra on a finite or countable set and the Borel
σ-algebra on a finite-dimensional Euclidean space. Recall that an atom of a σ-algebra Σ on a set Y is a
set a ∈ Σ, such that Σ does not contain a nonempty proper subset of a. That is, for any a′ ∈ Σ, such
that a′ ⊆ a, we have a′ = a or a′ = ∅.6

Lemma 2. Let i ∈ I and n ≥ 1. The σ-algebras ST ,n
i and ST ,∞

i are atomic. That is, for each ti ∈ Ti, there are
atoms an

i (ti) and a∞
i (ti) in ST ,n

i and ST ,∞
i , respectively, such that ti ∈ an

i (ti) and ti ∈ a∞
i (ti).

This result motivates the name “type partitioning procedure”: the procedure constructs a
σ-algebra that partitions the type sets into atoms. Proposition 3 shows that these atoms contain
precisely the types that generate the same higher-order beliefs.

Proposition 3. For every player i, every n ≥ 1 and every two types ti, t′i ∈ Ti, we have that

(a) for every n ≥ 0, types ti and t′i generate the same n-th-order belief if and only if there is an atom an
i ∈ S

T ,n
i ,

such that ti, t′i ∈ an
i ;

(b) types ti and t′i generate the same belief hierarchy if and only if there is an atom a∞
i ∈ S

T ,∞
i , such that

ti, t′i ∈ a∞
i .

There is a connection between Proposition 3 and the work of Mertens and Zamir [13]. The work
in [13] defines a type structure T to be non-redundant if for every player i, the σ-algebra FTi separates
types; see Liu ([17], Prop. 2) for a result that shows that this definition is equivalent to the requirement
that there are no two types that generate the same belief hierarchy. Therefore, [13] already note the
connection between the separating properties of FT and the question of whether types generate the
same belief hierarchy. The contribution of Proposition 3 is to provide a simple procedure to construct
the σ-algebra FT and to show that the separating sets can be taken to be atoms (as long as the σ-algebra
on Xi is countably generated).

Proposition 3 can also be used to verify whether two types from different type structures generate
the same higher-order beliefs, by merging the two structures. Specifically, consider two different
type structures, T 1 = (T1

i , Σ1
i , b1

i )i∈I and T 2 = (T2
i , Σ2

i , b2
i )i∈I , for the same multi-agent uncertainty

spaceX = (Xi, Σi)i∈I . To check whether two types t1
i ∈ T1

i and t2
i ∈ T2

i induce the same belief hierarchy,
we can merge the two type structures into one large type structure and then run the type partitioning
procedure on this larger type structure. That is, define the type structure T ∗ = (T∗i , Σ∗i , b∗i )i∈I as follows.

6 Clearly, for any y ∈ Y, if there is an atom a that contains y (i.e., y ∈ a), then this atom is unique.



Games 2016, 7, 28 9 of 17

For each player i, let T∗i be the union of T1
i and T2

i (possibly made disjoint by replacing T1
i or T2

i with a
homeomorphic copy), and define the σ-algebra Σ∗i on T∗i by:

E ∈ Σ∗i if and only if E ∩ T1
i ∈ Σ1

i and E ∩ T2
i ∈ Σ2

i .

Furthermore, define b∗i by:

b∗i (ti) :=

{
b1

i (ti), if ti ∈ T1
i

b2
i (ti), if ti ∈ T2

i

for all types ti ∈ Ti.7 Applying the type partitioning procedure on T ∗ gives a σ-algebra S∗,∞i on T∗i for
each player i. If t1

i ∈ T1
i and t2

i ∈ T2
i belong to the same atom of S∗,∞i , then t1

i and t2
i induce the same

belief hierarchy. The converse also holds, and hence, we obtain the following result.

Proposition 4. Consider two type structures T1 = (T1
i , Σ1

i , b1
i )i∈I and T2 = (T2

i , Σ2
i , b2

i )i∈I . Let
T∗ = (T∗i , Σ∗i , b∗i )i∈I be the large type structure defined above, obtained by merging the two type structures,
and let S∗,∞i , for a given player i, be the σ-algebra on T∗i generated by the type partitioning procedure. Then,
two types t1

i ∈ T1
i and t2

i ∈ T2
i induce the same belief hierarchy, if and only if, t1

i and t2
i belong to the same atom

of S∗,∞i .

The type partitioning procedure is thus an easy and effective way to check whether two types,
from possibly different type structures, generate the same belief hierarchy or not.

We expect our main results to apply more broadly. The proofs can easily be modified so that
the main results extend to conditional probability systems in dynamic games [25], lexicographic
beliefs [26], beliefs of players with a finite depth of reasoning [22,27] and the ∆-hierarchies introduced
by Ely and Peski [16].

6. Finite Type Structures

When type structures are finite, our results take on a particularly simple and intuitive form.
Say that a type structure T is finite if the type set Ti is finite for every player i. For finite type structures,
we can replace σ-algebras by partitions.

We first define the type partitioning procedure for the case of finite type structures. A finite
partition of a set A is a finite collection P = {P1, . . . , PK} of nonempty subsets Pk ⊆ A, such that⋃K

k=1 Pk = A and Pk ∩ Pm = ∅ whenever k 6= m. We refer to the sets Pk as equivalence classes. For an
element a ∈ A, we denote by P(a) the equivalence class Pk to which a belongs. The trivial partition of
A is the partition P = {A} containing a single set; the full set A. For two partitions P1 and P2 on A,
we say that P1 is a refinement of P2 if for every set P1 ∈ P1, there is a set P2 ∈ P2, such that P1 ⊆ P2.

In the procedure, we recursively partition the set of types of an agent into equivalence classes,
starting from the trivial partition and refining the previous partition with every step, until these
partitions cannot be refined any further. We show that the equivalence classes produced in round n
contain exactly the types that induce the same n-th order belief. In particular, the equivalence classes
produced at the end contain precisely those types that induce the same (infinite) belief hierarchy.

Procedure 2 (Type partitioning procedure (finite type structures)). Consider a multi-agent uncertainty
space X = (Xi, Σi)i∈I and a finite type structure T = (Ti, ΣTi , bi)i∈I for X .

Initial step: For every agent i, let P0
i be the trivial partition of his or her set of types Ti.

7 This is with some abuse of notation, since b∗i is defined on Xi × T∗−i , while b1
i and b2

i are defined on Xi × T1
−i and Xi × T2

−i ,
respectively. By defining the σ-algebra ΣT∗

j on T∗j as above, the extension of b1
i and b2

i to the larger domain is well defined.
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Inductive step: Suppose that n ≥ 1 and that the partitions Pn−1
i have been defined for every agent i. Then, for

every agent i, and every ti ∈ Ti,

Pn
i (ti) = {t′i ∈ Ti | bi(t′i)(Ei × Pn−1

−i ) = bi(ti)(Ei × Pn−1
−i ) (2)

for all Ei ∈ Σi, and all Pn−1
−i ∈ P

n−1
−i }.

The procedure terminates at round n whenever Pn
i = Pn−1

i for every agent i.

In this procedure, Pn−1
−i is the partition of the set T−i induced by the partitions Pn−1

j on Tj. Again,

it follows from a simple inductive argument that Pn
i is a refinement of Pn−1

i for every player i and
every n. Note that if the total number of types, viz., ∑i∈I |Ti|, equals N, then the procedure terminates
in at most N − |I| steps. We now illustrate the procedure by means of an example.

Example 1. Consider the first type structure T = (T1, T2, Σ1, Σ2, b1, b2) from Table 1.

Initial step: Let P0
1 be the trivial partition of the set of types T1, and let P0

2 be the trivial partition of the set of
types T2. That is,

P0
1 = {{t1, t′1, t′′1 }} and P0

2 = {{t2, t′2, t′′2 }}.

Round 1: By Equation (2),

P1
1 (t1) = {τ1 ∈ T1 |

b1(τ1)({c} × T2) = b1(t1)({c} × T2) =
1
2 ,

b1(τ1)({d} × T2) = b1(t1)({d} × T2) =
1
2}

= {t1, t′1, t′′1 },

which implies that:
P1

1 = P0
1 = {{t1, t′1, t′′1 }}.

At the same time,

P1
2 (t2) = {τ2 ∈ T2 |

b2(τ2)({e} × T1) = b2(t2)({e} × T1) =
3
4 ,

b2(τ2)({ f } × T1) = b2(t2)({ f } × T1) =
1
4}

= {t2, t′′2 }

which implies that P1
2 (t
′
2) = {t′2}, and hence:

P1
2 = {{t2, t′′2 }, {t′2}}.

Round 2: By Equation (2),

P2
1 (t1) = {τ1 ∈ T1 |

b1(τ1)({c} × {t2, t′′2 }) = b1(t1)({c} × {t2, t′′2 }) = 1
2 ,

b1(τ1)({c} × {t′2}) = b1(t1)({c} × {t′2}) = 0,

b1(τ1)({d} × {t2, t′′2 }) = b1(t1)({d} × {t2, t′′2 }) = 0,

b1(τ1)({d} × {t′2}) = b1(t1)({d} × {t′2}) = 1
2}

= {t1, t′1},
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which implies that P2
1 (t
′′
1 ) = {t′′1 }, and hence:

P2
1 = {{t1, t′1}, {t′′1 }}.

Since P1
1 = P0

1 , we may immediately conclude that:

P2
2 = P1

2 = {{t2, t′′2 }, {t′2}}.

Round 3: As P2
2 = P1

2 , we may immediately conclude that:

P3
1 = P2

1 = {{t1, t′1}, {t′′1 }}.

By Equation (2),

P3
2 (t2) = {τ2 ∈ T2 |

b2(τ2)({e} × {t1, t′1}) = b2(t2)({e} × {t1, t′1}) = 3
4 ,

b2(τ2)({e} × {t′′1 }) = b2(t2)({e} × {t′′1 }) = 0,

b2(τ2)({ f } × {t1, t′1}) = b2(t2)({ f } × {t1, t′1}) = 0,

b2(τ2)({ f } × {t′′1 }) = b2(t2)({ f } × {t′′1 }) = 1
4}

= {t2, t′′2 },

which implies that P3
2 (t
′
2) = {t′2}, and hence,

P3
2 = {{t2, t′′2 }, {t′2}} = P2

2 .

As P3
1 = P2

1 and P3
2 = P2

2 , the procedure terminates at Round 3. The final partitions of the types are thus
given by:

P∞
1 = {{t1, t′1}, {t′′1 }} and P∞

2 = {{t2, t′′2 }, {t′2}}.

The reader may check that all types within the same equivalence class indeed induce the same belief hierarchy.
That is, t1 induces the same belief hierarchy as t′1, and t2 induces the same belief hierarchy as t′′2 . Moreover,
t1 and t′′1 induce different belief hierarchies, and so do t2 and t′2.

Our characterization result for the case of finite type structures states that the type partitioning
procedure characterizes precisely those groups of types that induce the same belief hierarchy.
We actually prove a little more: we show that the partitions generated in round n of the procedure
characterize exactly those types that yield the same n-th order belief.

Proposition 5 (Characterization result (finite type structures)). Consider a finite type structure
T = (Ti, Σi, bi)i∈I , where Σi is the discrete σ-algebra on Ti for every player i. For every agent i, every
n ≥ 1 and every two types ti, t′i ∈ Ti, we have that

(a) hT ,n
i (ti) = hT ,n

i (t′i), if and only if, t′i ∈ Pn
i (ti);

(b) hTi (ti) = hTi (t′i), if and only if, t′i ∈ P∞
i (ti).

The proof follows directly from Proposition 3 and is therefore omitted. As before, this result can
be used to verify whether two types from different type structures generate the same belief hierarchies,
by first merging the two type structures and then running the type partitioning procedure on this
“large” type structure.
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Appendix A. Proofs

Appendix A.1. Proof of Theorem 1

By definition, T ′ contains T if and only if there is a hierarchy morphism from T to T ′. Therefore,
it suffices to show that every generalized type morphism is a hierarchy morphism and vice versa.

Appendix A.1.1. Every Hierarchy Morphism Is a Generalized Type Morphism

To show that every hierarchy morphism is a generalized type morphism, we need to show
two things. First, we need to show that any hierarchy morphism is measurable with respect to the
appropriate σ-algebra. Second, we need to show that beliefs are preserved for the relevant events.

Let us start with the measurability condition. Suppose ϕ is a hierarchy morphism. Let i ∈ I and
E ∈ FT ′i . We need to show that:

{ti ∈ Ti | ϕi(ti) ∈ E} ∈ ΣT
i .

Recall that FT ′i = σ(hT
′

i ) (Lemma 1). Therefore, there is a measurable subset B of the set Hi of
belief hierarchies, such that:

E = {t′i ∈ T′i | hT
′

i (t′i) ∈ B}.

Hence,

{ti ∈ Ti | ϕi(ti) ∈ E} = {ti ∈ Ti | hT
′

i (ϕi(ti)) ∈ B}
= {ti ∈ Ti | hTi (ti) ∈ B},

where the second equality follows from the assumption that ϕ is a hierarchy morphism. By Lemma 1,
we have:

{ti ∈ Ti | hTi (ti) ∈ B} ∈ FTi .

Since ΣTi ⊇ FTi (Definition 4 and Lemma 1), the result follows.
We next ask whether hierarchy morphisms preserve beliefs for the relevant events. Again, let ϕ

be a hierarchy morphism. Let i ∈ I, ti ∈ Ti and E′ ∈ Σi ⊗FT
′
−i . We need to show that:

bi(ti) ◦ (IdXi , ϕ−i)
−1(E′) = b′i(ϕi(ti))(E′),

where IdXi is the identity function on Xi and where we have used the notation ( f1, . . . , fm) for the
induced function that maps (x1, . . . , xm) into ( f1(x1), . . . , fm(xm)), so that bi(ti) ◦ (IdXi , ϕ−i)

−1 is the
image measure induced by (IdXi , ϕ−i). By a similar argument as before, there is a measurable subset
B′ of the set Xi × H−i, such that:

E′ = {(xi, t′−i) ∈ Xi × T′−i | (xi, hT
′
−i(t

′
−i)) ∈ B′}.

If E′ is an element of Σi ⊗
⊗

j 6=i{T′j , ∅}, then the result follows directly from the definitions.
Therefore, suppose E′ 6∈ Σi ⊗

⊗
j 6=i{T′j , ∅}. Then, for every n ≥ 1, define:

Bn := {(xi, µ1
−i, . . . , µn

−i) ∈ Xi × Hn
−i | (xi, µ1

−i, . . . , µn
−i, µn+1

−i , . . .) ∈ B′

for some (µn+1
−i , µn+2

−i , . . .)}
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and:
En := {(xi, t′−i) ∈ Xi × T′−i | (xi, hT′ ,n

−i (t′−i)) ∈ Bn}.

Then, En ⊇ E′ and En ↓ E′. Furthermore, we have En ∈ Σi ⊗
⊗

j 6=i σ(hT′ ,n
j ), and thus,

En ∈ Σi ⊗FT
′
−i (Lemma 1). For every n,

bi(ti) ◦ (IdXi , ϕ−i)
−1(En−1) = bi(ti) ◦ (IdXi , ϕ−i)

−1 ◦ (IdXi , hT′ ,n−1
−i )−1(Bn−1)

= bi(ti) ◦ (IdXi , hT′ ,n−1
−i ◦ ϕ−i)

−1(Bn−1)

= µT,n
i (ti)(Bn−1)

= b′i(ϕ(ti)) ◦ (IdXi , hT′ ,n−1
−i )−1(Bn−1)

= b′i(ϕ(ti))(En−1),

where the penultimate equality uses the definition of a hierarchy morphism. By the continuity of the
probability measures bi(ti) and b′i(ϕi(ti)) (e.g., [28], Thm. 10.8), we have bi(ti) ◦ (IdXi , ϕ−i)

−1(E′) =
b′i(ϕi(ti))(E′), and the result follows.

Appendix A.1.2. Every Generalized Type Morphism Is a Hierarchy Morphism

For the other direction, that is to show that every generalized type morphism is a hierarchy
morphism, suppose that ϕ is a generalized type morphism from T = (Ti, ΣTi , bi)i∈I to
T ′ = (T′i , ΣT

′
i , b′i)i∈I . We can use an inductive argument to show that it is a hierarchy morphism.

Let i ∈ I and ti ∈ Ti. Then, for all E ∈ Σi,

µT
′ ,1

i (ϕi(ti))(E) = b′i(ϕi(ti))(E× T′−i)

= bi(ti)(E× T−i)

= µT ,1
i (ti),

where the first and the last equality use the definition of a first-order belief induced by a type and the
second uses the definition of a generalized type morphism. Therefore, µT ,1

i (ti) = µT
′ ,1

i (ϕi(ti)), and

thus, hT ,1
i (ti) = hT

′ ,1
i (ϕi(ti)) for each player i and every type ti ∈ Ti.

For n > 1, suppose that for each player i and every type ti ∈ Ti, we have hT ,n−1
i (ti) =

hT
′ ,n−1

i (ϕi(ti)). We will use the notation ( f1, . . . , fm) for the induced function that maps (x1, . . . , xm)

into ( f1(x1), . . . , fm(xm)), so that µ ◦ ( f1, . . . , fm)−1 is the image measure induced by a probability
measure µ and ( f1, . . . , fm).

Let E be a measurable subset of Xi × Hn
−i. By Lemma 1, we have FT ′j = σ(hT

′
j ); and

clearly, σ(hT
′

j ) ⊇ σ(hT
′ ,n−1

j ). Therefore, if we write IdXi for the identity function on Xi, we have

(IdXi , hT
′ ,n−1
−i )−1(E) ∈ Σi ⊗FT

′
−i . Then, for every player i and type ti ∈ Ti,

µT
′ ,n

i (ϕi(ti))(E) = b′i(ϕi(ti)) ◦ (IdXi , hT
′ ,n−1
−i )−1(E)

= bi(ti) ◦ (IdXi , hT
′ ,n−1
−i )−1 ◦ (IdXi , ϕ−i)

−1(E)

= bi(ti) ◦ (IdXi , ϕ−i ◦ hT
′ ,n−1
−i )−1(E)

= bi(ti) ◦ (IdXi , hT ,n−1
−i )−1(E)

= µT ,n
i (ti)(E),

where the first equality uses the definition of an n-th-order belief, the second uses the definition of a
generalized type morphism, the third uses the definition of the composition operator, the fourth uses
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the induction hypothesis and the fifth uses the definition of an n-th-order belief again. Conclude that
µT ,n

i (ti) = µT
′ ,n

i (ϕi(ti)) and thus hT ,n
i (ti) = hT

′ ,n
i (ϕi(ti)) for each player i and every type ti ∈ Ti.

Therefore, for each player i ∈ I and each type ti ∈ Ti, we have hTi (ti) = hT
′

i (ϕi(ti)), which shows
that ϕ is a hierarchy morphism. �

Appendix A.2. Proof of Proposition 2

Let i ∈ I. It will be convenient to define hT ,0
i to be the trivial function from Ti into some

singleton {νi}. Therefore, the σ-algebra σ(hT ,0
i ) generated by hT ,0

i is just the trivial σ-algebra
S0

i = {Ti, ∅}. Next, consider n = 1. Fix player i ∈ I. By definition, σ(hT ,1
i ) is the coarsest σ-algebra

that contains the sets:
{ti ∈ Ti | hT ,1

i (ti) ∈ E} : E ⊆ H1
i measurable.

It suffices to restrict attention to the generating sets E of the σ-algebra on H1
i = ∆(Xi) (e.g., [28]).

Therefore, σ(hT ,1
i ) is the coarsest σ-algebra that contains the sets:

{ti ∈ Ti | hT ,1
i (ti) ∈ E}

where E is of the form {µ ∈ ∆(Xi) | µ(F) ≥ p} for F ∈ Σi and p ∈ [0, 1]. Using that for each type ti,
hT ,1

i (ti) is the marginal on Xi of bi(ti), we have that σ(hT ,1
i ) is the coarsest σ-algebra that contains

the sets:
{ti ∈ Ti | bi(ti)(E) ≥ p} : E ∈ Σi ⊗ S0

−i, p ∈ [0, 1].

That is, σ(hT ,1
i ) = S1

i . In particular, hT ,1
i is measurable with respect to ST ,1

i .
For n > 1, suppose, inductively, that for each player i ∈ I, σ(hT ,n−1

i ) = ST ,n−1
i , so that hT ,n−1

i
is measurable with respect to ST ,n−1

i . Fix i ∈ I. By definition, σ(hT ,n
i ) is the coarsest σ-algebra that

contains the sets in σ(hT ,n−1
i ) and the sets:

{ti ∈ Ti | µT ,n
i (ti) ∈ E} : E ⊆ ∆(Xi × Hn−1

−i ) measurable.

Again, it suffices to consider the generating sets of the σ-algebra on ∆(Xi × Hn−1
−i ). Hence,

σ(hT ,n
i ) is the coarsest σ-algebra that contains the sets:

{ti ∈ Ti | µT ,n
i (ti)(F) ≥ p} : F ⊆ Xi × Hn−1

−i measurable and p ∈ [0, 1].

(Note that this includes the generating sets of σ(hT ,n−1
i ), given that the n-th-order belief induced by

a type is consistent with its (n− 1)-th-order belief.) Using the definition of µT,n
i and the induction

assumption that ST ,n−1
−i = σ(hT ,n−1

−i ), we see that σ(hT ,n
i ) is the coarsest σ-algebra on Ti that contains

the sets:
{ti ∈ Ti | bi(ti)(F) ≥ p} : F ∈ Σi ⊗ ST ,n−1

−i , p ∈ [0, 1].

That is, σ(hT ,n
i ) = ST ,n

i , and hT ,n
i is measurable with respect to ST ,n

i .
Therefore, for each player i and n ≥ 1, σ(hT ,n

i ) = ST ,n
i . It follows immediately that σ(hTi ), as the

σ-algebra on Ti generated by the “cylinders” σ(hT ,n
i ), is equal to ST ,∞

i . �

Appendix A.3. Proof of Lemma 2

Let i ∈ I. Recall that Xi is countably generated, that is there is a countable subset D0
i of Σi,

such that D0
i generates Σi (i.e., Σi is the coarsest σ-algebra that contains D0

i ). Throughout this proof,
we write σ(D) for the σ-algebra on a set Y generated by a collection D of subsets of Y.

The following result says that a countable collection of subsets of a set Y generates a countable
algebra on Y. For a collection D of subsets of a set Y, denote the algebra generated by D by A(D).
Therefore, A(D) is the coarsest algebra on Y that contains D.
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Lemma 3. Let D be a countable collection of subsets of a set Y. Then, the algebra A(D) generated by D
is countable.

Proof. We can construct the algebra generated by D. Denote the elements of D by Dλ, λ ∈ Λ, where Λ
is a countable index set. Define:

A(D) =
{ ⋃

m∈F

⋂
`∈Lm

D`, F a finite subset of N, Lm a finite subset of Λ,

D` = Ak or D` = Ac
k for some k

}
,

(A1)

where Ec is the complement of a set E. That is, A(D) is the collection of finite unions of finite
intersection of elements of D and their complements. We check that A(D) is an algebra. Clearly,
A(D) is nonempty (it contains D) and ∅ ∈ A(D). We next show that A(D) is closed under finite
intersections. Let:

A1 :=
⋃

m1∈F1

⋂
`∈L1

m1

D`, A2 :=
⋃

m2∈F2

⋂
`∈L2

m2

D`,

be elements of A(D). Then,

A1 ∩ A2 =
⋃

(m1,m2)∈F1×F2

⋂
`1∈L1

m1

⋂
`2∈L2

m2

D`1 ∩ D`2 .

Clearly, F1 × F2 is finite and so are the sets L1
m and L2

m. We can thus rewrite A1 ∩ A2 so that it is
of the form as the elements in (A1). We can likewise show that A(D) is closed under complements:
let A :=

⋃
m∈F

⋂
`∈Lm D` ∈ A(D), so that Ac =

⋂
m∈F

⋃
`∈Lm Dc

`; then, since
⋃
`∈Lm Dc

` ∈ A(D) for
every m, we have Ac ∈ A(D). Therefore, A(D) is an algebra that contains D, and it is in fact the
coarsest such one (by construction, any proper subset of A(D) does not contain all finite intersections
of the sets in D and their complements). As D is countable, so is the collection of the elements in D
and their complements; the collections of the finite intersections of such sets are also countable. Hence,
A(D) is countable.

Note that for any p ∈ [0, 1], the set {ti ∈ Ti : bi(ti)(E) ≥ p} can be written as the countable
intersection of sets {ti ∈ Ti : bi(ti)(E) ≥ p`} for some rational p`, ` = 1, 2, . . .. Therefore, by
Proposition 2, the σ-algebra σ(hT,n

i ), n = 1, 2, . . ., on the type set Ti, i ∈ I, is the coarsest σ-algebra that
contains the sets:

{ti ∈ Ti : bi(ti)(E) ≥ p} : E ∈ Σi ⊗
⊗
j 6=i

σ(hT,n−1
j ), p ∈ Q

We are now ready to prove Lemma 2. Fix i ∈ I. By Lemma 3, the set D0
i generates a countable

algebra A(D0
i ) on Xi. Then, by Proposition 2 and by Lemma 4.5 of Heifetz and Samet [14], we have

that the σ-algebra σ(hT ,1
i ) is generated by the sets:

{ti ∈ Ti : bi(ti)(E) ≥ p} : E ∈ D0
i ⊗

⊗
j 6=i

σ(hT ,0
j ), p ∈ Q.

Denote this collection of these sets by D1
i , so that σ(hT ,1

i ) = σ(D1
i ); clearly, D1

i is countable and
A(D1

i ) ⊆ σ(hT ,1
i ) (so that σ(hT ,1

i ) = σ(A(D1
i ))).

For m > 1, suppose that for every i ∈ I, the σ-algebra σ(hT ,m−1
i ) on Ti is generated by a countable

collection Dm−1
i of subsets of Ti, such that A(Dm−1

i ) ⊆ σ(hT ,m−1
i ). Fix i ∈ I. By Proposition 2 and

Lemma 4.5 of Heifetz and Samet [14], the σ-algebra σ(hT ,m
i ) is generated by the sets:

{ti ∈ Ti : bi(ti)(E) ≥ p} : E ∈ D0
i ⊗

⊗
j 6=i

A(Dm−1
j ), p ∈ Q.



Games 2016, 7, 28 16 of 17

Denote this collection of these sets by Dm
i ; as before, Dm

i is clearly countable and
A(Dm

i ) ⊆ σ(hT ,m
i ). Again, we have σ(hT ,m

i ) = σ(Dm
i ) = σ(A(Dm

i )).
Therefore, we have shown that for every i ∈ I and m = 1, 2, . . ., the σ-algebra σ(hT ,m

i ) is generated
by a countable collection Dm

i of subsets of Ti. The σ-algebra σ(hTi ) is generated by the algebra⋃
m σ(hT ,m

i ) =
⋃

m σ(Dm
i ) or, equivalently, by the union

⋃
mDm

i (Proposition 2). Since the latter set,
as the countable union of countable sets, is countable, the σ-algebra σ(hTi ) is countably generated.

It now follows from Theorem V.2.1 of Parthasarathy [29] that for each player i, the σ-algebras
σ(hT ,m

i ), m = 1, 2, . . . are atomic in the sense that for each ti ∈ Ti, there is a unique atom am
ti

in σ(hT ,m
i )

containing ti; the analogous statement holds for σ(hTi ). �

Appendix A.4. Proof of Proposition 3

Fix a player i ∈ I. By Proposition 2, we have ST ,∞
i = σ(hTi ) and ST ,n

i = σ(hT ,n
i ) for each n ≥ 1.

By Lemma 2, the σ-algebras σ(hT ,∞
i ) and σ(hT ,n

i ) are atomic for every n ≥ 1. Let n ≥ 1. Let ti, t′i ∈ Ti.
Since σ(hT ,n

i ) is atomic, there exist a unique atom an
i (ti) ∈ σ(hT ,n

i ), such that ti ∈ an
i (ti), and a unique

atom an
i (t
′
i) ∈ σ(hT ,n

i ), such that t′i ∈ an
i (t
′
i). Suppose hT ,n

i (ti) = hT ,n
i (t′i). Then, for every generating

set E of the σ-algebra σ(hT ,n
i ), either ti, t′i ∈ E or ti, t′i 6∈ E. Therefore, an

i (ti) = an
i (t
′
i). Suppose

hTi (ti) 6= hTi (t′i). Then, there is a generating set E of σ(hT ,n
i ) that separates ti and t′i, that is, ti ∈ E,

t′i 6∈ E. Therefore, an
i (ti) 6= an

i (t
′
i). The proof of the claim that there is a unique atom a∞

i in σ(hTi ) that
contains both ti and t′i if and only if hTi (ti) = hTi (t′i) is analogous and therefore omitted. �
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