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Abstract: Who benefits from the ignorance of others? We address this question from the point
of view of a policy maker who can induce some ignorance into a system of agents competing for
resources. Evolutionary game theory shows that when unconditional cooperators or ignorant agents
compete with defectors in two-strategy settings, unconditional cooperators get exploited and are
rendered extinct. In contrast, conditional cooperators, by utilizing some kind of reciprocity, are able to
survive and sustain cooperation when competing with defectors. We study how cooperation thrives
in a three-strategy setting where there are unconditional cooperators, conditional cooperators and
defectors. By means of simulation on various kinds of graphs, we show that conditional cooperators
benefit from the existence of unconditional cooperators in the majority of cases. However, in worlds
that make cooperation hard to evolve, defectors benefit.

Keywords: indirect reciprocity; games on graphs; good will; unconditional cooperation;
strategic ignorance

1. Introduction

Why do people cooperate? Economists usually assume that people are actively pursuing their
material self-interest, carefully processing and judiciously weighing their options. Obviously, this is not
always the case. Some people choose to ignore information on others and cooperate unconditionally.
Some governments, for example, self commit to reduce their CO2-emission regardless of the
commitments of others. These decisions would sometimes be pejoratively described as naive or
ignorant and subject to the exploitation of others. We show in this paper that unconditional cooperators
(UCs) can actually survive in the presence of two other types of agents: defectors (never cooperating)
and conditional cooperators (CCs). By simulating interactions between these three types of agents on
graphs, we show that a small fraction of UCs helps to sustain and stabilize cooperation in environments
where there would be no cooperation without them.

Why is it surprising that UCs survive and even help stabilize cooperation in the population
when they are competing for resources with CCs and defectors? In most interactions, cooperation is
costly. If using information about others comes with low costs, using information can prevent wasting
resources by avoiding cooperation with those that would not reciprocate (e.g., defectors). Furthermore,
cooperation with defectors might be interpreted as a signal to others that the agent with whom one
has cooperated is considered trustworthy, which lowers the quality of information on which agents
like CCs can condition. From an evolutionary point of view, UCs thus seem to favor defectors.

Although ignoring information that comes with no cost seems irrational, experiments show
that humans are even willing to pay in order to receive no information about others in strategic
interactions [1]. One explanation for this strategic ignorance may be that it offers an excuse to
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behave egoistically without the psychological costs that come with knowing how one’s action affects
others [2]. In the context of self-commitment, Carrillo and Mariotti [3] argue that people may prefer no
information, fearing the impact that a change of their preconceived ideas could have on their behavior.
Additionally to these studies, we show that strategic ignorance can serve not just selfish interests,
but can also increase long-run welfare of an individual and other agents. More specifically, by ignoring
information about defectors in their interactions, UCs can help promote and stabilize cooperation.

Much research on the interplay between strategies like (un)conditional cooperation and defection
has been done by evolutionary game theorists, mostly through the study of games modeling a social
dilemma (e.g., the prisoner’s dilemma game). Most studies focus on the question of whether a strategy
like UC can survive when competing with other strategies, usually not more than 2–3, and whether
any cooperation can be sustained on a population level.1 Although we use a typical model from
this area [9,10], our research question is different from the questions usually studied in evolutionary
game theory. Within a range of parameters, the model we use is known to sustain cooperation among
conditional cooperators and defectors. Our question then is how does the insertion of a fraction of UCs
affect (1) the outcomes for UCs, (2) the behavior of agents with other strategies and (3) the performance
of the entire system of agents. Hence, our analysis will not focus on the question of whether there is
any cooperation in a population of agents, but by how much more cooperation decreases or increases
in the population. Furthermore, evolutionary game theorists usually assume that a strategy like UC
can enter the population through mutation at any point in time; we induce UCs to the population
in a way similar to an intervention of a policy maker or an event changing a fraction of conditional
cooperators to unconditional cooperators at once to affect the entire population. Although we frame
our study from the perspective of an external decision-maker, agents can nevertheless still explore
or mutate. In this light, the work of Han et al. [11] on finite population dynamics bears mentioning.
They show cycling among cooperation, defection and a third strategy, which is either (generous)
tit-for-tat, win-stay-lose-shift or a generalized version of generous tit-for-tat (intention recognition).
Han et al. [12] ask a related question when they study a decision-maker who can interfere in a
system to achieve preferred behavioral patterns and aims to optimize the trade-off between the cost of
interference and gain from achieving the desired system. Intervention in Han et al.’s study comes in
the form of a decision-maker who has fixed resources to reward cooperation, while intervention in our
study comes in the form of introducing unconditional cooperators. Phelps et al. [13] also discuss a
more general version of the problem by analyzing the optimal design infrastructure of a multi-agent
system from the viewpoint of a policy maker.

Unconditional cooperation seems disadvantageous in a three-strategy setting where CCs use a
strictly reciprocal/tit-for-tat strategy alongside UCs and defectors. In this setting, defectors might first
exploit UCs and benefit from them. Eventually, UCs vanish because their resources are consumed
from cooperating with defectors, and defectors receive no further benefits from cooperation, since
there are no more agents to cooperate with them. CCs then take over the population since they do
not cooperate with defectors and increase their fitness by cooperating with other CCs. The model
of Nowak and Sigmund [9,14], which we use, allows for more sophisticated strategies of CCs based
on indirect reciprocity.2 While CCs using tit-for-tat operate on direct reciprocity, by basing their
cooperation on previous interactions with a specific agent, CCs that apply indirect reciprocity base
their behavior on the reputation of the agent (i.e., behavior that the other agent has shown in general

1 For reviews of evolutionary game dynamics, see Nowak and Sigmund [4], Hofbauer and Sigmund [5]. The theoretical
background can be found in Maynard Smith [6–8].

2 Further fundamental papers using indirect reciprocity are Nowak and Sigmund [9,14], Ghang and Nowak [15], Hoffman
et al. [16], Panchanathan and Boyd [17], Ohtsuki et al. [18], Nowak and Sigmund [19], Saavedra et al. [20], Nowak [21].
Closely related to this paper is work on indirect reciprocity like Van Doorn and Taborsky [22], who study reciprocity on
social interaction networks; Chen and Liu [23] use indirect reciprocity for cooperation stimulation in cognitive networks;
and Zhang et al. [24] are applying this theory for dynamics spectrum access Traag et al. [25] and are observing cooperative
clusters by using gossiping as indirect reciprocity.
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towards others). Lotem et al. [26] argue that under indirect reciprocity, unconditional altruism or
unconditional cooperation can thrive. They interpret unconditional cooperation as a costly signal
towards CCs that boosts the UCs’ reputation and signals their own trustworthiness to ensure future
cooperation with CCs. Furthermore, Ohtsuki and Nowak [10] and Santos et al. [27] find that when
agents are interacting according to a network structure, UCs may survive in larger networks when
there are least some small clusters.

Nowak and Sigmund [28] show that when agents’ behavior includes a small chance for
unintended defection, strategies incorporating what they refer to as forgiveness or goodwill outperform
strictly (in)direct reciprocal strategies. In groups where all agents cooperate according to indirect
reciprocity, unintended defection causes an agent to immediately get a bad reputation. In this scenario,
cooperation breaks down easily, and distrust can spread quickly among agents and cannot be restored.
As Nowak and Sigmund show, mild degrees of goodwill rebuild trust and keep up cooperation,
while still preventing invasion by defectors. In this light, UCs can inject goodwill or forgiveness in the
system by cooperating regardless of the previous actions of players, thereby restoring trust.

Although unconditional cooperation seems to be disadvantageous at first glance, its consequences
for an agent and the population turn out to be less clear once we enter worlds with indirect reciprocity.
Our question therefore is how a small fraction of UCs set into a population of CCs and defectors affects
the evolution of cooperation. In the following sections, we present a formal model based on the work
of Nowak and Sigmund (Section 2) and its implementation for simulation in Section 3). In Section 4,
we compare worlds with small fractions of UCs with worlds without UCs. We identify in which
kinds of environments unconditional cooperation persists and whether it has positive or negative
effects on cooperation. Section 5 concludes by elaborating upon the implications of the results in a
broader context.

2. Model

2.1. Main Idea

The model we use is based on Nowak and Sigmund [9], Ohtsuki and Nowak [10], which provides
a framework that incorporates essential elements needed to study the evolution of cooperation under
indirect reciprocity.

At every time step, exactly one random agent is chosen as a potential donor and then one random
neighbor of the donor is chosen as a potential recipient. The potential donor only has a binary choice
between sharing/cooperating and not sharing/defecting. Under these conditions we get the payoff
matrix shown in Table 1. Note that as in Ohtsuki and Nowak [10], b > c and cooperating is thus
efficient from the population’s point of view, but not from the individual’s.

The following subsections discuss other parameters that define the model. Table 2 gives an
overview of all of these parameters and a short description of their role in the model.

Table 1. Payoff matrix of agents in the repeated interaction model 3.

Share Not Share

share b− c b
b− c −c

not share −c 0
b 0

3 The individual interactions of agents are presented in a symmetric way even though each interaction is asymmetric as
the recipient can only obtain resources or not. However, each agent will eventually meet the same agent, and hence,
the interaction can be seen as symmetric.
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Table 2. Summary of all parameters in the model.

Parameter Meaning

b resources agents receive from donors
c resources donors pay to donate
k number of agents with which an agent can interact
di reputation of agent i
q probability that d of a neighbor is known
si strategy of agent i

updating rule that defines updating mechanism
m games per updating step

2.2. Cooperation on Graphs

In the basic version of their model, Nowak and Sigmund [9] assume a well-mixed population, i.e.,
interaction between all agents is equally likely. As other more complicated papers, like in Ohtsuki and
Nowak [10], we also look at populations that are not well mixed.4 The population contains n agents
located on a random graph. Every agent has k neighbors, and agents only interact with their neighbors.
If k = n− 1, the population is well-mixed.

2.3. Indirect Reciprocity

To model indirect reciprocity, Nowak and Sigmund [9] use image scores. These contain
information about previous behavior of agents (i.e., the reputation). When an agent cooperates,
it receives a “good score”, else a “bad score”. Hence, the image score vector D with elements
di ∈ {0, 1, 2, 3, ...} denotes the reputation of all agents i. Agents with the strategy defector will
never share their resources irrespective of the reputation of the agent with which they are interacting.
The conditional cooperator i shares with player j if dj ≥ si, meaning that depending on its own
cooperating type si ∈ {0, 1, 2, ..., ∞} and the other’s image score, the agent cooperates. Note that
conditional cooperators with si = ∞ are defectors (as for any j, dj < ∞) and conditional cooperators
with si = 0 are unconditional cooperators.

Following Nowak and Sigmund [9], we assume that there are only two possible image scores.
When an agent cooperates, then the recipient will receive a “good score”. If the potential donor does
not share with the potential recipient, then the potential donor receives a “bad score”. Therefore,
we will assume that we have only two possible image scores for an agent: “good” and “bad”, i.e.,
di ∈ {0, 1} , ∀i ∈ {1, n}. We include only three possible strategies:

1. Defectors never cooperate with any agent
2. Unconditional cooperators (UCs) cooperate with all agents
3. Conditional cooperators (CCs) cooperate only with an agent i if i is “good”, i.e., si = 1

As in Nowak [21], each agent knows only a fraction q of the image scores of their neighbors.
For the remaining fraction (1− q), the agent just assumes that the neighbor is “good”.5 Nowak derives
that a group of indirectly reciprocal agents can promote cooperation if q > c

b , i.e., “Indirect reciprocity

4 Indeed, there exists a substantial body of literature in evolutionary game theory in spatial settings looking at well-mixed
and not well-mixed populations, like in Fu et al. [29], Nowak and May [30], Hauert and Doebeli [31], Nakamaru et al. [32].
Evolutionary game theory on graphs uses research in this area, like Durrett and Levin [33], Ohtsuki et al. [34], Ohtsuki
and Nowak [35], Hassell et al. [36]. For an overview of its use in population biology and network structure, see May [37].
It should be noted that many results in evolutionary games are subject to change dependent on the exact parametrization of
the model; even more so, when studying graphs [38–40]. Our study should therefore be seen only as a first attempt with
regard to the exact influence and interactions of certain parameters.

5 This may seem like a rather bold assumption. One might think that the agent who lacks information determines the
reputation of the interaction partner, e.g., randomly. However, Nowak and Sigmund [9] show that agent i will outperform
agent j if agent i is more optimistic about the reputation of others and that optimistic agents evolve for that reason by
themselves. Nevertheless, we also check the robustness of this assumption in our analysis.
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can only promote cooperation if the probability q, of knowing someone’s reputation exceeds the
cost-to-benefit ratio of the altruistic act.” [21] (p. 1561).

2.4. Updating Mechanism

During every iteration, one agent is chosen randomly and interacts according to its strategy with
a randomly-chosen neighbor. At the end of each generation (m rounds), one agent is chosen randomly
to change its strategy by copying the strategy of a fit agent. This process of strategy adaption is called
updating, and every updating step can be interpreted as the death of an individual with a certain
strategy, while another individual reproduces. The fitness of an agent/its strategy is equivalent to that
agent’s resources. As the exact dynamics of updating can be implemented in many ways, we consider
only three often-used mechanisms [10,41,42].

2.4.1. Birth-Death

Of all agents, one agent $ is selected with a probability proportional to its fitness.
One randomly-chosen neighbor of $ is selected to change its strategy and copies the strategy of $.6

2.4.2. Death-Birth

Of all agents, one agent $ is selected randomly to copy the strategy of a neighbor, which is selected
with a probability proportional to its fitness.7

2.4.3. Imitation

Of all agents, one agent $ is selected randomly to change its strategy. The new strategy of $ will
be chosen among the strategies of all neighbors of $ and $ itself with a probability proportional to
everyone’s fitness.

3. Simulation

3.1. Overview

Our research questions consider the interplay of three strategies—unconditional cooperation,
conditional cooperation and defection—and we study their co-evolution on random graphs with
degree k. The multiplicity of strategies and the fact that we are interested in not just well-mixed
populations renders the model mathematically close to intractable.8 We thus simulate the model with
a subset of possible values per parameter to analyze our research question.

Table 3 gives an overview of values with which each parameter in the model was initialized.
The initial values of parameters b, k, q, updating, coops and conCoops differed between simulations
(discussed in the next subsection). Per possible combination of values per parameter, we ran
110 simulations. This leaves us with 324 combinations of parameter values and a total of
35,640 simulations. Each simulation contains 4000 updating steps, and per updating step, 125 games
between agents were played (thus, 500,000 games per simulation). We compared the average ratio
of defectors in worlds with 4000 updating steps with long-run simulations of 8000 updating steps
(1,000,000 games) and found no meaningful difference. Figure 1 also shows graphically that worlds are
not changing after 4000 updating steps. The simulation was programmed in NetLogo [43]. Appendix A
contains the pseudo-code of our implementation.

6 Note that this updating mechanism is formally identical to pairwise comparison (PC), meaning that two random partners
are chosen, and the partner with lower fitness adopts the strategy of the “stronger” partner [10].

7 This updating mechanism corresponds to the score-dependent fertility model by Nakamaru et al. [32].
8 We do not know of any mathematical solutions for several strategies on a non-well-mixed population.
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Table 3. Parameters and their possible values in our simulations. CC, conditional cooperator; UC,
unconditional cooperator.

Parameter Meaning Value

n number of agents in the simulation 100
m games per updating step 125

iterations updating steps per simulation 4000
c resources donors pay to donate 1
b resources agents receive from donors {2, 10}
k number of agents an agent can interact with {3, 10, 99}
q probability that d of a neighbor is known {0.1, 0.5, 0.9}

updating type of updating mechanism {BD, DB, IM}
coops fraction of agents that are either CCs or UCs {0.1, 0.5, 0.9}

conCoops fraction of coops that are CCs {0.8, 1.0}

3.2. Parameters

The parameters coops and conCoops define the initial distribution of strategies in the population.
coops defines the ratio of agents that are cooperators, either conditional (CCs) or unconditional
(UCs), and the rest are thus defectors. conCoops defines the initial ratio of cooperators that are CCs.
If conCoops = 1, the ratio of CCs is equivalent to coops, and there are no UCs. If conCoops = 0.8,
20% of all cooperators are UCs. The ratio with which each strategy can be found in the population will
change throughout the simulation due to the updating of strategies. How the updating mechanism
exactly works is defined by the parameter updating.

In every interaction between two agents, the donor has to pay c resources (which is one in all
simulations) in order for the recipient to get b resources (either two or 10). The number of agents that
every agent can interact with (k) is either 3, 10 or 99. We will refer to these k agents as the neighborhood
of an agent. If we interpret every agent as a node and each interaction possibility as an edge, we get an
undirected, asymmetric graph. Neighbors are assigned randomly, and the resulting graph is thus a
random graph. If k is small connectivity and is low, groups are small and scattered, and parts of the
graph are more likely to be isolated. The parameter q determines with which probability the donor
knows a neighbor. If its value is low, the behavior of CCs becomes very similar to UCs, since (as
discussed earlier) CCs assume that the other agent has a good reputation if they do not already know.

3.3. Assumptions

All simulations share the following assumptions. Assumption 1 is used in most theoretical models
we encountered (most importantly in Nowak and Sigmund [9]). For the other assumptions, we check
the robustness of our results in Section 4.3:

1. All agents start with a “good” reputation.
2. Agents who do not know the reputation of another (which happens with probability of 1− q)

assume that the reputation of the other is “good”.
3. Only the previous action when the agent was the donor determines its reputation.
4. Donors that do not cooperate with defectors receive a “bad” reputation.
5. Agents do not make mistakes, neither in their perception nor in their actions.
6. There is no mutation in the updating of strategies.

4. Results

4.1. General Results

In this paper, we test how the introduction of a tiny fraction of unconditional cooperators (UCs)
affects cooperation in a population where there are also conditional cooperators (CCs) and defectors.
We introduce this “tiny fraction” of UCs by replacing 20% of the CCs in the initial population by
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UCs. Note that 20% of the CCs may be as little as 2% of the whole population in cases where the
starting population of CCs is 10%. Would it lead to more cooperation by encouraging CCs to cooperate
more often or will it decrease cooperation by enabling defectors to benefit from the ignorance of UCs?
To answer this, we look at the ratio of defectors during the last iteration of a simulation.9 A high ratio
of defectors implies less cooperation in the population. Since cooperation is the only way for the
system to generate resources, the ratio of defectors can be interpreted as the inverse of the efficiency of
the population. That is, the more defectors there are in the system, the less resources are generated.

Surprisingly, the simulations in which a tiny fraction of UCs was initially present on average
had a lower ratio of defectors, thus were more efficient. On average, worlds with UCs had about
8% less defectors during the final iteration compared to worlds without UCs. A Wilcoxon rank sum
test comparing all simulations with and without UCs shows that this difference is clearly significant
(p < 0.01). This indicates that UCs can actually decrease the fitness of defectors.

To provide a more detailed analysis, we split all simulations into groups. The smallest such group
is defined by unique combinations of values of b, k, q, updating, coops and conCoops. Henceforth,
we will refer to these smallest group as worlds. Figure 1 shows that in worlds with k = 10 ∧ b = 2,
the initial presence of UCs led to more defectors. In 13 out of 162 worlds, the ratio of defectors was
higher in worlds with UCs, and in 69 worlds, it was lower in the remaining worlds; the differences in
the ratio of defectors was not significant according in a two-sided Wilcoxon rank sum test (α = 0.05).10
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Figure 1. Ratio of defectors in worlds with different values for k and b (bars indicate 95%-confidence intervals).

To identify the parameters that had the largest effect on the ratio of defectors in worlds with
and without UCs, we used a step-wise regression builder (based on the AIC). The regression builder

9 Similar to other papers analyzing multiple strategies in co-presence [44,45], we also find that in many worlds, the population
does not reach a stable distribution of strategies, but oscillates between states with more and less cooperation/defection.
Since as we are interested in the general influence of UCs on cooperation, we compare the mean fractions of strategies
during the last updating step per world (i.e., 110 simulations).

10 Appendix B, Table B1 shows the result of the test per world.
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used variables b, k, q, updating and coops to predict the difference with respect to the ratio of defectors
in the last round in worlds with and without UCs. We also calculated the evolutionary status of
CCs. Specifically, we considered for every world if conditional cooperation is an evolutionarily-stable
state [46]. Whether a strategy is evolutionarily stable is often used as a main predictor for the survival
chances of a strategy [42,47].11 This status of conditional cooperators (statusCC) was added as a
possible predictor to the step-wise regression builder. An ANOVA comparing whether a model with
more predictors performs significantly better in terms of the AIC than a model with less predictors
shows that only two predictors (b and coops) contribute significantly to the prediction, where b is the
most important. The predictive power of statusCC thus seems to be negligible.

Figure 2 shows on the left the distribution of the fraction of defectors in all simulations
where conCoops was one (there were thus no UCs) during the last updating step. One can see
that most simulations converged to only containing defectors or only CCs and that simulations
where b (benefit of cooperation) is 10 less often converge to a state with a high fraction of defectors.
Figure 2 shows on the right the distribution of worlds with regard to the mean fraction of defectors
across the 110 simulations per world. While the left density plot shows that most simulations converge
to states with only defectors or CCs, the right density plot shows that most worlds allow the population
to end up in both states.

Figure 3 also shows the distribution of strategies among all simulations (density plots) and the
per world mean fraction of strategies in worlds (points in the simplex) during the last updating step.
By comparing the distributions of the fraction of defectors in Figures 2 and 3, one can see that worlds
with UCs generally lead to a lower fraction of defectors and that the differences between worlds with
b = 2 and b = 10 became more pronounced.
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0
1
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4
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Figure 2. Distribution of the fraction of defectors across all simulations (left) and the per world
distribution of the means of the fraction of defectors (right).

11 A meaningful concept of evolutionary stability is also affected by population size [48] and population structure [27,30,49].
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4.2. Regression Tree

While the step-wise regression builder indicates which parameters are most important, we discuss
in this paragraph how various parameters interact and which of their values make UCs good or bad
for defectors. For this purpose, we used the per-world comparison of worlds with conCoops = 0.8
and conCoops = 1 discussed in Section 4.1 and trained a non-parametric regression tree with the same
predictors as those used in the step-wise regression builder to predict the results of the per-world
comparison, i.e., whether UCs lead to significantly more or less defectors.12 Figure 4 shows the
resulting tree. Again b and coops appear the most important predictors since they appear in the top
splits of the tree. Below, we discuss the most important splits in the tree.

Figure 4. Results of regression tree analysis. The tree predicts whether worlds with conCoops = 0.8
lead to more or less defectors than when conCoops = 1.

12 For the generation of the tree we used the R package ctree and a minimum information criterion of 0.8.
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The first split of the tree is made according to parameter b. In the right branch of the tree where the
benefit of cooperation is high (b = 10), no other parameters helped with predicting the effect of initial
UCs. The effect of UCs was in 2

3 of all worlds negative for defectors (thus, led to more cooperation),
and in the other worlds in this branch, UCs had no significant effect. This effect seems robust as it is
not dependent on any of the other parameters, such as the updating mechanism or k.

The left branch of the tree has a more complex structure, and we see that if the benefit of
cooperation was rather low (b = 2), the effect that UCs had on defectors depends mainly on the
value of the parameter coops; i.e., in these worlds, it was most important how many agents started
being cooperators.

On the very left part of the tree (b = 2 ∧ coops = 0.1), there are only very few cooperators, and
the benefit of cooperation is rather low. Here, UCs led to more defectors in 10% of all worlds and made
no difference in the resulting 90%. We interpret this in the following way: in worlds where the relative
benefit of cooperation is small and cooperators are initially in the minority, UCs will, if they make any
difference at all, benefit the evolution of defectors. The right branch of the tree, which we discussed in
the previous paragraph, contained worlds where the parameter values were set in favor of cooperation
(b = 10). If the relative benefit of cooperation is high, UCs harm the evolution of defection and
benefit cooperators.

The middle part of the tree (b = 2 ∧ coops ≥ 0.5) classifies worlds where the parameter settings
are ambivalent towards cooperation. On the one hand, a large fraction of the population (at least 50%)
is initially cooperators. On the other hand, the relative benefit of cooperation is small. Here, only k
predicts whether UCs benefit or harm defectors. It seems that when there are only very few defectors
(coops = 0.9), UCs harm defectors when agents are highly connected (k = 99). In contrast, UCs have
hardly any effect on defectors when connectedness is low. If there is a considerable amount of
defectors (coops = 0.5), high connectedness makes the presence of UCs beneficial for defectors, but low
connectedness makes UCs harmful to defectors. A possible explanation for this finding is that a low
k leads to small isolated clusters of agents. If these clusters do not contain too many defectors or
there are only very few connections to other clusters with defectors, cooperators can better withstand
invasion by defectors. UCs “fortify” this cluster of cooperation against defection. If there are hardly
any defectors, this isolation of cooperators from defectors neither helps nor harms overall cooperation.
However, this part of the tree should be interpreted with caution as it seems to depend on a very
specific initialization of parameters, and we know that results in evolutionary games are often sensitive
to exact parametrization [40].

4.3. Robustness Check

To check the robustness of our results, we changed various assumptions in our model and
analyzed how these change the effect of UCs on the final ratio of defectors. Per assumption changed,
we reran all worlds another 110 times. Table 4 lists and describes assumptions changed. Appendix C
discusses changes and their effect in detail. Figure 5 gives a rough overview on how the change of
an assumption changed the influence that UCs had on the ratio of defectors. Red bars indicate the
number of worlds where UCs led to more defectors; green bars indicate the ratio of worlds where UCs
led to less defectors. Each cell in the figure represents worlds with a unique combination of parameters
coops and b. As discussed in the previous section, these turned to out be the most relevant parameters
w.r.t. our research question.
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Table 4. List of assumptions changed as the robustness check.

Assumption Description

normal Simulations with assumption as described in Section 3.3

pessimistic Unknown reputations are assumed to be bad (good in normal)

memory Reputations of agents depend on the last 3 actions (1 action in normal)

reproduction With a 1% chance, offspring will have a random strategy from {UC, CC, defectors} (0% in normal)

perception With a 5% chance the agent perceives the other agent as good if it is bad and vice versa (0% in normal)

action With a 5% chance the agent cooperates when he/she wanted to defect and vice versa (0% in normal)

Figure 5. Ratio of worlds where the number of defectors was different in worlds with and without UCs.

Results are hardly affected by whether agents are optimistic or pessimistic w.r.t. agents whose
reputation they do not know. Results are also robust w.r.t. to whether an agent’s reputation depends
only on the last action of or on the last three actions (assumption memory). As soon as we introduced
errors in reproduction, there were hardly any differences between worlds where there were initially
UCs and where there were none. We explain this by the fact that UCs can enter populations in worlds
with errors in reproduction even if there initially were no UCs. They appear as an error in reproduction.
It thus does not seem to matter whether UCs are there from the beginning or enter the population
later as mutants. The impact of UCs differs clearly from normal when agents make errors in the
perception of the reputation of another agent or in choosing whether to defect or cooperate (action).
With these two types of errors, worlds with conCoops = 0.8 never lead to less defectors and often to
more defectors.

5. Discussion

We tested how the presence of a tiny fraction of unconditional cooperators (UCs) affects
cooperation in a population where there are also conditional cooperators (CCs) and defectors.
We introduce this “tiny fraction” of UCs by replacing 20% of the CCs in the initial population by
UCs. The effect of unconditional cooperation in these populations is two-fold: it allows defectors to
benefit from cooperation in their interactions and stops the spread of distrust among CCs. These two
mechanisms can, in part, explain our results. Which of the two effects dominates depends on the
specific world in which agents interact.

In summary, we find that in worlds where gains from cooperation are high, unconditional
cooperation (in small doses) helps sustain cooperation. In worlds where the gains from cooperation
are small and where there are initially many defectors, UCs encourage defection. In worlds where
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cooperation is only mildly beneficial, but there are relatively few defectors, the effect of UCs on
cooperation depends on the social structure, which defines interactions among agents.

If one thinks of unconditional cooperation as a form of strategic ignorance ignoring free
information about other agents, this strategy opens an agent to exploitation by defectors and, thus,
erodes overall cooperation in the population. We find that this is not always the dominant effect.
In our model, we even find that cooperation can be boosted through the presence of a tiny fraction of
unconditional cooperators (UCs). Under most of the parameter settings examined in our simulations,
conditional cooperators (CCs) benefited more from the presence of UCs, than defectors could exploit
the naivete of UCs. However, this was not true among all parameter settings we examined. In about
8% of all cases, defectors benefited more from the presence of UCs.

It is fairly straightforward that unconditional cooperation can be exploited by defectors.
However, it is also easy to overlook the positive effects that unconditional cooperators can have
on conditional cooperators. We think that the presence of unconditional cooperators has two
opposing effects on the evolution of cooperation in a three-strategy setting with UCs, CCs and
defectors. On the one hand, UCs benefit defectors as any agent that cooperates with defectors
increases defectors’ fitness. CCs share less often with defectors since they condition their cooperation.
On the other hand, unconditional cooperators rebuild trust among CCs by the following mechanism:
defectors immediately receive a bad reputation since they never cooperate. CCs meeting agents with a
bad reputation also get a bad reputation because they do not cooperate with that agent. Therefore,
one defector can lead to a chain of conditional cooperators getting a bad reputation. This dynamic can
lead to a world with very little cooperation even when the beginning ratio of defectors is rather low.
In these worlds, defectors would have a higher average fitness as they never “lost” fitness by sharing
with others. Unconditional cooperators can stop this spread of bad reputation, since UCs never get a
bad reputation because they always share, and CCs hence would always share with UCs and thereby
get a good reputation. As a consequence, more CCs will cooperate with each other.

The model we presented in this paper is rather abstract and simplified. Nevertheless, there are
phenomena in the real world that share a similar dynamic as depicted in our model. Generally, our
findings apply to “missing hero stories”, and we will elaborate on this by looking at vaccination and
herd immunity in the real world. Herd immunity against a disease can be seen as a public good.
It is in the interest of society that a certain number of people are immunized to prevent the spread
of diseases. The costs of each individual to get vaccinated are the rare adverse reactions towards
vaccination. Obviously, this situation presents a social dilemma, as it is in the interest of everybody
that all the others are vaccinated, but each individual is better off by not taking the risk of adverse
reactions to vaccines. One can look at individuals fundamentally resisting vaccination as defectors and
most other people as conditional vaccinators who will get vaccinated if sufficiently many others are
vaccinated. In this context, all people who get vaccinated irrespective of what others do can be seen as
unconditional vaccinators. Defectors benefit from people who vaccinate themselves unconditionally
and, thus, decrease the chances of an outbreak. In those cases where an outbreak is imminent for the
population (this corresponds to worlds in our model where b is high) it is crucial that conditional
vaccinators observe others getting vaccinated to get vaccinated themselves. Hence, the benefits of
rebuilding trust dominate the disadvantages of avoiding the support of defectors.

Unconditional cooperation on its own should not be deemed as something immediately
disadvantageous perse for the individual agent or for the population. There is merit in ignoring
another agent’s history of defection and in acting in good will in spite of another agent’s consistent
betrayal. Whether unconditional cooperation turns out to be advantageous depends on factors,
such as the social structure and the ratio with which other strategies are present in the population,
and most importantly, it depends on the gains from cooperating.
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Appendix A. Pseudo-Code of Simulation

Pseudo-code: MAIN() IS EXECUTED INITIALLY

1: function MAIN()

2: for 500,000 times do

3: PLAY()

4: Once every m times execute BD(), DB() or IM() depending on updating
5: function PLAY()

6: donor = random agent

7: recipient = random neighbor of donor

8: if donor is a defector then

9: donor.reputation = 0
10: if donor is a conditional cooperator then

11: if recipient.reputation == 1 then

12: COOPERATE(donor, recipient)

13: else

14: donor.reputation = 0
15: if donor is a unconditional cooperator then

16: COOPERATE(donor, recipient)
17: function COOPERATE(donor, recipient)

18: donor.energy = donor.energy - c

19: recipient.energy = recipient.energy + b

20: donor.reputation = 1
21: function WEIGHTEDDRAW(set)

22: a = one agent from set by random weighted (by energy) draw

23: return a
24: function BD()

25: reproducer = WEIGHTEDDRAW(allAgents)

26: replaced = random agent of reproducer.neighbors

27: replaced.strategy = reproducer.strategy
28: function DB()

29: replaced = random agent

30: reproducer = WEIGHTEDDRAW(replaced.neighbors)

31: replaced.strategy = reproducer.strategy
32: function IM()

33: replaced = random agent

34: reproducer = WEIGHTEDDRAW(replaced.neighbors ∪ replaced)

35: replaced.strategy = reproducer.strategy
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Appendix B. Per World Comparison

The following table shows per the possible combination of the values for parameters k, q, b,
updating and coops whether the difference in the ratio of defectors during the last iteration of the
simulation was significantly different in worlds with conCoops = 0.8 and conCoops = 1. A value of one
in the column means there were more defectors, zero that there was no significant difference and −1
that there were less defectors.

Table B1. Difference in the ratio of defectors during the last iteration of the simulation.

3 k

BD DB IM Updating

0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 conCoop

0.1 10 −1 −1 −1 −1 −1 0 −1 −1 0
2 0 0 1 0 −1 0 0 −1 0

0.5 10 0 −1 −1 −1 −1 0 0 −1 0
2 0 0 0 −1 −1 0 1 −1 0

0.9 10 0 −1 −1 −1 −1 0 0 −1 0
2 0 0 0 −1 −1 0 0 −1 0

10 k

BD DB IM Updating

0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 conCoop

0.1 10 −1 −1 −1 −1 −1 0 −1 −1 0
2 0 1 −1 0 0 0 1 0 0

0.5 10 0 −1 −1 −1 −1 0 −1 −1 0
2 0 0 0 1 1 0 0 1 −1

0.9 10 0 −1 −1 0 −1 −1 −1 −1 −1
2 0 1 −1 0 0 −1 0 1 1

99 k

BD DB IM Updating

0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 conCoop

0.1 10 0 −1 0 0 −1 −1 0 −1 −1
2 0 0 0 0 1 −1 0 1 −1

0.5 10 0 −1 0 −1 −1 −1 0 −1 0
2 0 1 0 0 0 −1 0 0 −1

0.9 10 0 −1 −1 0 −1 −1 −1 −1 −1
2 0 1 −1 0 0 −1 0 1 −1

q b

Appendix C. Detailed Robustness Check

Appendix C.1. Default Assumption of CCs

One of the assumptions is that when the agent does not know the reputation of the recipient,
he/she just assumes the recipient to have a good reputation. We label this assumption as optimistic.
We could also assume the agents to be pessimistic in the sense that they assume the others to have
bad reputation in the case of unknown reputation. As Nowak and Sigmund [19] show, a player using
strategy p1 will out-compete a player using strategy p2 with p1 ≥ p2, with p being the fraction of
unknown reputations considered positively.
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We simulated now under the new assumption that unknown reputation is taken as “bad”.
The results are very much in line with the previous results, as can be seen in (Figure 5), which supports
our findings.

Appendix C.2. Error in Action

Of all those considered errors, we think that the errors in perception and mutation are more
important than errors in actions. We state this claim mainly because errors in actions seem rather rare
and not obvious. While it seems to make sense that an agent is misinformed about his/her partner’s
reputation or perceived his/her partner’s reputation wrongly, it seems less obvious why a mistake
should occur in the intended action. For example, defectors cooperate, and unconditional cooperators
defect in some instances. That is why we ran two possible error rates in the “errors in actions” stage.

In the first simulation group (324 × 110 simulations), we used an error rate of 10%, meaning that
10% of the actions intended were not performed and the opposite was implemented. Hence, a defector
not wanting to share would in 10% of the cases share. The results in those simulations are surprisingly
the opposite of our main results. The results suggest that unconditional cooperation always increases
the mean of defectors. A possible reason could be that rebuilding trust is more complicated,
because even unconditional cooperators make mistakes.

To see whether this effect is driven by the strong assumption of an error rate of 10%,
we implemented an additional simulation group with an error rate of 5%. The new results do not
change the outcome. Errors in actions do lead to unconditional cooperators being disadvantageous to
the evolution of cooperation.

Appendix C.3. Error in Perception

To test how sensitive our model is to errors of perception, we ran additional simulations wherein
each agent perceives the reputation of its partner wrongly in 5% of the cases. This has no influence
on defectors or unconditional cooperators because both strategies do not take the reputation of their
partner into account. Hence, in 5% of the cases, only conditional cooperators made a mistake by
assuming a defector to be good, an unconditional cooperator to be bad or a conditional cooperator to
have the opposite of his/her actual reputation.

Unconditional cooperators make conditional cooperators be cooperative by virtue of their good
reputation borne out of consistent cooperation. However, if conditional cooperators cannot evaluate
the reputation of another agent correctly, the unconditional cooperator does not automatically make
conditional cooperators cooperate. Given this, the effect of unconditional cooperation on overall levels
of cooperation weakens.

The result, as shown in Figure 5, supports our reasoning. If the world is such that errors
of perception occur often, 5%, then the positive effect of unconditional cooperation vanishes, and
unconditional cooperators lead to more defectors by supporting them. Hence, unconditional cooperation
has a negative effect on the evolution of cooperation.

Appendix C.4. Errors during Reproduction

We decided to implement this error type of reproduction in the following manner. Instead of
adapting the strategy following the updating mechanism, the chosen agent adapts the strategy
randomly in 5% of the cases. This means that in 5% of the cases, an agent does not take over the
strategy of the fittest neighbor (death-birth (DB)), but randomly one of the three possible strategies.

Our reason for implementing this type of error in this way is to be coherent in changing only one
aspect of the worlds. The upside of this implementation is that even in worlds without unconditional
cooperation, unconditional cooperation can evolve by chance. We decided not to implement errors in
reproduction in such a way that in worlds without unconditional cooperation, the agent can randomly
take one of the two strategies and in worlds with unconditional cooperation the agent randomly
takes one of the three strategies. This type of error manipulation would distort the ratios. In worlds
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without unconditional cooperators, the probability that an agent is a defector is 50%. In a world with
unconditional cooperators, the probability that an agent is a defector is 33%. Therefore, we would
not only change the error in reproduction, but we would change it in two different ways. To have
comparable results, we implemented in such a way that we are only manipulating one aspect of our
model to give us comparable results.

As it turns out, this upside is driving the effect of the error of reproduction. As in worlds without
unconditional cooperation, this strategy can occur by chance, both comparing worlds tend to be similar.
Figure 5 supports our argument. We can see, that in both worlds, unconditional cooperation evolves
and succeeds in surviving. Hence, we cannot find a statistically-significant effect of unconditional
cooperation in most cases, as both worlds tend to be similar.

Appendix C.5. Memory Span

Another possible criticism of our model is that we assume the agents to have a small memory
span. So far, it is assumed that each donor takes only the last action of the recipient into account.
Obviously, it would be more realistic to assume the agents to be more memorable.

Therefore, we reran all worlds another 110 times with again 4000 updating steps each, with the
new assumption of a longer memory span. If donors now take the last three action of the recipient into
account, the results do not change much. As Figure 5 indicates, the memory span does not influence
the main process of UCs rebuilding trust.

Appendix C.6. Standing

A rather critical assumption in our model is on image scoring. The reputation is reduced
if one does not share. Basically, only the last action is considered, regardless of the type of
agent with which one was previously interacting. Thus, a conditional cooperator loses his/her
reputation if he/she does not share with a defector, as a defector loses reputation by not sharing
with an unconditional cooperator. This assumption is rather extreme and was, therefore, discussed
much in the literature (see, e.g., Mohtashemi and Mui [50], Brandt and Sigmund [51], Ohtsuki and
Iwasa [52], Leimar and Hammerstein [53], Brandt and Sigmund [54]). The idea of losing the reputation
only if you do not share with an agent who has good reputation is called standing, as discussed in the
work of Sugden [55]. Leimar and Hammerstein [53] show that standing has superior properties, in
evolutionary terms, in comparison to image scoring. Brandt and Sigmund [54] and similarly Ohtsuki
and Iwasa [52] also support standing’s superiority over image scoring in evolutionary processes.
The reasoning for this is, according to Brandt and Sigmund [54], that standing can be seen as costless
punishment. However, we would argue that costless punishment is an unrealistic assumption and
that a conditional cooperator that does not share with a defector and, thus, loses his/her reputation
should at least bear the costs of not benefiting from cooperation in the next interaction, because of the
change in reputation (for alternative forms of punishment, see [56]). Moreover, we want the agents to
use as little cognitive power as possible. Hence, we use image scoring so that the agent only needs
to know what happened in the last interaction of his/her partner. The agent does not need to take
into account whether he/she defected because his/her partner was a defector or if he/she defected
because he/she himself/herself is a defector. The simplicity and minimal cognitive requirements in
image scoring were the reasons why we used image scoring in the first place.

Nevertheless, we also ran simulations with standing as the mechanism behind the reputation.
However, as standing results in defectors always having bad reputation and all cooperators having
good standing, it is already obvious what the effect of unconditional cooperation on the system
will be. On the one hand, unconditional cooperation will benefit defectors with whom they share
resources with, and on the other hand, rebuild trust and help sustain cooperation when they interact
with conditional cooperators. Thus, we expect the effect of unconditional cooperation on overall
cooperation to be ambiguous. If standing determines the reputation of an agent, there is no need to
rebuild trust because trust does not breakdown in this scenario because conditional cooperators will
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always have a good reputation. Hence, unconditional cooperation would only benefit defectors and,
therefore, harm cooperation.

As predicted, the results of the simulations supported our reasoning and show that in all worlds,
unconditional cooperation had either no effect or a negative effect.

Appendix D. Updating

Updating mechanisms specify stochastic process, which define how the composition of the
population changes over time ([10]). The evolutionary game dynamics on regular graphs can be studied
by a deterministic replicator equation with transformed payoff matrix. This is also called the replicator
equation on graphs ([41]), if the population size is large and if selection is weak. The frequency change
over time of each strategy is described by this equation. To illustrate the change of two strategies, the
transformed payoff matrix is given by:

( S1 S2

S1 a1,1 a1,2 + H
S2 a2,1 − H a2,2

)
(D1)

whereas H depends on the updating rule.
For birth-death updating, we have:

H =
a1,1 + a1,2 − a2,1 − a2,2

k− 2
(D2)

For death-birth updating, the term H is described by:

H =
(k + 1)a1,1 + a1,2 − a2,1 − (k + 1)a2,2

(k + 1)(k− 2)
(D3)

Additionally, for imitation updating, we obtain:

H =
(k + 3)a1,1 + 3a1,2 − 3a2,1 − (k + 3)a2,2

(k + 3)(k− 2)
(D4)

k is the number of neighbors. The term H converges to zero if k→ ∞, which is the definition of a
complete graph, meaning that each player is interacting with each possible player.

These calculation are derived in [41] by using pair-approximation ([57,58]) for regular graphs
with degree k ≥ 3.
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