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Abstract: We study the class of directed simple games, assuming that only integer solutions are
admitted; i.e., the players share a resource that comes in discrete units. We show that the integer
nucleolus—if nonempty—of such a game is composed of the images of a particular payoff vector
under all symmetries of the game. This payoff vector belongs to the set of integer imputations
that weakly preserve the desirability relation between the players. We propose an algorithm for
finding the integer nucleolus of any directed simple game with a nonempty integer imputation set.
The algorithm supports the parallel execution of multiple threads in a computer application. We also
consider the integer prenucleolus and the class of directed generalized simple games.
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1. Introduction

The nucleolus is a popular solution concept for cooperative transferable-utility (TU) games
because it is a set of game outcomes that are in a sense most acceptable “... as a compromise between
the players” (Schmeidler [1], p. 1163). A cooperative TU game is a pair (N, v) =: Γ, henceforth
called a game, with a finite set N := {1, . . . , n} of n (≥ 2) players and a coalition function
v : 2N → R, v(∅) = 0. For every payoff vector x ∈ Rn and coalition S ⊆ N, let x(S) :=

∑
i∈S xi.

If S ⊂ N, S 6= ∅, we denote the excess of coalition S at x by e(S, x) := v(S) − x(S). This way,
we can associate with each x ∈ Rn the vector θ(x) of all 2n − 2 excesses e(S, x), arranged in
nonincreasing magnitude. The nucleolus of Γ with respect to a set X of feasible payoff vectors is
the set N (Γ, X) :=

{
x ∈ X : θ(x) ≤lex θ(z) for all z ∈ X

}
of payoff vectors which minimize θ(x)

lexicographically over X (cf. Schmeidler [1]), as if they were the outcome of an egalitarian arbitration
among player coalitions (cf. Maschler [2], p. 611). Our choice for X will be the integer imputation set
I(Γ) :=

{
x ∈ Zn : x(N) = v(N), xi ≥ v({i}) for all i ∈ N

}
, under the condition that v(N) ∈ Z>0.

Thus, we assume that the players face an integer resource allocation problem in that v(N) comes in
discrete units that cannot be broken apart. We call ν(Γ) := N

(
Γ, I(Γ)

)
the integer nucleolus of the

game Γ.
A problem closely related to the integer nucleolus is that of finding minimum (or minimum-sum)

integer representations of weighted majority games (cf. Peleg [3], Krohn and Sudhölter [4],
Kurz et al. [5]). In Wolff and Karagök [6], the integer nucleolus is used to analyze the apportionment
of ministries in the Swiss parliament. Fragnelli and Gastaldi [7] study the bankruptcy problem where
the estate and the claims are integer, and compare integer versions of the Talmud solution to this
problem with the integer nucleolus of the corresponding pessimistic bankruptcy game when there
are two or three agents. It is interesting to note that Fragnelli et al. [8,9] suggest integer solutions
to a bankruptcy setting that involves an integer estate, while the claims can be of any positive
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magnitude. An example is the assignment of emergency intervention units, when the claims are
calculated in proportion to the size of the population or area to attend to, which, in turn, means
that the characteristic function of an associated bankruptcy game may assume noninteger values.
A bankruptcy-based model for the management of capacity-constrained integer resources in mobile
radio networks is proposed in Lucas-Estañ et al. [10]. Further examples of integer resources are
college places, housing opportunities, livestock, or organs for transplant. Finally, when a sum
of money is to be divided among a set of players, each smallest relevant money unit also is a
whole object.

Since I(Γ) lacks convexity, ν(Γ) may contain multiple elements. The question arises in such a
case whether the payoff vectors in ν(Γ) possess some common attributes, beyond the property that
they all minimize θ lexicographically. A complementary practical question is how to compute ν(Γ).
In general, ν(Γ) can be obtained by solving a sequence of integer linear programs, analogous to a
suggestion by Maschler [2] (p. 615) that is implemented in most of the studies compiled by Leng and
Parlar [11] (p. 669):

ILPk : min
ε, x

ε

s.t. x(S) + ε ≥ v(S) for all S ∈ 2N \ {A0, . . . , Ak−1},
x(S) + εi = v(S) for all S ∈ Ai, i = 1, . . . , k− 1,
x ∈ I(Γ),

k = 1, 2, . . . ,

(1)

whereA0 := {∅, N}, whileAi, i ≥ 1, is the set of coalitions with excess εi < · · · < ε1 for each optimal
solution (εi, x) to ILPi (cf. Guajardo and Jörnsten [12] and Nguyen and Thomas [13]). For some
k = κ, eventually 2N \ {A0, . . . , Aκ} = ∅, in which case ILPκ is solved by the set of pairs (εκ , x)
with x ∈ ν(Γ). However, this is only a feasible procedure if n is small, since integer linear programs
are usually much harder to solve than their continuous counterparts. The present article provides a
characterization of ν(Γ) with respect to the class of directed simple games, and suggests an algorithm
to compute ν(Γ) for this game class more efficiently, as long as I(Γ) is not too large. We focus on
directed simple games because they have numerous applications—e.g., in economics, in political
science, and in threshold logic (cf. Taylor and Zwicker [14] for literature references).

A simple game Γt with t ∈ Z>0 is a monotonic game Γ, whereby v(S) ≤ v(T) if S ⊂ T ⊆ N, that
satisfies v(S) ∈ {0, t} for each S ⊆ N, while v(N) = t. We denote byW(Γt) := {S ⊆ N : v(S) = t}
the set of winning coalitions of Γt. A simple game Γt is called an ordered (or complete or linear)
simple game, if it exhibits a complete desirability relation %D on the players in the set N. It is called
a directed simple game, if in addition 1 %D · · · %D n, without loss of generality. Given a game Γ,
if i %D j for two players i, j ∈ N, then player i is said to be more desirable than player j, in which case

v(S ∪ {i}) ≥ v(S ∪ {j}) for all S ⊆ N \ {i, j}. (2)

Player i is said to be strictly more desirable than player j, denoted by i �D j, if i %D j, while not
j %D i. The players are called symmetric—denoted by i ∼D j—if both i %D j and j %D i (cf. Maschler
and Peleg [15], Sect. 9). The desirability relation may be hidden in the set of winning coalitions, and
can then be computed with polynomial-time methods (cf. Aziz [16] and Aziz [17], Ch. 3). It may
also be rooted naturally in the setup of the game. For example, consider a simple game Γt that is a
weighted majority game with a quota q ∈ R>0 and the weights w1, . . . , wn ∈ R≥0 of the players,
where q ≤

∑
i∈N wi. Here, W(Γt) :=

{
S ⊆ N :

∑
i∈S wi ≥ q

}
. Hence, i %D j for two players

i, j ∈ N whenever wi ≥ wj. We shall represent such a game by the tuple [q; w1, . . . , wn; t], in brief
[q; w; t], where w := (w1, . . . , wn). Note that the desirability relation of an ordered simple game Γt

is strictly preserved by the counting vector c := (c1, . . . , cn), where ci :=
∣∣{S ⊆ W(Γt) : i ∈ S

}∣∣
(cf. Lapidot [18,19]). Note also that the integer nucleolus ν(Γ) of any game Γ is nonempty and finite
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whenever I(Γ) 6= ∅. A characterization of ν(Γt) will now be derived in Section 2. The algorithm
and a performance analysis follow in Sections 3 and 4. Section 5 provides an extension to the integer
prenucleolus, and Section 6 concludes.

2. A Characterization of ν(Γt)

We begin with two general properties of the integer nucleolus:

Lemma 1. Let Γ be a game. If i �D j for two players i, j ∈ N, then xi ≥ xj for each x ∈ ν(Γ).

Proof. Take any x ∈ ν(Γ). Suppose xi ≤ xj − 1, noting that xi ≥ v({i}) by definition of ν(Γ). Assume
i �D j, so v(S∪ {i}) ≥ v(S∪ {j}) for every S ⊆ N \ {i, j} by definition. In particular, v({i}) ≥ v({j}),
and thus xj − 1 ≥ xi ≥ v({i}) ≥ v({j}).

Observe that e(S ∪ {i}, x) ≥ e(S ∪ {j}, x) + 1 for each S ⊆ N \ {i, j}. Since i �D j by
assumption, there exists a coalition T ⊆ N \ {i, j} such that v(T ∪ {i}) > v(T ∪ {j}), implying
e(T ∪ {i}, x) ≥ e(T ∪ {j}, x) + 2.

Hence, a reallocation at x of one unit of payoff from player j to player i will result in an
integer imputation that improves θ, a contradiction (note that the excesses of all coalitions which
contain neither or both of the players i and j are not affected). Therefore, if i �D j and x ∈ ν(Γ),
then xi ≥ xj.

Lemma 2. Let Γ be a game. If i ∼D j for two players i, j ∈ N, then |xi − xj| ∈ {0, 1} for each x ∈ ν(Γ).

Proof. Take any x ∈ ν(Γ). Without loss of generality, suppose xi ≤ xj − 2, noting again that
xi ≥ v({i}) by definition of ν(Γ). Assume i ∼D j, so v(S ∪ {i}) = v(S ∪ {j}) for every S ⊆ N \ {i, j}
by definition. In particular, v({i}) = v({j}), and thus xj − 2 ≥ xi ≥ v({i}) = v({j}). At the same
time, e(S ∪ {i}, x) ≥ e(S ∪ {j}, x) + 2 for each S ⊆ N \ {i, j}. Consequently, a reallocation at x of one
unit of payoff from player j to player i yields an integer imputation that improves θ, a contradiction.
Therefore, if i ∼D j and x ∈ ν(Γ), then |xi − xj| ∈ {0, 1}.

Remark 1. Let Γ be a game, where i ∼D j for two players i, j ∈ N. If xi 6= xj for x ∈ ν(Γ), and payoff
vector z differs from x only in that the payoffs of players i and j are permuted, then z ∈ ν(Γ) by the anonymity
(impartiality) of ν(Γ).

The following lemma and a subsequent corollary are our main theoretical result:

Lemma 3. The integer nucleolus ν(Γt) of a directed simple game Γt with I(Γt) 6= ∅ has a unique element,
henceforth denoted by y, that weakly preserves %D; i.e., y1 ≥ · · · ≥ yn.

Proof. By definition of a directed game, 1 %D · · · %D n. Then, because of Lemmas 1 and 2, Remark 1,
and the nonemptiness of ν(Γt), a payoff vector like y exists. To prove its uniqueness, suppose for
x ∈ I(Γt) that x 6= y and x1 ≥ · · · ≥ xn. Denote by i the largest index j for which xj 6= yj. Hence,
xj = yj for j > i. Without loss of generality, suppose xi > yi. Note that x ∈ ν(Γt) if and only
if θ(x) = θ(y):

Case 1: {i} /∈ W(Γt); i.e., e({i}, y) = −yi. Assume yi = 0. Then, xj = 0 if and only if j > i, in which
case also yj = 0. Now consider any coalition S ⊂ N, S 6= ∅, with e(S, x) = 0. If S ∈ W(Γt), then
x(S) = t, and thus xl = 0 for every player l ∈ N \ S. Since yl = 0 for each such player, y(S) = t
and hence e(S, y) = 0. If S /∈ W(Γt), then xk = 0, and thus yk = 0, for every k ∈ S, whereby also
e(S, y) = 0. However, as e({i}, x) = −xi < 0, we conclude that θ(x) 6= θ(y).

Next, assume yi > 0. Observe for any coalition S ⊂ N, S 6= ∅, with e(S, x) = −yi that
S ⊆ {i + 1, . . . , n}. Hence, e(S, y) = −yi. Consequently, as e({i}, x) = −xi < −yi, again θ(x) 6= θ(y).
In all, x /∈ ν(Γt).
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Case 2: {i} ∈ W(Γt), whereby yi = t since y ∈ I(Γt). In particular, i = 1, as y1 ≥ · · · ≥ yn. Hence,
y = (t, 0, . . . , 0), and therefore x /∈ I(Γt), a contradiction.

To summarize, it cannot be true that x ∈ ν(Γt), x 6= y, and x1 ≥ · · · ≥ xn.

Remark 2. The proof of Lemma 3 does not depend on the assumed monotonicity of simple games, and
the desirability relation %D was not needed to show the uniqueness of y. We conclude from the latter
observation—since we are free to renumber the players—that if Γ is a simple game, then ν(Γ) contains at
most one payoff vector for every order of the payoffs x1, . . . , xn.1

A permutation π of the player set N of a game Γ such that v(π(S)) = v(S) for each S ⊆ N is
called a symmetry of Γ. Because of Lemma 3 and Remark 1:

Corollary 1. The integer nucleolus ν(Γt) of a directed simple game Γt with I(Γt) 6= ∅ is the set of images of
y under all symmetries of Γt.

We close this section with three examples and a remark:

Example 1. Let Γt be represented by [33; 15, 15, 10, 10, 4, 4, 4, 2, 1; 30]. Then, y = (7, 7, 4, 4, 3, 2, 2, 1, 0).
Additionally, c = (189, 189, 163, 163, 147, 147, 147, 129, 129); i.e., c5 = c6 = c7 and c8 = c9. Since y5 >

y6, y7, and y8 > y9, we obtain a set ν(Γt) of six payoff vectors. We provide them in anti-lexicographic order:

ν(Γt) =
{
(7, 7, 4, 4, 3, 2, 2, 1, 0), (7, 7, 4, 4, 3, 2, 2, 0, 1), (7, 7, 4, 4, 2, 3, 2, 1, 0),
(7, 7, 4, 4, 2, 3, 2, 0, 1), (7, 7, 4, 4, 2, 2, 3, 1, 0), (7, 7, 4, 4, 2, 2, 3, 0, 1)

}
.

Example 2. Let (the non-proper game) Γt be represented by [6; 4, 4, 2, 2, 2, 1; 8]. Then, y = (2, 2, 1, 1, 1, 1),
while c = (30, 30, 26, 26, 26, 23). Hence, ν(Γt) = {(2, 2, 1, 1, 1, 1)}.

Example 3. Consider the game Γ where n = 3 and v({1}) = v({2}) = 1, v({3}) = 0, v({1, 2}) = 2,
v({1, 3}) = v({2, 3}) = 1, v({1, 2, 3}) = 7. Note that 1 ∼ 2 � 3, whereas ν(Γ) =

{
(3, 3, 1), (3, 2, 2),

(2, 3, 2)
}

. Lemma 3 and Corollary 1 thus cannot be generalized to every directed game Γ.

Remark 3. In Example 2, player 6 is a null player, yet y6 = 1. In general, let Γ be a game, and write as
L(Γ) :=

{
j ∈ N : v(S) = v(S ∪ {j}) for all S ⊆ N \ {j}

}
the set of null players of Γ. Suppose x ∈ I(Γ)

and xi ≥ 2 for i ∈ L(Γ). Since v(N) > 0, there exists a coalition T ∈ arg max ∅ 6=S⊂N e(S, x), such that
T ∩ L(Γ) = ∅, whereby e(Q, x) ≤ e(T, x)− 2 for all Q ⊂ N, i ∈ Q. So, a reallocation at x of one unit of
payoff from player i to a player k ∈ T improves θ. Hence, xi ∈ {0, 1} for each i ∈ L(Γ) and every x ∈ ν(Γ).

3. An Algorithm to Compute ν(Γt)

Given a directed simple game Γt, denote by θW the subvector of θ associated with the coalitions
inW(Γt) \ N, and by P(Γt) :=

{
x ∈ I(Γt) : x1 ≥ · · · ≥ xn ∧ |xi − xj| ∈ {0, 1} for all i 6= j, i ∼D j

}
the

subset of integer imputations in anti-lexicographic order that satisfy Lemmas 1 and 2. Let νW (Γt) :={
x ∈ P(Γt) : θW (x) ≤lex θW (z) for all z ∈ P(Γt)

}
. Write as V(Γt) :=

{
i ∈ N : S ∈ W(Γt)⇒ i ∈ S

}
the

set of veto players of Γt, and let r := |V(Γt)|. If r > 0, then V(Γt) = {1, . . . , r}, because Γt is directed.

Lemma 4. Let Γt be a directed simple game with I(Γt) 6= ∅. If W(Γt) \ N 6= ∅, then νW (Γt) = {y}.

Proof. Assume W(Γt) \ N 6= ∅, and note that P(Γt) 6= ∅ due to I(Γt) 6= ∅. Hence, νW (Γt) 6= ∅.
In particular, y ∈ νW (Γt). Now suppose r > 0, whereby x(V(Γt)) = t for each x ∈ νW (Γt). Since i ∼D j

1 This conclusion was brought to the author’s attention through a valuable comment by J. Derks.
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for any two players i, j ∈ V(Γt), only one element of the set P(Γt) assigns the payoff t to coalition
V(Γt), this element being

y = (y + 1, . . . , y + 1︸ ︷︷ ︸
s times

, y, . . . , y︸ ︷︷ ︸
r−s times

, 0, . . . , 0︸ ︷︷ ︸
n−r times

), (3)

where y := b t
r c denotes the largest integer that does not exceed t

r , and s := t − ry. Thus,
νW (Γt) = {y}.

Next, suppose r = 0; i.e., V(Γt) = ∅. Take any x ∈ P(Γt), x 6= y, and denote by i the largest
index j such that xj 6= yj. Accordingly, xj = yj for all j > i. Without loss of generality, assume
xi > yi. As i /∈ V(Γt), there exists a coalition S ∈ W(Γt) \ N, i /∈ S, and hence N \ {i} ∈ W(Γt) by
the monotonicity of Γt. Consequently, e(N \ {i}, y) = yi. This excess may be obtained at x only by
winning coalitions N \ T with T ⊆ {i + 1, . . . , n}, but then also at y. Since e(N \ {i}, x) = xi > yi,
we obtain θW (x) 6= θW (y), and so x /∈ νW (Γt).2

The borderline case of a directed simple game Γt with W(Γt) \ N = ∅ implies that
W(Γt) = {N} = V(Γt), and thereby I(Γt) 6= ∅, as well as ν(Γt) = P(Γt) = {y} because of the
symmetry of all players. The associated payoff vector y is determined by (3) for r = n.

Thus, if Γt is a directed simple game and I(Γt) 6= ∅, we may search P(Γt) for y without reference
to the coalitions not contained inW(Γt). In view of this observation, we now suggest an algorithm to
compute the integer nucleolus of any such game. Since the elements of P(Γt) have independent excess
vectors θW , our algorithm can make the most of computing machinery that supports the parallel
execution of multiple threads in an application program. Note for each x ∈ P(Γt) with xk > 0,
xk+1 = 0, that x1 + · · · + xk is a partition of t into k (≤ min{t, n}) parts in standard form. A fast
generator of integer partitions in standard form and in anti-lexicographic order is procedure ZS1 by
Zoghbi and Stojmenović [20] (pp. 325–326).

To proceed, define the incidence vector 1S ∈ {0, 1}n of any coalition S ∈ W(Γt) \ N in that
1Si = 1 if and only if i ∈ S, and consider the auxiliary vector aS := (aS1, . . . , aSn), where

aSi :=
∑
j≤i

1Sj , i = 1, . . . , n. (4)

Hence, if x ∈ P(Γt) and xk > 0, xk+1 = 0, then aSk players in coalition S receive a positive payoff.
These players can be read off the auxiliary vector bS := (bS1, . . . , bS|S|), where

bSi := index of the ith positive entry of 1S , i = 1, . . . , |S|. (5)

The total payoff of coalition S at x thus amounts to
∑

i≤aSk
xbSi

. For example, if n = 7 and S = {2, 3, 6},
we obtain 1S = (0, 1, 1, 0, 0, 1, 0), aS = (0, 1, 2, 2, 2, 3, 3), and bS = (2, 3, 6). Thereby, if t = 6
and x = (2, 2, 1, 1, 0, 0, 0)—noting that x results from a partition of t into four parts—x({2, 3, 6}) =∑

i≤aS4
xbSi

= x2 + x3.
For each x ∈ P(Γt), let D(Γt, x, h) :=

{
S ∈ W(Γt) \ N : e(S, x) = h

}
with h ∈ {0, . . . , t},

and attach to x the auxiliary vector Θ(x) := (Θ1(x), . . . , Θt+1(x)), where

Θt−h+1(x) := |D(Γt, x, h)| , h = t, . . . , 0. (6)

This way, Θ(x) holds the number of occurrences of excesses of a size at x, top-down from the largest
excess t to the smallest excess 0 of the coalitions in the setW(Γt) \ N. Thereby, given any two payoff
vectors x̃, x̂ ∈ P(Γt), x̃ is preferred to x̂ if and only if Θ(x̃) <lex Θ(x̂). While calculating and counting

2 The author thankfully acknowledges a helpful conversation with J. Derks who pointed out to him that, given a simple
game Γt, the set

{
x ∈ I(Γt) : θW (x) ≤lex θW (z) for all z ∈ I(Γt)

}
contains at most one element x with x1 ≥ · · · ≥ xn,

whenever N \ {i} ∈ W(Γt) for all i ∈ N. We add that it also suffices to impose the weaker condition that r ≤ 1.
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excesses hand in hand, we may be able to tell quite early how x ∈ P(Γt) compares to a current best
status quo, say x∗. Let Θ∗ := Θ(x∗), and suppose l is the first index i for which Θ∗i > 0. Then, payoff
vector x can already be discarded if any of the first l − 1 entries of Θ(x) has been detected to take a
positive value or once Θl(x) is known to exceed Θ∗l .

Table 1. Lexicographic minimization of θ(x) over P(Γt).

Input: Directed simple game Γt (assuming I(Γt) 6= ∅), p
Output: (c, y)

PROG LEXMIN

GLOBALW(Γt) \ N, P(Γt), x∗(), p, t ; GLOBAL aS, bS for all S ∈ W(Γt) \ N

n← |N| ; t← v(N)

FOR i = 1 TO n DO {ci ← |{S ⊆ W(Γt) : i ∈ S}|}
P(Γt)←

{
x ∈ I(Γt) : x1 ≥ · · · ≥ xn ∧ |xi − xj| ∈ {0, 1} for all i 6= j, ci = cj

}
FOR each S ∈ W(Γt) \ N DO {compute (aS, bS) as in (4) and (5)}

DIM x∗(1 : p)

START THREAD LEXMIN1 ; . . . ; START THREAD LEXMINp

DO {wait for threads LEXMIN1, . . . , LEXMINp to complete}

y← x∗(1) ; Θ∗ ← Θ(y)

FOR i = 2 TO p DO {IF Θ(x∗(i)) <lex Θ∗ THEN y← x∗(i) ; Θ∗ ← Θ(y)}

END PROG

THREAD FUNCTION LEXMINi

x∗(i)← last x ∈ P(Γt) ; Θ∗ ← Θ(x∗(i)) ; l ← smallest index j for which Θ∗j > 0

FOR the ith to the 2nd last x ∈ P(Γt) STEP p DO
{

k← number of parts of t in x ; Θ← (0, . . . , 0)

FOR each S ∈ W(Γt) \ N DO
{

h← t−
∑

j≤aSk
xbSj

IF t− h + 1 ≥ l THEN Θt−h+1 ← Θt−h+1 + 1 ELSE EXIT FOR

IF Θl > Θ∗l THEN EXIT FOR
}

IF Θ <lex Θ∗ THEN x∗(i)← x ; Θ∗ ← Θ ; l ← smallest index j for which Θ∗j > 0
}

END FUNCTION

This observation has been built into the computer pseudocode in Table 1. The code distributes
most of the workload across a user-defined number p (≥ 1) of threads, in support of machines that
can execute multiple threads in parallel (desktop applications will most often benefit from creating
as many parallel threads as possible, unless |P(Γt)| is small). On input, Γt and p are passed to the
main program LEXMIN that at first generates both n and t as well as the counting vector c, the set
P(Γt), and the pairs (aS, bS), S ∈ W(Γt) \ N. Then, it allocates memory for an array x∗(1 : p) of p best
status-quo payoff vectors, before invoking the thread functions LEXMIN1, . . . , LEXMINp. Each of
them refers to a separate piece of code, such as the code for thread function LEXMINi. This function
initializes x∗(i), Θ∗, and l, in terms of a most equal allocation of t across the players, and then enters
into two nested loops. In an attempt to spread the computational burden evenly across the threads,
the outer loop has been designed to pass over every pth element of the (ordered) set P(Γt), starting
from element number i. For each resulting payoff vector x ∈ P(Γt) and underlying number k of parts
of t, the inner loop computes the excesses associated with x and populates Θ(x). If in the course of
these operations index t − h + 1 comes out less than l, or Θ∗l is exceeded, then x will be discarded
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by a subsequent exit instruction. In the remaining cases, whenever Θ(x) is lexicographically smaller
than Θ∗, the elements of the set {x∗(i), Θ∗, l} are updated. Once all threads are completed, LEXMIN
minimizes Θ lexicographically over the set of retained payoff vectors {x∗(1), . . . , x∗(p)} in order to
obtain the unique argument y, and then the pair (c, y) is returned. Note that all relevant variables are
considered as local to LEXMIN and its thread functions unless stated otherwise.

Remark 4. A payoff vector x ∈ P(Γt) can already be discarded if Θl is seen to be no smaller than Θ∗l ,
while Θl+1 is known to be greater than Θ∗l+1, etc. This may serve to reject x more quickly, while the extra
comparisons can have the opposite effect.

Remark 5. If a reallocation of a unit of payoff between players i and j is unfavorable, another such reallocation
can be rejected, everything else being equal. We then do not have to trace Θ over the full set P(Γt), at the cost
of an extended bookkeeping.

Remark 6. One may want to exploit the occurrence of special categories of players (e.g., null players or
vetoers), which imposes a search cost (cf. Aziz [16] and Aziz [17], Ch. 3, for the complexity of detecting
player types).

Remark 7. The coalitions S ∈ W(Γt) \ N have independent pairs (aS, bS), which suggests a distributed
execution of the second loop in LEXMIN.

Once y is known, we conduct a scan of the counting vector c for all subvectors (ci, . . . , cj),
where ci = · · · = cj and yi > yj, the range j − i being as large as possible. If no such subvector
exists, then ν(Γt) = {y}, and we are done. Otherwise, given whichever pair (i, j) of matching indices,
we retain all elements of ν(Γt) obtained earlier, as well as every payoff vector that can be derived
from these elements by permuting the payoffs of the players i, . . . , j.

Table 2. Completion of ν(Γt).

Input: Directed simple game Γt (assuming I(Γt) 6= ∅) and
associated pair (c, y)

Output: ν(Γt)

PROG COMPL

n← |N| ; y1 ← y ; ν(Γt)← {y1}

i← n + 1 ; m← 1

WHILE i > 2 DO
{

j← i− 1 ; i← j

WHILE i > 1 and ci−1 = cj DO {i← i− 1}
IF yi > yj THEN

{
l ← 0

FOR each b ∈ B(i, j) DO
{

FOR k = 1 TO m DO
{

l ← l + 1 ; yl ← (yk
1, . . . , yk

i−1, b, yk
j+1, . . . , yk

n)
}}

m← l ; ν(Γt)← {y1, . . . , ym}
}}

END PROG

The pseudocode program COMPL in Table 2 generates a corresponding sequence of
approximations {y1, . . . , ym} to ν(Γt). On input, Γt and the pair (c, y) are passed. To begin with,
the program determines n and initializes ν(Γt). Then, starting from i = j = n, the program looks for
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the smallest i (< j) for which both ci = cj and yi > yj.3 Whenever a matching i is found, the program
retrieves all permutations of the payoffs in (yi, . . . , yj) from the respective permutation set, named
B(i, j), and updates ν(Γt). In the following iteration, j is set to i− 1, and so on. The search ends if i ≤ 2,
and then ν(Γt) is returned. Note that for each matching pair (i, j) the respective subvector (yi, . . . , yj)

of y takes the form (a, . . . , a, b, . . . , b), where b = a− 1. The set B(i, j) can thus be calculated with
ACM Algorithm 152 (Nexcom) by Hopley [21], under the normalization a = 1.

We end this section with a working example of our algorithm and a generalization. The example
is primarily meant to illustrate the functioning of a thread in Table 1. Thus, we assume, for simplicity,
that p = 1:

Example 4. Let Γt be represented by [9; 5, 4, 3, 2, 1; 6]. In this game,

W(Γt) \ N =
{
{1, 2}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {2, 3, 4}, {1, 2, 3, 4},
{1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}

}
.

Thereby, c = (11, 10, 9, 8, 7); i.e., the game exhibits the desirability relation 1 �D 2 �D 3 �D 4 �D 5. Hence,

P(Γt) =
{
(6, 0, 0, 0, 0), (5, 1, 0, 0, 0), (4, 2, 0, 0, 0), (4, 1, 1, 0, 0), (3, 3, 0, 0, 0), (3, 2, 1, 0, 0),
(3, 1, 1, 1, 0), (2, 2, 2, 0, 0), (2, 2, 1, 1, 0), (2, 1, 1, 1, 1)

}
.

The sole thread LEXMIN1 then proceeds as follows if the elements of W(Γt) \ N arrive at the thread’s
inner loop in the above order from coalition {1, 2} to coalition {2, 3, 4, 5}:

x
last Θ in
inner loop x∗(1) Θ∗ l

last S in
inner loop

— — (2, 1, 1, 1, 1) (0, 0, 0, 2, 6, 4, 0) 4 —
(6, 0, 0, 0, 0) (1, 0, 0, 0, 0, 0, 6) (2, 1, 1, 1, 1) (0, 0, 0, 2, 6, 4, 0) 4 {2, 3, 4}
(5, 1, 0, 0, 0) (0, 1, 0, 0, 0, 2, 4) (2, 1, 1, 1, 1) (0, 0, 0, 2, 6, 4, 0) 4 {2, 3, 4}
(4, 2, 0, 0, 0) (0, 0, 1, 0, 2, 0, 4) (2, 1, 1, 1, 1) (0, 0, 0, 2, 6, 4, 0) 4 {2, 3, 4}
(4, 1, 1, 0, 0) (0, 0, 1, 0, 0, 5, 1) (2, 1, 1, 1, 1) (0, 0, 0, 2, 6, 4, 0) 4 {2, 3, 4}
(3, 3, 0, 0, 0) (0, 0, 0, 3, 0, 0, 4) (2, 1, 1, 1, 1) (0, 0, 0, 2, 6, 4, 0) 4 {2, 3, 4}
(3, 2, 1, 0, 0) (0, 0, 0, 2, 3, 4, 3) (3, 2, 1, 0, 0) (0, 0, 0, 2, 3, 4, 3) 4 {2, 3, 4, 5}
(3, 1, 1, 1, 0) (0, 0, 0, 2, 3, 6, 1) (3, 2, 1, 0, 0) (0, 0, 0, 2, 3, 4, 3) 4 {2, 3, 4, 5}
(2, 2, 2, 0, 0) (0, 0, 0, 0, 9, 0, 3) (2, 2, 2, 0, 0) (0, 0, 0, 0, 9, 0, 3) 5 {2, 3, 4, 5}
(2, 2, 1, 1, 0) (0, 0, 0, 1, 3, 2, 0) (2, 2, 2, 0, 0) (0, 0, 0, 0, 9, 0, 3) 5 {1, 3, 5}

Upon initialization, x∗(1) = (2, 1, 1, 1, 1), whereby θW = (3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1), such that Θ∗ =

(0, 0, 0, 2, 6, 4, 0) and l = 4. The first payoff vector x = (6, 0, 0, 0, 0) in the (ordered) set P(Γt) will be discarded
as soon as LEXMIN1 has calculated the excess of coalition {2, 3, 4}, since h = e({2, 3, 4}, x) = 6, and thus
t− h + 1 = 1 < 4, etc. Eventually, Θ∗ can be improved at x = (3, 2, 1, 0, 0), where Θ∗ = (0, 0, 0, 2, 3, 4, 3),
and again at x = (2, 2, 2, 0, 0), where Θ∗ = (0, 0, 0, 0, 9, 0, 3). The latter payoff vector is finally identified as
y by the main program LEXMIN, and the pair (c, y) is returned. At last, routine COMPL finds in view of
c = (11, 10, 9, 8, 7) that there is no matching pair (i, j). Therefore, on output, ν(Γt) = {(2, 2, 2, 0, 0)}.

For a generalized simple game Γt, the monotonicity property is dropped, and it is not maintained
that v(∅) = 0 and v(N) = t (cf. Carreras and Freixas [22], p. 153, and Taylor and Zwicker [14], p. 4).
The desirability relation of a directed generalized simple game is also strictly preserved by the
counting vector c. However, I(Γt) may have to be redefined as denoting the set

{
x ∈ Zn : x(N) = t,

xi ≥ v({i}) for all i ∈ N
}

. The proof of Lemma 3 then remains valid, and hence statements analogous
to Lemma 3 and Corollary 1 apply. The following result replaces Lemma 4:

3 As to the inner WHILE/DO loop in Table 2, we assume short-circuit evaluation of relational expressions. This means that
the expression ‘i > 1 and ci−1 = cj’ is marked to be false as soon as i = 1. Hence, no attempt will be made to access a
nonexistent c0.
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Lemma 5. Let Γt be a directed generalized simple game with I(Γt) 6= ∅. Suppose x, x̃ ∈ P(Γt), x 6= x̃.
Denote by i the largest index j for which xj 6= x̃j, where xi > x̃i without loss of generality. Then
θW (x) = θW (x̃)⇒ θ(x) <lex θ(x̃).

Proof. Assume {i} ∈ W(Γt), whereby i = 1, since Γt is directed and I(Γt) 6= ∅. Hence, xj = x̃j
for each player j ≥ 2. Since x1 > x̃1, it cannot be true that both x and x̃ are contained in P(Γt). So,
assume {i} /∈ W(Γt). Consider any nonempty coalition S ⊂ N, S /∈ W(Γt). Observe that xj = x̃j
whenever j > i. Consequently, if e(S, x) > −x̃i or e(S, x̃) > −x̃i, and thus S ⊆ {i + 1, . . . , n},
then e(S, x) = e(S, x̃). Furthermore, if e(S, x) = −x̃i, and hence again S ⊆ {i + 1, . . . , n}, then
also e(S, x̃) = −x̃i. Therefore, and since e({i}, x) = −xi < −x̃i = e({i}, x̃), if θW (x) = θW (x̃),
then θ(x) <lex θ(x̃).

Hence, if θW (x) = θW (x̃) for two payoff vectors x, x̃ ∈ P(Γt), we can always discriminate
between them by inspecting the smallest payoff components by which they differ. The required
adjustment of the code in Table 1 is straightforward.

4. Performance Analysis

The computational workload of the algorithm in Section 3 is mostly determined by the cost
of finding y. In a worst-case scenario, if n ≥ t while there are no symmetric players, then

|P(Γt)| ∼ 1
4t
√

3
eπ
√

2t
3 = O( 1

t e
√

t) (cf. Hall [23], p. 44) for the asymptotic total number of payoff
vectors that have to be considered. In another worst-case scenario, every coalition S ⊆ N,
S /∈

{
∅, {2}, . . . , {n}

}
, is winning, and the inner loop of each thread function then executes

|W(Γt) \ N| = 2n − n− 1 = O(2n) times altogether.
The algorithm has been applied on two personal computers to solve several samples of weighted

majority games Γt, where w :=
∑n

i=1 wi is an odd sum of integer weights, and q = w+1
2 . The weights

have been drawn from the interval [1, n] at random, in terms of uniform deviates as supplied by a
system routine. The chosen order of the coalitions S ∈ W(Γt) \ N in the thread functions was from
the smallest to the largest coalitions, with a lexicographic ordering of each group of coalitions of a size
(cf. Example 4). One computer (machine 1) was equipped with a dual-core CPU

(
Intel(R) Core(TM)

i7-2620M, 2.70 GHz
)

and the other (machine 2) with a quad-core CPU
(
Intel(R) Core(TM) i5-760,

2.80 GHz
)
. Both CPUs possess four logical processors, whereby p = 4. The algorithm’s run-times

were measured as the elapsed time when computing the solution of a given game from the pair (n, t)
and the set W(Γt) \ N. Aiming at a performance improvement (albeit small), the main program
LEXMIN in Table 1 was modified to take account of the suggestion in Remark 7.

Two samples of fifty games have been solved with machine 1. In the first sample,
(n, t) = (7, 300), whereas (n, t) = (10, 100) in the second. The average run-times per game were
about four seconds (first sample) and about five seconds (second sample). Two samples of ten games
have been solved with machine 2. In the first of these samples, (n, t) = (20, 30), while (n, t) = (20, 40)
in the second. The average run-times were about two seconds (first sample) and about ten seconds
(second sample). In comparison, the Gurobi(TM) [24] linear-programming tool (version 6.5.0, with
default settings) needed between about 4 and 35 min, with an average of about 20 1

2 min, to complete
only the first linear program of procedure (1) on machine 2 for the ten games where (n, t) = (20, 30).
At this stage, just one element of a single game’s integer nucleolus (of cardinality three) could be
found. The tool used all available cores of the CPU.

5. Extension to the Integer Prenucleolus

If a simple game Γt admits two or more winning single-player coalitions, then v(Γt) = I(Γt) = ∅.
In such a case—or when the individual rationality of the game solution is not an issue—we may refer
to the integer prenucleolus ν∗(Γt) := N

(
Γt, I∗(Γt)

)
, where I∗(Γt) :=

{
x ∈ Zn : x(N) = v(N)

}
is the

game’s integer preimputation set with v(N) = t ∈ Z>0. Note that ν∗(Γt) is nonempty and finite.
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Lemma 6. Let Γt be a simple game. If x ∈ ν∗(Γt), then −1 ≤ xi ≤ t for all i ∈ N.

Proof. Take any x ∈ ν∗(Γt) and let N− :=
{

j ∈ N : xj ≤ −1
}

. Observe that x ∈ I∗(Γt), whereby
N \ N− 6= ∅. Then, consider an arbitrary player i ∈ N:

(a) Assume xi ≤ −2. Hence, i ∈ N−. Let Q := arg max ∅ 6=S⊂N e(S, x) and consider any coalition
Q ∈ Q, whereby |Q| < n. Since Γt is monotonic, N− ⊆ Q, and hence there must be a player
k ∈ N \ N−, k /∈ Q. Now take any coalition T ∈ arg max k∈S⊆N\{i} e(S, x). Suppose T = N \ {i}, such
that e(T, x) = v(N \ {i})− x(N \ {i}) ≤ t− (x(N)− xi) = xi ≤ −2. Since e({i}, x) ≥ 2, a reallocation
at x of one unit of payoff from player k to player i improves θ, and therefore x /∈ ν∗(Γt). Next,
suppose T ⊂ N \ {i}. Observe that e(T, x) ≤ e(T ∪ {i}, x) + xi by the monotonicity of Γt, and that
e(T ∪ {i}, x) ≤ e(Q, x) by definition of the set Q. Consequently, e(T, x) ≤ e(Q, x) + xi ≤ e(Q, x)− 2.
As i ∈ Q, we conclude that θ can still be improved at x by a reallocation of one unit of payoff from
player k to player i. Thus again x /∈ ν∗(Γt), a contradiction.

(b) Assume xi ≥ t + 1. Hence, N− 6= ∅ due to x ∈ I∗(Γt). Take any player k ∈ N−, and let ε :=
max k∈S⊆N\{i} e(S, x). Thereby, ε ≥ e(N−, x) ≥ −x(N−). Moreover, let γ := max i∈T⊆N\{k} e(T, x).
Since none of the T-type coalitions can receive an aggregate payoff smaller than x(N− \ {k}) + xi,
we have γ ≤ t− (x(N−)− xk)− xi. So, ε− γ ≥ xi − t− xk ≥ 1− xk ≥ 2. Therefore, a reallocation
at x of one unit of payoff from player i to player k improves θ, which means that x /∈ ν∗(Γt),
also a contradiction.

In all, it cannot be true that x ∈ ν∗(Γt) and xi < −1 or xi > t for some i ∈ N.

Lemma 7. Let Γt be a generalized simple game. If x ∈ ν∗(Γt), then −t ≤ xi ≤ t for all i ∈ N.

Proof. Take any x ∈ ν∗(Γt). Note that part (b) of the proof of Lemma 6 does not depend on the
monotonicity of Γt or on the convention that v(∅) = 0. With I∗(Γt) being redefined as denoting the
set
{

x ∈ Zn : x(N) = t
}

, the assumption that v(N) = t is also not needed. Hence, xi ≤ t. Now assume
xi ≤ −(t + 1). It then follows from x ∈ I∗(Γt) that there must be a player k ∈ N with xk ≥ 1. Letting
µ := max i∈S⊆N\{k} e(S, x) and τ := max k∈T⊆N\{i} e(T, x), we conclude—analogous to part (b) of the
proof of Lemma 6—that µ− τ ≥ xk − t− xi ≥ 1 + xk ≥ 2. Consequently, a reallocation at x of one
unit of payoff from player k to player i improves θ, which contradicts the assumption that x ∈ ν∗(Γt).
Therefore, if x ∈ ν∗(Γt), then xi ≥ −t.

The following statement can be proved with methods similar to those used in Section 2 (cf. the
proofs of Lemmas 1 and 2). The proof is thus omitted:

Lemma 8. Let Γ be a game, and suppose x ∈ ν∗(Γ). If i �D j for two players i, j ∈ N, then xi ≥ xj. If i ∼D j,
then |xi − xj| ∈ {0, 1}.

Remark 8. Let Γ be a game. If z is a payoff vector that differs from x ∈ ν∗(Γ) only in that the payoffs of two
symmetric players are permuted, then z ∈ ν∗(Γ), analogous to Remark 1.

We end our discussion of the integer prenucleolus with a few examples and clarifying remarks:

Example 5. Let Γt be represented by [4; 2, 2, 2, 1; 4]. In this game, c = (6, 6, 6, 4). Its integer
prenucleolus is composed of all integer preimputations—except for (1, 1, 1, 1)—that satisfy Lemmas 6 and 8:
ν∗(Γt) =

{
(2, 1, 1, 0), (1, 2, 1, 0), (1, 1, 2, 0), (2, 2, 1,−1), (2, 1, 2,−1), (1, 2, 2,−1)

}
. Note that player 4 is a

null player.

Example 6. Let Γt be represented by [7; 3, 2, 2, 2, 1; 7]. This is a game without null players, and c = (8, 7, 7,
7, 5). We get ν∗(Γt) = {(2, 2, 2, 2,−1)}.
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Example 7. Let Γt be the directed generalized simple game where (n, t) = (5, 2) and W(Γt) =
{
{1}, {2},

{3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}
}

. In this game, 1 ∼D 2 �D
3 ∼D 4 �D 5. At the same time, e.g., v({1}) > v({1, 5}), and hence the game is not monotonic. We find that
c = (7, 7, 5, 5, 1) and ν∗(Γt) = {(1, 1, 1, 1,−2)}.

Remark 9. Observe for the game in Example 5 that ν∗(Γt) has two elements that weakly preserve %D. Hence,
Lemma 3 and Corollary 1 do not carry over to the integer prenucleolus.

Remark 10. Note for the game in Example 6 that ν(Γt) =
{
(2, 2, 2, 1, 0), (2, 2, 1, 2, 0), (2, 1, 2, 2, 0)

}
. Thus,

in contrast to the continuous case, ν∗(Γt) 6= ν(Γt) although {i} /∈ W(Γt) for all i ∈ N.

If negative payoffs are infeasible for a simple game Γt with I(Γt) = ∅, we may resort
to the integer pseudo-nucleolus ν ′(Γt) := N

(
Γt, I′(Γt)

)
as an auxiliary solution concept, where

I′(Γt) :=
{

x ∈ Zn
≥0 : x(N) = v(N)

}
and v(N) = t ∈ Z>0. The set ν ′(Γt) is nonempty and finite.

We leave it to the reader to reconsider Case 2 in the proof of Lemma 3 in order to show that the results
of Section 2 carry over to ν ′(Γt), noting that the players in the set F(Γt) :=

{
i ∈ N : {i} ∈ W(Γt)

}
are

symmetric and that i �D j for all i ∈ F(Γt), j ∈ N \ F(Γt), due to the monotonicity of Γt. We also leave
it to the reader to extend the algorithm in Section 3 to the computation of ν∗(Γt) for directed simple
games Γt. An extended algorithm will admit negative payoffs of some of the players and allow for
multiple optimal payoff vectors that weakly preserve %D.

6. Conclusions

We have been concerned with the class of directed simple games, under the assumption that only
integer solutions are feasible. The players of such a game face an integer allocation problem, in that
they share a resource that comes in discrete units. We showed as our main theoretical result that the
integer nucleolus—if nonempty—of a directed simple game is composed of the images of a particular
payoff vector under all symmetries of the game. The respective payoff vector is an integer imputation
that weakly preserves the desirability relation between the players. In view of this result, we proposed
an algorithm for finding the integer nucleolus of any directed simple game with a nonempty integer
imputation set. The algorithm does not need to take account of coalitions that are not winning, and it
provides support for computing machinery that can execute multiple threads in parallel. The integer
nucleolus of a directed generalized simple game with a nonempty set of integer imputations can
be computed in almost the same way. Test runs across samples of weighted voting games on two
standard personal computers could be completed within acceptable average time spans. Finding the
integer prenucleolus of a directed (generalized) simple game may be more demanding.

We close with a note on the well-known 12-player weighted majority game in Isbell [25] (p. 27).
This game has two minimum-sum integer representations, where the quota is 99 and the weight
vectors are w1 = (38, 31, 31, 28, 23, 12, 11, 8, 6, 5, 3, 1) and, respectively, w2 = (37, 31, 31, 28, 23, 12, 11, 8,
7, 5, 3, 1). The weight vectors differ with respect to two non-symmetric players (i.e., players 1 and 9).
Assume for this game that t amounts to 197, which is the game’s sum of weights. The resulting
directed simple game Γt has the two representations [99; w1; 197] and [99; w2; 197]. We obtain
c = (1478, 1388, 1388, 1350, 1304, 1136, 1132, 1104, 1090, 1072, 1056, 1034), and ν(Γt) = {w1}.
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