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Abstract: In this paper, we consider a novel game theory model for the competitive influence
maximization problem. We model this problem as a simultaneous non-cooperative game with
complete information and rational players, where there are at least two players who are supposed
to be out of the network and are trying to institutionalize their options in the social network;
that is, the objective of players is to maximize the spread of a desired opinion rather than the
number of infected nodes. In the proposed model, we extend both the Linear Threshold model
and the Independent Cascade model. We study an influence maximization model in which users’
heterogeneity, information content, and network structure are considered. Contrary to previous
studies, in the proposed game, players find not only the most influential initial nodes but also the
best information content. The proposed novel game was implemented on a real data set where
individuals have different tendencies toward the players’ options that change over time because of
gaining influence from their neighbors and the information content they receive. This means that
information content, the topology of the graph, and the individual’s initial tendency significantly
affect the diffusion process. The proposed game is solved and the Nash equilibrium is determined
for a real data set. Lastly, the numerical results obtained from the proposed model were compared
with some well-known models previously reported in the literature.

Keywords: social network; game theory; information diffusion; Nash equilibrium; influence
maximization problem

1. Introduction

In recent years, there has been a growing interest in studying social networks as they have
widespread application in different fields such as sociology, economics, computer science, biology,
and mathematics [1–6]. In every society, information is disseminated among the population by the
relationships between individuals. Thus, an important part of research on social networks targets the
problem of diffusion and spread of products, information, and so forth in social networks. Two early
studies in this context deal with two most popular influence models called the Linear Threshold model
and the Independent Cascade model by Domingos and Richardson [7] and Kempe et al. [8]. It is
thought that diffusion of messages is usually more effective and convincing if messages are received
from a friend rather than from a social change agent (e.g., companies) [9]. The social change agents
work to support people and organizations with the aim of creating social impact. Universities are
instances of social change agents [10]. Therefore, most studies have been focused on a situation in
which players (social change agents) attempt to find the most influential nodes in order to maximize the
total number of infected nodes at the end of the diffusion process [5,7,8]. The influence maximization
problem has been studied from two perspectives. One perspective occurs in a non-competitive
situation where there is only one social change agent who wants to diffuse its own option in a social
network. It was first defined by Domingos and Richardson [7], who considered this problem in a
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probabilistic context and provided heuristics to find an influence maximization set. Their research
was followed up in several studies such as [1,3,8,11]. The other perspective is studying the influence
maximization problem in a competitive situation where there are two or more social change agents
who compete with each other in order to maximize the diffusion of their options in a network. Recently,
the competitive diffusion problem has been investigated for a cascade model in [12–14] and for a
threshold model in [8,15].

One of the most efficient tools to study the competitive diffusion problem is game theory,
which has lately been developed in some studies such as [16–22]. These studies deal with the diffusion
process as a strategic game where social change agents are players and compete to maximize the
diffusion of their options (for instance, their information or their goods) in the social network. They seek
to find the most influential initial nodes so as to maximize the total number of infected nodes. Most of
these research endeavors focus on social networks with homogeneous nodes. Also, these studies
assume that if a node receives influence from more than one player at a time, it is considered as a
gray node, which will not have any efficacy at the subsequent steps of the diffusion process and can
be deleted from the network. Moreover, most of the previous research has not paid attention to the
way in which data are diffused. These basic assumptions make the models developed in these studies
detached from reality. More recently, study [23] regarded the diffusion process as a game played in a
network by external agents. Kermani et al. [23] investigated the effect of individual characteristics and
message content on the diffusion process. In particular, they supposed that information diffusion takes
place within a communication framework such as a cell phone text messaging service. Furthermore,
ref. [23] supposed that nodes are heterogeneous and considered the effect of nodes’ identity and
message content. These considerations make this study more in line with reality compared to other
studies. However, it has to be borne in mind that Kermani et al. [23] supposed that individuals have
initial tendency (desire) toward the diffused options which does not change over time, while the
tendency of individuals in real-world networks may change due to the influence they receive from
their neighbors through time. Another assumption that makes this model out of touch with reality is
that the content of messages is constant and that players cannot choose their own message content.

The present study deals with the maximization diffusion problem as a strategic game, where the
effect of individuals’ characteristics (i.e., nodes in the network), message content and the topology of the
network are investigated. That is to say, individuals have an initial tendency toward diffused options
by different players. Nodes’ tendency can change due to the effects of their friends during the diffusion
process. Additionally, players can select the content of their own messages. While the previous studies
assumed that players only aim to find the most influential initial nodes, in the model developed here
players have the additional goal of finding the best message content. To this end, it is assumed that
social change agents attempt to maximize the total sum of the tendencies of individuals toward their
own diffused options rather than maximizing the total number of infected nodes. To explain the logic
behind this consideration, it is necessary to review the the active node concept as used in the literature.
A node is called active if it receives a message from one of the agents (players) in the diffusion process.
However, it is clear that some of the received messages do not have any effect on a node and cannot
convince the inactive node to choose that agent’s option. Therefore, it can be concluded that the total
number of infected nodes is not the most suitable criterion for optimizing the diffusion process. Hence,
in the current paper, a node is called active if there is a received message that can change its own
tendency, and players seek to maximize the sum of individuals’ tendencies toward their options,
i.e., the level of society’s desire to choose the options taken by the players is maximized. All of these
considerations bring the proposed model closer to reality compared to previous studies.

The remainder of the paper is organized as follows. Section 2 introduces the game and its
components. The competitive influence model is presented in Section 3. In Section 4, the proposed
model is implemented on a real data set and provides sensitivity analysis. Finally, Section 5 concludes
the paper and offers suggestions for future research.
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2. The Game

Without loss of generality, in the proposed model, it is assumed that there are two social
change agents (players). All of the results can be extended to the games that involve more than
two players. Players are out of the network and have two different options to be diffused in the
network. P = {p1, p2} denotes the set of players. The network is represented by means of a weighted
directed graph G(N, E) in which N = {1, 2, · · · , n} indicates the set of the nodes (i.e., individuals
in the network) and E is the set of the edges. This network is a messaging network (Short Message
System, Telegram, Instagaram, Whats App, ...) in the sense that arc (i, j) shows that node i can send
a message to node j and wi,j ∈ [0 1] determines the weight of edge (i, j), which represents the effect
of node i on node j, and if there is no edge between i and j, then wi,j = 0. For node i ∈ G, two sets
Ii = {j ∈ N|(j, i) ∈ E} and Oi = {j ∈ N|(i, j) ∈ E} are defined based on the graph. The nodes are
heterogeneous and have different scores, for instance, the initial tendency of node i toward the players’
options, is represented by vector αi = (αi1, αi2, · · · , αim), where m is the number of the players (agents)
and −1 ≤ αij ≤ 1 shows the tendency of node i toward the option diffused by the agent (player) j
which may be a result of information obtained from friends, advertisement, or other channels. It can
change over time because of the influence of messages received from neighbors during the diffusion
process. Further, the normalized social skill score of each node i is denoted by βi, which reflects the
sociability score of node i in the network which is evaluated by a social skill questionnaire [23]. Lastly,
for each node i, two thresholds 0 ≤ θi

l ≤ θi
h ≤ 1 are defined, 0 ≤ δ ≤ 1 is a fixed threshold for the

network, and t ∈ {1, 2, · · · } denotes a discrete time step. Agents (players) send messages with different
content to the network. The content of player pi’s message is denoted by textpi = {tpi1 , tpi2 , ..., tpim},
where −1 ≤ tpi1 ≤ 1 represents the tendency of message textpi toward player p1’s option. Also,
−1 ≤ tpi2 ≤ 1 is the tendency of message textpi toward player p2’s option. It is thought that textp1

should be {1,−1} and textp2 should be {−1, 1}. Hence, player pi should diffuse a message whose
content thoroughly proves the player’s own option and strongly disproves its rival’s option. However,
it will be shown in Section 4 that this is not always true and sometimes based on social conditions,
if players act more moderately, they will be more successful in diffusing their options. Contrary
to previous studies, in the proposed model, each player pi not only chooses a set of nodes I ⊆ N
(based on its budget) but also selects content textpi for its message at the first step. Thus, the strategy
set of player pi gives rise to:

Spi = {(I, textpi )|I ⊆ N, textpi = (tpi1 , tpi2),−1 ≤ tpi1 , tpi2 ≤ 1} (1)

Then, diffusion will continue on the basis of an influence model, and at the end of the diffusion
process, the total sum of social tendency toward the ith player is this player’s payoff, which is denoted
by fpi and gives rise to:

fpi (spi , s−pi ) =
n

∑
j=1

αjpi (t), t −→ ∞ (2)

Each player pi tries to select the best initial set and the best message content in order to maximize fpi .

3. The Influence Model

In this section, the influence maximization problem sets the rules of the game. Based on [24,25],
both node personality and message content affect the diffusion process. Therefore, social skill, initial
tendency, and message content are considered in this influence model. Diffusion occurs in discrete
steps. At the first step (t = 1), each social change agent (player) pi selects a set of nodes I ⊆ N
(based on its budget) and content textpi for its message to be sent to I. Two different states—active
and inactive—are allocated to the nodes at each step in order to explain the state of nodes. In this
influence model, a node is called active if its tendency has changed by receiving a message and it is
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inactive if it has not received any message or if the received messages cannot change its initial tendency.
At the first step, all of the nodes are inactive. Nodes face three different decision-making situations:
first, accepting the incoming message such that the node’s tendency changes; second, forwarding the
message; and third, selecting the target nodes to forward the message to. It should be noted that, at the
first step (t = 1), nodes receive a message from social change agents (players), but at subsequent steps
(t ≥ 2), they receive messages from their neighbors.

At step t = 1, all of the nodes are inactive and the diffusion process starts. Players select the
content of their messages and the initial subset nodes and then send their own messages to them. So,
at step t = 1, one of the following events occurs for each node i:

1. Node i does not receive any message from players and remains inactive.
2. Node i receives (only) a message from the kth social change agent. In this case, the effect of the

received message on node i depends on the sender’s social skill and the consistency of i’s tendency
toward the content of the received message. From a mathematical point of view, the magnitude

of this effect is calculated by
(
βi · (1−

‖textpk − αi(1)‖2

2
√

2
)
)
. If this value is lower than node i’s low

threshold θi
l , then it does not influence node i and cannot change its tendency. That is:

I f βi · (1−
‖textpk − αi(1)‖2

2
√

2
) < θi

l then αi(2) = αi(1), (3)

If this value is higher than node i’s low threshold θi
l , then it can change the tendency of node i;

that is:

I f βi · (1−
‖textpk − αi(1)‖2

2
√

2
) ≥ θi

l then αi(2) =
αi(1) + textpk

2
, (4)

In this case, node i is called active, and if this value is also higher than node i’s high threshold θi
h,

then node i decides to forward the received message. In order to model this step, variable xik(t)
needs to be defined as below:

xik(t) =


1, i f node i decides to send message textPk in step t

0, o.w
(5)

So, the following relationship is concluded:

i f βi · (1−
‖textpk − αi(1)‖2

2
√

2
) ≥ θi

h then xik(2) = 1 xik′(2) = 0, (6)

for (k′ ∈ P− k).
3. Node i receives both messages textp1 and textp2 from both players. In this case, node i faces a

decision-making situation in which it evaluates the influence of both messages and decides how
to act by drawing a comparison between these messages. Realistically, node i selects one of the
incoming messages based on the its social skill (node i’s social skill) and the consistency of its
tendency toward the content of the received messages. The mathematical representation of this
situation is as follows:

I f βi · (1−
‖textp1 − αi(1)‖2

2
√

2
) ≥ θi

l then zi1(2) = 1 else zi1(2) = 0, (7)

i f βi · (1−
‖textp2 − αi(1)‖2

2
√

2
) ≥ θi

l then zi2(2) = 1 else zi2(2) = 0, (8)

αi(2) =
αi(1) + zi1(2) · textp1 + zi2(2) · textp2

1 + zi1(2) + zi2(2)
(9)
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Also, node i decides to forward message texty to some of its neighbors if texty not only fits best
with the node’s interest but also the magnitude of its effect is greater than θi

h. That is:

I f βi · (1−
‖texty − αi(1)‖2

2
√

2
) ≥ θi

h then xiy(2) = 1, xiy′(2) = 0, (10)

i f βi · (1−
‖texty − αi(1)‖2

2
√

2
) < θi

h then xiy(2) = 0, xiy′(2) = 0, (11)

where y = arg maxk∈P

{
βi · (1−

‖textk − αi(1)‖2

2
√

2
)

}
and y

′
= P− {y}.

At the subsequent steps of the diffusion process, nodes will receive messages from their neighbors
who have been active and decided to send a message at the previous step. It is to be noted that if node i
accepts one of the incoming messages at step t and decides to forward it, it can only do this at step t+ 1,
but not at later steps. Let us suppose that at step t− 1, node i has accepted message textPk and decided
to forward it at step t. However, since the cost of forwarding a message is a consideration, node i
cannot forward the message to all of its neighbors. Hence, this node selects some of its neighbors as
destination nodes (which are inactive and are also better capable of forwarding the received message
compared to other nodes). The choice of destination node j by active node i is related to the consistency
of j’s tendency toward the content of the forwarded message, the influence of node i on j, and j’s social
skill. To model the selection of the destination node using mathematical relationships, it is necessary
to define variable yijk(t) as follows:

yijk(t) =


1, i f node i f orwards message textPk to node j at step t

0, o.w
(12)

in which t ∈ {1, 2, · · · }, (i, j) ∈ E and k ∈ P. Therefore, the node selection step is modeled as:

i f β j · wij · (1−
‖textpk − αj(t− 1)‖2

2
√

2
) ≥ δ then yijk(t) = 1 else yijk(t) = 0 (13)

The patterns of accepting or rejecting an incoming message at step (t ≥ 2) are different from
the first step. At subsequent steps of the diffusion process, for each inactive node i ∈ N, one of the
following situations occurs.

1. It does not receive any message and remains inactive.
2. It receives (only) one type of message from its neighbors; e.g., message textpk . In this case,

according to the magnitude of the impact of the received messages (that depends on the senders’
influence on i, social skill of i, and message content), node i decides how to act. That is:

I f ∑
j∈Ii :yjik(t)=1

wji · βi · (1−
‖textpk − αi(t− 1)‖2

2
√

2
) ≥ θi

l then αi(t) =
αi(t− 1) + textpk

2
, (14)

else, the tendency of node i does not change so that αi(t) = αi(t − 1). Also, the forwarding
decision step can be represented as below:

i f ∑
j∈Ii :yjik(t)=1

wji · βi · (1−
‖textpk − αi(t− 1)‖2

2
√

2
) ≥ θi

h then xik(t) = 1, (15)

where (k′ = Pk).
3. It receives both messages textp1 and textp2 from its active neighbors. It will encounter a

decision-making situation. The message that fits best with the node’s tendency and has been
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forwarded by neighbors which have a considerable influence on i will be accepted and changes
i’s tendency. That is:

I f ∑
j∈Ii :yji1(t)=1

wji · βi · (1−
‖textp1 − αi(t− 1)‖2

2
√

2
) ≥ θi

l then zi1(t) = 1 else zi1(t) = 0, (16)

i f ∑
j∈Ii :yji2(t)=1

wji · βi · (1−
‖textp2 − αi(t− 1)‖2

2
√

2
) ≥ θi

l then zi2(t) = 1 else zi2(t) = 0, (17)

αi(t) =
αi(t− 1) + zi1(t) · textp1 + zi2(t) · textp2

1 + zi1(t) + zi2(t)
, (18)

Moreover, the forwarding decision step is mathematically shown below:

I f ∑
j∈Ii :yjiq(t)=1

wji · βi · (1−
‖textq − αi(t− 1)‖2

2
√

2
) ≥ θi

h then xiq(t) = 1, xiq′(t) = 0 (19)

i f ∑
j∈Ii :yjiq(t)=1

wji · βi · (1−
‖textq − αi(t− 1)‖2

2
√

2
) < θi

h then xiq(t) = 0, xiq′(t) = 0, (20)

where q = arg maxk∈P

{
∑j∈Ii :yjik(t)=1 wji · βi · (1−

‖textk − αi(t− 1)‖2

2
√

2
)

}
and q′ = P− {y}.

4. Results

In this section, the performance of the proposed model is evaluated by implementing the game
on two different networks: first, a small dataset with 20 nodes which have been selected randomly and
then a real dataset with 163 nodes.

Suppose that there are two players that are out of the network and want to diffuse their own
options in a random network. All of the parameters αi(t), θi

l , θi
h and βi have been randomly selected

and αi(t) has been selected such that, ∑20
i=1 αi1(1) = −0.2975 and ∑20

i=1 αi2(1) = 0.2272, meaning
that on average individuals do not have much tendency toward any option diffused by the players.
The purpose of the players is to maximize the sum of social tendency toward their own options.
They select their initial nodes and message content and then forward the messages to the selected
nodes. Without loss of generality, suppose that each player selects only one node (numbers of initial
nodes is based on the players’ budget.). Thus, the strategy set of players is as follows:

S1 =

{
(i, {1, m12})

∣∣∣∣i ∈ N,−1 ≤ m1,2 ≤ 1
}

(21)

S2 =

{
(i, {m2,1, 1})

∣∣∣∣i ∈ N,−1 ≤ m2,1 ≤ 1
}

(22)

As was explained in the previous section, −1 ≤ mij ≤ 1 represents the tendency of player i’s
message content toward the option diffused by player j. Since mij is closer to −1, the content of player
i’s message strongly disproves player j’s diffused option. Without loss of generality, to simplify
the calculations, mij is considered to be discrete and belongs to {−1,−0.9,−0.8, ..., 0, ..., 0.9, 1}.
The proposed strategic game is implemented on the network, and the Nash equilibrium will be
calculated using the concept of best response functions. It is shown that parameters θi

h, θi
l , and δ

have a significant effect on the players’ payoff. Table 1 shows how the number of infected nodes and
players’ payoff varies when θi

h and θi
l vary between 0 and 1, and δ varies between 0.1 and 0.9. Based on

parameter definition, increasing the value of the parameters decreases the number of infected nodes
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and the players’ payoff. In Table 1, players ’payoff, best initial nodes and the number of infected nodes
are represented for different values of parameters.

Table 1. Nash equilibrium for a random network.

θi
h, θi

l δ P1’s Payoff P2’s Payoff
Best Best Best Best The Number The Number

Initial Initial Content Content of Inffected of Inffected
Node for P1 Node for P2 for P1 for P2 Nodes by P1 Nodes by P2

0 < θi
l < 0.3

0.1 8.4581 1.3689 19 2 {1, 0} {−1, 1} 17 1
8.8581 1.3689 19 2 {1, 0} {0, 1} 17 1

0.3 < θi
h < 1

0.3 5.0740 1.8705 19 12 {1, 0} {0, 1} 9 4
4.4740 1.8705 19 18 {1, 0} {0, 1} 8 5

0.5 0.9569 1.7562 2 20 {1, 0} {−1, 1} 5 4
0.7 0.9524 1.5324 2 20 {1, 0} {−0.5, 1} 1 4
0.9 0.7735 0.6785 12 15 {1,−0.4} {−0.6, 1} 1 2

θi
l = 0.5

0.1 8.4581 0.8689 4 2 {1,−0.6} {−0.9, 1} 17 1

θi
h = 0.5

0.3 3.8740 1.8705 19 13 {1,−0.1} {0, 1} 8 5
0.5 0.6271 0.3592 4 9 {1,−0.4} {0, 1} 3 4
0.7 There is not any Nash equilibrium.
0.9 0.0113 0.6363 19 2 {1, 0} {−1, 1} 1 1

For instance, if δ = 0.1, 0 < θi
l < 0.3 and 0.3 < θi

h < 1, the Nash equilibrium occurs when player
1 selects node 19 and message content {1, 0}. Specifically, the message content of player 1 is such
that it strongly promotes the advantage of its option and does not openly attack the credibility of the
competitor’s option. Player 2 selects node 2 and message content {−1, 1}. Also, player 1’s payoff is
8.4581, which is the sum of the tendencies of individuals toward player 1’s option at the end of the
diffusion process and was −0.2975 prior to the process. Player 2’s payoff is 1.3689, and the number of
nodes infected by player 1 and player 2 is 17 and 1, respectively. To show the efficiency of the model in
terms of performance validity and solution accuracy, the proposed novel game should be implemented
on a real dataset (Abrar data set [6]).

Abrar University is a single-sex university which is located in Tehran, Iran. This data set consists
of 163 students enrolled in the fields of computer engineering and industrial engineering in the
2010–2011 and 2011–2012 academic years. These students are regarded as social network nodes i and j.
Also, a directed link is formed from person i to person j if node i can send a message to node j in a short
message system. Sets Ii and Oi are defined on the basis of the Abrar data set. Further, for each node
i, the social skill score βi is determined based on a questionnaire developed in 1992 [26]. To explain
the numerical results, let us assume that two principal cell phone brands (say, Nokia and Samsung)
compete with each other to maximize the sales of their products in the network. The purpose of these
two agents is to maximize the total tendency of the network (Abrar data set) toward their products
and this will maximize the enthusiasm of the nodes to proceed and choose the products of the agents
at the time of purchase. The strategy of the players is viral marketing, which is based on a messaging
system. This system can be a short messaging system or any online social network such as Telegram,
Instagram, WhatsApp, and Facebook. P = {P1, P2} is the set of players. Without loss of generality,
let us suppose that each player pk selects one of the students as its initial node because of its budget
constraint and also selects content mk = {mk1, mk2} for its message to be sent to its chosen initial node
i. Thus, the strategy set of each player is as follows:

SP1 =

{
(i, {1, m12})

∣∣∣∣i ∈ N,−1 ≤ m1,2 ≤ 1
}

, SP2 =

{
(i, {m2,1, 1})

∣∣∣∣i ∈ N,−1 ≤ m2,1 ≤ 1
}

(23)

For each node i, initial tendency αi(1), thresholds θi
h, and θi

l are determined randomly such that
∑163

i=1 αi1 = 2.0747 and ∑163
i=1 αi2 = 15.4826. Moreover, without loss of generality, wi,j for all (i, j ∈ N) is

supposed to be 1 if there is a link from i to j; it is supposed to be 0 if there is no such link.
It is shown that parameters θi

h, θi
l , and δ have a significant effect on the players’ payoff.

The number of infected nodes and also the sum of tendencies of the individuals vary as a function of
θi

h, θi
l and δ. The Nash equilibrium will be determined for each game. Table 2 shows how the number

of infected nodes and players’ payoff vary when θi
h varies between 0.4 and 1, θi

l varies between 0 and 1,
and δ varies between 0.1 and 0.9. Based on parameter definition, increasing the value of the parameters
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decreases the number of infected nodes and the players’ payoff. Note that, in this game (similar to
the previous game) the message content is considered to be discrete and the Nash equilibrium can
be calculated using the concept of the best response function. In Table 2, the Nash equilibrium is
determined and it is shown that players’ payoff varies and the number of infected nodes decreases
with an increase in the value of the parameters.

Table 2. Nash equilibrium for different parameters for the Abrar data set.

θi
h, θi

l δ P1’s Payoff P2’s Payoff
Best Best Best Best The Number The Number

Initial Initial Content Content of Inffected of Inffected
Node for P1 Node for P2 for P1 for P2 Nodes by P1 Nodes by P2

θi
l = 0

0.1 23.3373 59.7413 81 23 {1, 0} {−0.6, 1} 87 76

θi
h = 0.4

0.3 26.6065 54.7455 81 17 {1, 0} {−0.6, 1} 93 65
0.5 There is not any Nash equilibrium.
0.7 3.5958 17.1273 27 113 {1,−0.5} {−0.2, 1} 12 17
0.9 2.7059 16.3655 125 37 {1,−0.5} {−0.2, 1} 1 2

2.7059 16.6155 125 37 {1, 0} {−0.2, 1} 1 2

0 < θi
l < 0.4

0.1 14.537 32.2413 93 39 {1,−0.5} {−0.6, 1} 77 86

0.4 < θi
h < 1

31.537 32.2413 93 25 {1,−0.5} {−0.2, 1} 76 87
0.3 21.0968 39.0414 89 23 {1,−1} {−0.2, 1} 60 93

21.0968 39.0414 89 28 {1,−1} {−0.2, 1} 60 93
0.5 23.3014 33.7797 22 3 {1, 0} {−0.2, 1} 68 59

23.8083 33.7797 22 49 {1, 0} {−0.2, 1} 68 59
0.7 3.2396 16.7611 35 93 {1,−0.5} {−0.2, 1} 12 13

3.8620 11.1159 84 46 {1,−0.5} {−0.2, 1} 12 11
3.2396 17.1159 84 93 {1,−0.5} {−0.2, 1} 10 13

0.9 3.1313 16.7649 54 144 {1,−0.5} {−0.6, 1} 2 2
3.5313 16.7649 54 144 {1,−0.5} {−0.2, 1} 2 2

θi
l = 0.5

0.1 2.7095 16.1442 1 115 {1, 0} {−0.2, 1} 1 1

θi
h = 1

2.7541 16.1442 1 160 {1,−1} {−0.6, 1} 1 1
0.3 2.5541 16.1442 1 160 {1, 0} {−1, 1} 1 1
0.5 2.5541 16.1442 1 160 {1, 0} {−1, 1} 1 1
0.7 2.5541 16.1442 1 160 {1, 0} {−1, 1} 1 1
0.9 2.5541 15.8623 10 160 {1, 0} {−1, 1} 1 1

θi
l = 1, θi

h = 1 The diffusion process does not happen.

As is shown in Table 2, some of the games have no Nash equilibrium, some have only one,
and some others have more than one. For instance, if δ = 0.7, θi

l = 0 and θi
h = 0.4, the Nash equilibrium

occurs when player 1 selects node 27 and message content {1,−0.5}. Specifically, the message content
of player 1 is such that it strongly promotes the advantage of its option and does not openly attack the
credibility of the competitor’s option, but rather mildly expresses the disadvantages of the competitor’s
option. Player 2 selects node 113 and message content {−0.2, 1}. Also, player 1’s payoff is 3.5958,
which is the total sum of the tendencies of individuals toward player 1’s option at the end of the
diffusion process and was 2.0747 prior to the process. Player 2’s payoff is 17.1273, and the number of
nodes infected by player 1 and player 2 is 12 and 17, respectively. By definition, the Nash equilibrium
occurs in strategy profiles where players have no motivation to perform differently from the Nash
equilibrium. In the present study, the players’ strategy is to find the best initial nodes and the best
message content. Below comes an analysis of a situation where at least one of the players deviates
from the Nash equilibrium, once for selecting the initial node and the other time for selecting message
content. For example, when δ = 0.7, 0 ≤ θi

l ≤ 0.4, and 0.4 ≤ θi
h ≤ 1, the performance of the

competitive influence model propounded here is compared with some of the well-known models
previously proposed in the literature (e.g., MGBD, MGEB, MGTB, MGSB, and MRND [23]), and the
numerical results are summarized in Tables 4 and 5. Table 3 shows the initial node determined by the
above-mentioned models.

Table 3. Suggested initial nodes based on different strategies.

MGDB MGTB MGSB MGEB MRND

Player 1 30 30 157 30 25
Player 2 85 85 32 32 88
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In Table 4, it is assumed that player 1 deviates from the Nash equilibrium and selects the initial
node based on the above-cited strategies. It follows that its payoff will decrease in comparison with
the Nash equilibriums obtained in Table 2. Therefore, it does not have any motivation for deviation.

Table 4. Nash equilibrium when player 1 performs based on some well-known strategies.

Initial Node for

P1’s Payoff P2’s Payoff

Best Best Best The Number The Number
P1 Based on initial Content Content of Inffected of Inffected
Well-Known Node for P1 for P2 Nodes by Nodes by

Strategies for P2 P1 P2

MGDB
30

1.8135 16.4623 46 {1,−1} {−0.2, 1} 0 2
MGTB 1.8135 16.4623 46 {1,−0.5} {−0.2, 1} 0 2
MGEB 1.8135 16.4623 46 {1, 0} {−0.2, 1} 0 2

MGSB 157
2.3033 16.2556 46 {1,−1} {−0.2, 1} 1 2
2.3033 16.5056 46 {1,−0.5} {−0.2, 1} 1 2
2.3033 16.7556 46 {1, 0} {−0.2, 1} 1 2

MRND 25
1.8164 16.1319 46 {1,−1} {−0.2, 1} 1 2
1.8164 16.1319 46 {1,−0.5} {−0.2, 1} 1 2
1.8164 16.1319 46 {1, 0} {−0.2, 1} 1 2

Similarly, in Table 5, it is assumed that player 2 deviates from the Nash equilibrium and performs
on the basis of the strategies cited in Table 3. In this case, the payoff of this palyer will decrease, and so
it will not be motivated to deviate.

Table 5. Nash equilibrium when player 2 performs based on some well-known strategies.

Initial Node for

P1’s Payoff P2’s Payoff

Best Best Best The Number The number
P2 Based on Initial Content Content of Inffected of Inffected
Well-Known Node for P1 for P2 Nodes by Nodes by

Strategies for P1 P1 P2

MGDB 85
4.0984 15.1517 35 {1,−0.5} {−1, 1} 14 1

MGTB 4.2984 15.1517 35 {1,−0.5} {−0.6, 1} 14 1
4.4684 15.1517 35 {1,−0.5} {−0.2, 1} 14 1

MGSB 32 4.1371 15.3215 35 {1,−0.5} {−0.2, 1} 14 8MGEB

MRND 88 3.7802 14.4450 46 {1,−0.5} {−0.2, 1} 14 2

The solutions obtained in Tables 4 and 5 follow the definition of the Nash equilibrium in the sense
that if one of the players deviates from the Nash equilibrium and chooses one of the aforementioned
well-known strategies when selecting initial nodes, its payoff will decrease, and so it is not motivated
to deviate. Kermani et al. [23] considered message content to be fixed in their influence model
(i.e., {1,−1} for player 1 and {−1, 1} for player 2). However, the present study supposed for the first
time that players select the content of their messages as well as selecting the initial nodes. As Table 2
shows, it is worth noting that in some instances the Nash equilibrium occurs in strategy profiles where
the content of the messages is not necessarily {1,−1} or {−1, 1}. In order to show the superiority of
the proposed model to the model developed by Kermani et al. [23], when δ = 0.5, δ = 0.7, 0 ≤ θi

l < 0.4
and 0.4 ≤ θi

h < 1, it is supposed that at least one of the players performs according to Kermani’s
model and selects fixed content for its own message ({1,−1} for player 1 and {−1, 1} for player 2).
Under this assumption, the Nash equilibrium is achieved for the proposed game in Table 6, and it is
concluded that if the content of the messages for at least one of the players becomes fixed based on [23],
that player’s payoff and also the number of infected nodes will decrease.

Based on the results in Tables 2 and 6, if δ = 0.5 and the message content of player 1 becomes
constant to {1,−1}, its payoff decreases from 23.3014 to 4.5542 and also the total number of infected
nodes will decreases from 127 to 115. Therefore, if players can select their message content in addition
to selecting an initial set of nodes, they can be successful at the diffusion process.
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Table 6. Nash equilibrium when at least one of the players selects fixed content.

δ P1’s Payoff P4’s Payoff

Best Best Best The Number The Number
Initial Initial Content of Inffected of Inffected
Node Node for Nodes by Nodes by
for P1 for P2 Comprtitor P1 P2

Player 1 0.5 4.5542 28.3361 22 48 {−0.2, 1} 31 82
selects 4.5542 29.3747 41 48 {−0.2, 1} 31 84
{1,−1} 0.7 2.8340 17.4060 54 46 {−0.2, 1} 2 11

Player 2 0.5
−1.9469 19.4809 135 84 {1,−1} 36 47

selects
−1.9469 19.1998 158 84 {1,−1} 36 47

{−1, 1}
−1.9469 19.1994 158 84 {1, 0} 36 47

0.7 3.7878 16.2260 84 66 {1, 0} 12 2
3.2051 16.2260 84 144 {1, 0} 12 4

In Tables 4–6, some useful comparisons have been made to show the efficiency of the proposed
model. According to the definitions, the Price Of Anarchy (POA) is a concept in economics and
game theory that measures how the efficiency of a system degrades due to selfish behavior of its
agents. It is a general notion that can be extended to diverse systems and notions of efficiency. So,
in the following, to better consider the efficiency of the outcomes, the price of anarchy for the solutions
will be calculated first, and then account will be taken of two settings in which players send their
message to the network separately as in a one-player game. To calculate the price of anarchy, we define
a measure of efficiency of each outcome that is called welfare function; Welf : S −→ R where S is
the set of strategy profiles and Welf(s) = ∑i∈N ui(s). Suppose that NE denotes the set of Nash
equilibrium of the game. The Price of Anarchy is then defined as:

POA =
maxs∈S Wel f (s)

mins∈NE Wel f (s)
(24)

The price of anarchy is shown in Table 7 for the proposed game in case θi
l = 0 and θi

h = 0.4;
δ varies between 0.1 and 0.9.

Table 7. Price Of Anarchy.

δ POA P1’s Payoff P2’s Payoff s1 s2

0.1 1.087 82.5373 7.7413 (1, {1, 0}) (1, {−1, 1})
0.3 1.022 67.7967 15.3790 (54, {1, 0}) (101, {−0.2, 1})
0.5 NON 29.1317 25.2867 (54, {1, 0}) (76, { −0.2, 1})
0.7 1.118 3.99 19.1732 (76, {1, 0}) (54, {−0.2, 01 })
0.9 1.059 3.4349 16.7610 (76, {1, 0}) (54, {−0.2, 01 })

Based on the results in Table 7, when delta = 0.1, Nash equilibrium is achieved in Table 2
such that the payoff of players 1 and 2 is 23.3373 and 59.7413 respectively and is achieved when
player 1 selects (81, {1, 0}) and player 2 selects (23, {−0.6, 1}). In this case, the sum of utilities is
23.3373 + 59.7413 = 83.0786, but if players prefer the collective utility to individual utility then they
act differently from Nash equilibrium; based on Table 7, player 1 selects (1, {1, 0}) and player 2
selects (1, {−1, 1}) and the sum of utilities increases to 1.087 + 82.5373 = 90.2787. The ratio of these
amounts of utilities shows the price of anarchy for the game. Note that when δ = 0.5, the Nash
equilibrium does not exist, but if players try to maximize the overall utility, they select (54, {1, 0})
and (76, {−0.2, 1}) and this utility will be 54.4183, thus in this case, the price of anarchy has not been
calculated. Based on the results in Table 7, the price of anarchy is larger than 1 (although this difference
is not very great), and does not relate to parameter δ, since δ increases; POA increases in some parts
and decreases in others.
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Now, suppose that players send their message separately to the network and they play in a
noncompetitive situation in the absence of rivals. Certainly, their payoff is expected to increase
compared to competitive conditions. This consideration is implemented on the proposed game and
the results are shown in Tables 8 and 9, respectively.

Table 8. Only player 1 forwarding its message to the network.

δ Payoff Best Initial Node Best Message Content The Number of Infected Nodes

0.1 82.5373 1, 2, 10 {1,−0.5} 163
0.3 64.9419 125 {1, 0} 144
0.5 24.2832 76 {1, 0} 84
0.7 4.6257 31 {1,−0.5} 14
0.9 3.0649 125 {1,−0.5} 1

Table 9. Only player 2 forwarding its message to the network.

δ Its Payoff Best Initial Node Best Message Content The Number of Infected Nodes

0.1 89.2413 92, 1, 17 {−0.6, 1} 163
0.3 72.7808 75 {−0.2, 1} 145
0.5 36.1180 75 {−0.2, 1} 85
0.7 18.0687 107 {−0.2, 1} 15
0.9 16.4780 37 {−0.2, 1} 2

As is obvious in Tables 8 and 9, if players send their message to the network in the absence of
competitors, they can diffuse their option better than in a competitive situation. For instance, if δ = 0.1
then player 1’s payoff is 23.3373 and player 2’s payoff is 59.7413 in the competitive game (Table 2).
However, based on Tables 8 and 9, when they play the game separately, their payoff is 82.5373 and
89.2413, respectively. These results are exactly what we expect to achieve. This is another increase that
shows the efficiency and good performance of the proposed model.

5. Conclusions

In this paper, we developed a novel game theory model to study the influence maximization
problem in a messaging network. The proposed model is superior to the ones previously reported
owing to the assumptions made in the present study for the network and also because of the
realistic nature of the diffusion method employed. More particularly, unlike in the previous studies,
we assumed that individuals in the network are heterogeneous (i.e., that they have personal tendencies
that can change over time) and have different degrees of influence on their neighbors. The proposed
model also takes account of information content. The players attempt to find the best initial set of
nodes and the best content in order to maximize the total sum of network tendencies toward their
options, whereas in the previous studies the sole purpose of the players was to maximize the total
number of infected nodes. A possible avenue of research in the future is to model this influence
maximization problem as a multi-objective linear optimization problem and solve it through exact
methods. Another interesting possibility would be to explore networks other than messaging networks,
finding mixed-strategy Nash equilibrium instead of the pure-strategy Nash equilibrium.
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