
games

Article

Computation of Sparse and Dense Equilibrium
Strategies of Evolutionary Games

Yiping Hao † and Zhijun Wu *,†

Department of Mathematics, Iowa State University, Ames, IA 50011, USA; hao.yiping@gmail.com
* Correspondence: zhijun@iastate.edu; Tel.: +1-515-294-8165
† These authors contributed equally to this work.

Received: 8 May 2018; Accepted: 4 July 2018; Published: 7 July 2018
����������
�������

Abstract: The evolution of social or biological species can be modeled as an evolutionary game
with the equilibrium strategies of the game as prediction for the ultimate distributions of species
in population, when some species may survive with positive proportions, while others become
extinct. We say a strategy is dense if it contains a large and diverse number of positive species, and is
sparse if it has only a few dominant ones. Sparse equilibrium strategies can be found relatively
easily, while dense ones are more computationally costly. Here we show that by formulating a
“complementary” problem for the computation of equilibrium strategies, we are able to reduce the
cost for computing dense equilibrium strategies much more efficiently. We describe the primary and
complementary algorithms for computing dense as well as sparse equilibrium strategies, and present
test results on randomly generated games as well as a more biologically related one. In particular,
we demonstrate that the complementary algorithm is about an order of magnitude faster than the
primary algorithm to obtain the dense equilibrium strategies for all our test cases.

Keywords: evolutionary games; Nash equilibrium; Shapley-Snow algorithm; dense vs. sparse
strategies; biodiversity

1. Introduction

Biological species (viruses, bacteria, insects, plants, or animals) develop, compete, reproduce,
and evolve. Different species have different evolutionary strategies, some fail to survive while others
are selected [1]. The evolution of biological species can be modeled mathematically as an evolutionary
game, with the equilibrium strategies of the game as prediction for the ultimate distributions of
species in population, when some species may survive with positive proportion, while others become
extinct [2,3]. We say a strategy is dense if it contains a large and diverse number of positive species,
and is sparse if it has only a few dominant ones.

Assume that populations may have mixed strategies, or in other words, assume that they are a
polymorphic mixture of pure strategists. Let x = (x1, . . . , xn)T be the strategy vector of a subpopulation,
with xi being the frequency or chance of the subpopulation to be species i, ∑i xi = 1. Let y =

(y1, . . . , yn)T be the composition profile of the population, with yj being the fraction of species j,
∑j yj = 1. The average payoff for a subpopulation of strategy x in population of composition y would
be ∑i,j xi Ai,jyj = xT Ay, where Ai,j is the payoff of the subpopulation of species i in population of
species j, and A = {Ai,j} is called the payoff matrix [4–6].

For an evolutionary game, a composition x∗ is defined to be an equilibrium of the game, when
the payoff of any subpopulation with the same strategy x∗ is maximized:

x∗T Ax∗ ≥ xT Ax∗, x ∈ S (1)

Games 2018, 9, 46; doi:10.3390/g9030046 www.mdpi.com/journal/games

http://www.mdpi.com/journal/games
http://www.mdpi.com
http://dx.doi.org/10.3390/g9030046
http://www.mdpi.com/journal/games
http://www.mdpi.com/2073-4336/9/3/46?type=check_update&version=2

Games 2018, 9, 46 2 of 15

where S = {x ∈ Rn : ∑i xi = 1, xi ≥ 0, i = 1, . . . , n} is the set of all possible strategies [4–6].
John Nash (1950, 1951) [7,8] showed that for an n-person non-cooperative game, there always

exists an equilibrium strategy, now called Nash equilibrium bearing his name. However, computing
an equilibrium strategy is hard in general. In fact, many types of games are proved to be NP-hard in
terms of their computational complexities [9–12]. An evolutionary game is also NP-hard. For example,
the evolutionary game on a graph, with the adjacency matrix of the graph as the payoff matrix,
is equivalent to a maximum clique problem, which is NP-complete [13–15].

Many algorithms have been developed for computing equilibrium strategies of games, most
notable, the Shapley-Snow algorithm [16], the Lemke-Howson algorithm [17], and the quadratic
programming algorithm by Mangasarian and Stone [18]. The Shapley-Snow algorithm searches
strategies with all possible numbers of nonzero components and reports all equilibrium ones.
The Lemke-Howson algorithm follows a procedure similar to the simplex algorithm for linear
programming along a special path of strategies that hopefully leads to an equilibrium strategy.
The quadratic programming algorithm tries to find a strategy that satisfies a set of complementarity
conditions necessary and sufficient for equilibrium strategies by solving a specially constructed
quadratic program. The Lemke-Howson algorithm and the quadratic programming algorithm
are efficient if they succeed, but they can only find one equilibrium strategy, which cannot be
prescribed. The Shapley-Snow algorithm is more expensive, but can in principle find all possible
equilibrium strategies.

We are interested in computing the equilibrium strategies of a given evolutionary game and
in particular, the strategies with a sparse or dense set of nonzero components. The Shapley-Snow
algorithm is thus a natural choice of the algorithm, for it can be modified straightforwardly to find the
sparsest or densest equilibrium strategy, as we will describe in greater detail in the rest of the paper,
while the Lemke-Howson algorithm and the quadratic programming algorithm cannot be modified
easily to serve our purpose.

The problem of computing sparse or dense equilibrium strategies is challenging yet interesting
both computationally and practically. Similar problems have been investigated in other closely related
fields such as in regularization of least squares regression [19,20] and in signal reconstruction in
compressive sensing [21–24]. In both cases, a sparse solution is sought for the problem by minimizing
the l1-norm of the solution. These studies have many applications in science and engineering, and have
made great impacts in broad areas of scientific computing.

Computing sparse or dense equilibrium strategies is of great computational challenge, because
the computation of such a strategy can be computationally very expensive when the problem size
is large: Since the equilibrium strategies do not form a continuous set of strategies, there is no
regularization schemes such as the l1-norm minimization for least-squares regression and compressive
sensing that can be used to obtain a sparse or dense equilibrium strategy. A general algorithm such
as the Shapley-Snow algorithm has to be adopted with certain modifications. Yet, in the worst case,
the computation time may still grow exponentially with increasing problem size.

Computing sparse or dense equilibrium strategies is of great interest in biological and social
applications. For example, in ecological modeling, to preserve biodiversity, it is important to predict a
population state with only a few species left or with most species kept in population [1,25]. In economic
analysis, to optimize investment portfolio, it is crucial to know more risky investment plans when
the funds are concentrated to only a few stocks or more balanced plans when the funds are more
diversified. The portfolio optimization problem can be formulated as an evolutionary game with the
sparsest equilibrium strategy corresponding to the most risky investment plan, and the densest one to
the most balanced plan [26,27].

In this paper, we show that the equilibrium strategies of an evolutionary game, including
sparse and dense ones, can be computed by implementing a standard Shapley-Snow algorithm.
We then show that by using a modified Shapley-Snow algorithm, sparse equilibrium strategies for an
evolutionary game can be computed relatively easily, while dense ones are much more computationally

Games 2018, 9, 46 3 of 15

costly. However, we show that by formulating a “complementary” problem for the computation of
equilibrium strategies, we can reduce the cost for computing dense equilibrium strategies and obtain
them much more efficiently. We describe the primary and complementary algorithms and present test
results on randomly generated games as well as a game related to allele selection in genetic studies.
In particular, we demonstrate that the complementary algorithm is about an order of magnitude faster
than the primary algorithm to obtain the dense equilibrium strategies for all our test cases.

Note that in biology, the diversity of a given population can be measured by the richness of
species types and the evenness of species distribution. The richness of species in population x can be
represented by the number of nonzero elements of x. The evenness of species can be measured with
different standards [25]. In this paper, we will only check the standard deviation of nonzero elements
of x for the evenness of species, for the focus of this study is on computation not biological analysis.

Richness of species : ‖x‖0 = |{xi > 0 : i = 1, . . . , n}| (2)

Evenness of species : σ2 = ∑{(xi − µ)2 : xi > 0}/‖x‖0 (3)

where µ = ∑{xi : xi > 0}/‖x‖0.

2. Shapley-Snow Algorithms

It is well known that a necessary and sufficient set of conditions for a strategy x∗ ∈ S to be a Nash
equilibrium of (1) is that there is a parameter λ∗ such that:

λ∗e− Ax∗ ≥ 0, x∗ ≥ 0, (4)

x∗T(λ∗e− Ax∗) = 0,

which is equilvalent to

λ∗ = Ai·x∗, i f x∗i > 0, (5)

λ∗ ≥ Ai·x∗, i f x∗i = 0,

where e is a vector of size n of all 1’s, and Ai· is the ith row of matrix A [5].
Let p = {i : x∗i > 0}. Then, based on the conditions in (5), λ∗ = Ai·x∗ for all i ∈ p. The latter

can be written in a more compact form as λ∗ep = Appx∗p, where ep is a vector of size |p| of all 1’s,
x∗p = {x∗i : i ∈ p}, and App = {Ai,j : i, j ∈ p}. It follows that if App is nonsingular, then

λ∗ = 1/eT
p A−1

pp ep, x∗p = A−1
pp ep/eT

p A−1
pp ep. (6)

In addition, if q = {i : x∗i = 0}, then, λ∗ ≥ Ai·x∗ for all i ∈ q, which can be simplified to

λ∗eq ≥ Aqpx∗p, (7)

where Aqp = {Ai,j : i ∈ q, j ∈ p} [5].
However, in order to find an equilibrium strategy x∗, we do not have the prior knowledge on p,

the set of indices of positive components of x∗. Therefore, a simple way to do it is to enumerate all
possible sets of indices p, to see if any gives rise to an equilibrium strategy. This is exactly the idea of
the Shapley-Snow algorithm proposed by L. Shapley and R. Snow in early 1950s [16]. Let Pk be the set
of all subsets of {1, 2, . . . , n} of size k. Then, a Shapley-Snow algorithm can be described formally as
Algorithm 1.

Games 2018, 9, 46 4 of 15

Algorithm 1: A Complete Shapley-Snow Algorithm
For k = 1, . . . , n do

For each p ∈ Pk do
If App is nonsingular and eT

p A−1
pp ep 6= 0 then

λ∗ = 1/eT
p A−1

pp ep, x∗p = A−1
pp ep/eT

p A−1
pp ep

End
If x∗p > 0 and λ∗eq ≥ Aqpx∗p then

x∗ is a Nash equilibrium, record x∗.
End

End
End

Note that the inverse of App in the algorithm can actually be replaced by the adjoint matrix of
App in case App is singular [16]. However, to simplify the representation and analysis, we just assume
that App is nonsingular and use A−1

pp in our description and analysis throughout the paper.

3. Dense vs. Sparse Equilibria

The Shapley-Snow algorithm described in the previous section computes the equilibrium
strategies of all possible sizes of p for a given evolutionary game. We therefore call it a Complete
Shapley-Snow Algorithm. In this algorithm, the equilibrium strategies are computed in the order of
increasing sizes of p, i.e., first, strategies with the smallest number of positive components, and then
larger ones, and the largest in the end. Therefore, the algorithm can be modified easily to find only a
sparse or dense equilibrium, say a strategy with the smallest or largest number of positive components.
The following Algorithms 2 and 3 are the algorithms that can be implemented for such purposes.

Algorithm 2: A Sparse Shapley-Snow Algorithm
For k = 1, . . . , n do

For each p ∈ Pk do
If A−1

pp is nonsingular and eT
p A−1

pp ep 6= 0 then
λ∗ = 1/eT

p A−1
pp ep, x∗p = A−1

pp ep/eT
p A−1

pp ep

End
If x∗p > 0 and λ∗eq ≥ Aqpx∗p then

x∗ is a Nash equilibrium, record x∗, exit.
End

End
End

Algorithm 3: A Dense Shapley-Snow Algorithm
For k = n, . . . , 1 do

For each p ∈ Pk do
If A−1

pp is nonsingular and eT
p A−1

pp ep 6= 0 then
λ∗ = 1/eT

p A−1
pp ep, x∗p = A−1

pp ep/eT
p A−1

pp ep

End
If x∗p > 0 and λ∗eq ≥ Aqpx∗p then

x∗ is a Nash equilibrium, record x∗, exit.
End

End
End

Games 2018, 9, 46 5 of 15

In Algorithm 2, the Sparse Shapley-Snow Algorithm, the strategies with small numbers of
positive components are examined first. The algorithm exits once an equilibrium strategy with
the smallest number of positive components is found. In Algorithm 3, the Dense Shapley-Snow
Algorithm, the strategies with large numbers of positive components are examined first. It exits after
an equilibrium strategy with the largest number of positive components is found. The former only
solves some small linear systems of equations and does not require much computation, while the latter
needs to solve relatively large linear systems and is more computationally expensive.

We have implemented the complete, sparse, and dense versions of the Shapley-Snow algorithm
in Matlab on a 1.3 GHz MacBook Air, and tested them on a randomly generated set of evolutionary
games. A total of 10 games are generated, each having 20 strategies and defined by a 20 by 20 randomly
generated payoff matrix, i.e., all the entries of the matrix are set to a random number in between 0
and 1. The reason to test a set of randomly generated games is to avoid possible biases from specially
structured games, and instead to have a relatively broad range of test cases in terms of numbers,
sparsities, and densities of their equilibrium strategies.

From Table 1, we see that by using Algorithm 1, the Complete Shapley-Snow Algorithm, all
equilibrium strategies are found for each of the games. The total number of equilibrium strategies
for each game ranges from 9 to 65. However, the time spent to find all the strategies for each game is
relatively long, and is about the same for all the games, in between 700 and 800 s. This is because the
algorithm needs to exhaust all possible trial strategies, from those with 1 positive component, to those
with 2, 3, ..., n. No matter how many equilibrium strategies are there for each game, the amount of
work required to find them all is about the same.

Table 1. Performance of Complete Shapley-Snow Algorithm.

Game 1 2 3 4 5 6 7 8 9 10

Equilibria 9 27 11 17 59 55 35 11 29 65
Time 723 838 723 737 737 818 726 714 770 769

Table legend: Game—Tested 10 games; # Equilibria—The number of equilibrium strategies found for each
game; Time—Time in seconds spent on each game.

Table 2 shows the results for computing the sparsest equilibrium strategies for the tested games.
Since the Sparse Shapley-Snow Algorithm exits immediately once it finds the equilibrium strategy of
the smallest number of positive components, the algorithm does not require much computation time.
Therefore, the sparser the first equilibrium strategy, the shorter the required computation time. Indeed,
all the cases where there is only 1 positive component in the sparsest equilibrium take only 0.02 s to
finish; The time is increased for the case where there are 2 positive components; and most cases where
there are 3 positive components require about 0.44 s except for 1 case which takes 1.83 s. In general,
the amount of computation required to find the sparsest equilibrium strategy is small because the
algorithm only solves a set of small linear systems of equations before it finds the first and also the
sparsest equilibrium strategy.

Table 2. Performance of Sparse Shapley-Snow Algorithm.

Game 1 2 3 4 5 6 7 8 9 10

‖ · ‖0 3 1 3 3 2 1 1 1 3 1
µ 0.33 1 0.33 0.33 0.5 1 1 1 0.33 1
σ 0.42 0 0.14 0.41 0.41 0 0 0 0.20 0

Time 1.83 0.02 0.43 0.41 0.06 0.02 0.02 0.02 0.44 0.02

Table legend: Game—Tested 10 games; ‖ · ‖0—The number of positive components in the sparsest equilibrium;
µ—The average value of positive components; σ—The standard deviation of the positive components;
Time—Time in seconds spent to obtain the sparest equilibria.

Games 2018, 9, 46 6 of 15

Table 3 is the opposite of Table 2. It shows the results for computing the densest equilibrium
strategies of the tested games. Since the Dense Shapley-Snow Algorithm starts with the strategies with
the largest number of positive components, it is much more time consuming because it requires the
solution of many relatively large linear systems before it finds the first and densest equilibrium strategy.
Therefore, the denser the first equilibrium strategy, the less time consuming to find it. As shown in
Table 3, the densest equilibrium strategy found for Game 6 has 14 positive components, and requires
107.01 s, while the densest equilibrium strategy found for Game 1 has 6 positive components and
requires 773.53 s. In general, computing the densest equilibrium strategy seems much more expensive
than computing the sparsest one. Note also that in Tables 2 and 3, we have listed the average values and
standard deviations of the positive components of the strategies. It seems that the standard deviations
are in the same order of the corresponding average values. Therefore, the positive components seem
unevenly distributed. However, since the games are only randomly generated and our focus is on the
performance of the algorithms, we will not further discuss the richness and evenness of these strategies.
Figure 1 shows a more direct comparison in computation time for computing all the equilibrium
strategies, or only the sparsest, or only the densest for all the test cases.

Table 3. Performance of Dense Shapley-Snow Algorithm.

Game 1 2 3 4 5 6 7 8 9 10

‖ · ‖0 6 11 9 10 13 14 9 7 10 13
µ 0.17 0.09 0.11 0.1 0.08 0.07 0.11 0.14 0.1 0.08
σ 0.16 0.05 0.09 0.09 0.06 0.06 0.07 0.14 0.08 0.06

Time 774 482 684 596 203 107 675 744 580 204

Table legend: Game—Tested 10 games; ‖ · ‖0—The number of positive components in the densest equilibrium;
µ—The average value of positive components; σ—The standard deviation of the positive components;
Time—Time in seconds spent to obtain the densest equilibria.

1 2 3 4 5 6 7 8 9 10

Games

0

100

200

300

400

500

600

700

800

900

T
im

e
[S

ec
]

Primary Shapley-Snow Computing Time

Star -- All strategies

Diamond -- The densest

Square -- The sparsest

Figure 1. Performance Results: The computing times for obtaining all the equilibrium strategies,
the densest, and the sparsest for 10 randomly generated games using the complete, sparse, and dense
Shapley-Snow algorithms, respectively.

Games 2018, 9, 46 7 of 15

4. Complementary Formulation of Evolutionary Games

Consider the necessary and sufficient conditions in (4).

λ∗e− Ax∗ ≥ 0, x∗ ≥ 0, (8)

x∗T(λ∗e− Ax∗) = 0,

which can be called a primary set of conditions. Let y∗ = λ∗e− Ax∗. Assume that A is nonsingular.
Then, x∗ = λ∗A−1e − A−1y∗. Let B = A−1. We can then obtain a so-called complementary set
of conditions:

λ∗Be− By∗ ≥ 0, y∗ ≥ 0, (9)

y∗T(λ∗Be− By∗) = 0.

Since x∗y∗ = 0, x∗ ≥ 0, y∗ ≥ 0, we call x∗ a primary equilibrium strategy and y∗ a complementary.
Note that the conditions in (9) are equivalent to

λ∗Bi·e = Bi·y∗, i f x∗i = 0 & y∗i > 0, (10)

λ∗Bi·e = Bi·y∗, i f x∗i = 0 & y∗i = 0,

λ∗Bi·e > Bi·y∗, i f x∗i > 0 & y∗i = 0,

where Bi· is the ith row of matrix B.
Let s = {1, . . . , n} and p = {i : x∗i > 0 & y∗i = 0} and q = s\p. Then, based on the conditions

in (10), λ∗Bi·e = Bi·y∗ for all i ∈ q. The latter can be written in a more compact form as λ∗Bq·e = Bqqy∗q ,
where y∗q = {y∗i : i ∈ q}, and Bqq = {Bi,j : i, j ∈ q}. Since x∗ = λ∗Be− By∗, 1 = λ∗eT Be− eT By∗ =
λ∗eT Be− eT B·qy∗q . It follows that λ∗ and y∗q must satisfy the following equations.

1 = λ∗eT Be− eT B·qy∗q , (eT BeBqq − Bq·eeT B·q)y∗q = Bq·e. (11)

In addition, λ∗Bi· > Bi·y∗ for all i ∈ p, which can be simplified to

λ∗Bp·e > Bpqy∗q , (12)

where Bpq = {Bi,j : i ∈ p, j ∈ q}.
Since x∗ = λ∗Be− By∗, we can derive x∗ from y∗ if we can find y∗ using the conditions in (11)

and (12). However, in order to find y∗, we do not have the prior knowledge on q. Therefore, we need
to enumerate all possible set of indices q, to see if any gives rise to a complementary equilibrium
strategy y∗. Once y∗ is found, we can recover x∗ immediately. We call this procedure a Complementary
Shapley-Snow Algorithm. Let Qk be the set of all subsets of {1, 2, . . . , n} of size k. Assume that
eT Be 6= 0. Then, the algorithm can be described formally as Algorithm 4.

Note that when a complementary equilibrium strategy y∗ is found, y∗q ≥ 0, x∗q = 0, and x∗p > 0.
It follows that y∗p = 0, and x∗ is a corresponding primary equilibrium strategy of |p| positive
components. Thus, as all the possible sizes of q are enumerated in Algorithm 4, the Complete
Complementary Shapley-Snow Algorithm, all the possible complementary equilibrium strategies y∗

can be found with y∗q ≥ 0 and y∗p = 0, and hence are all the possible primary equilibrium strategies x∗

with x∗p > 0 and x∗q = 0.

Games 2018, 9, 46 8 of 15

Algorithm 4: A Complete Complementary Shapley-Snow Algorithm
For k = 1, . . . , n do

For each q ∈ Qk do
If (eT BeBqq − Bq·eeT B·q) is nonsingular then

y∗q = (eT BeBqq − Bq·eeT B·q)−1Bq·e,
λ∗ = (1 + eT B·qy∗q)/eT Be.

End
If y∗q ≥ 0 and λ∗Bp·e > Bpqy∗q then

y∗ is a complementary equilibrium strategy.
End

End
End

5. Computing Dense Equilibria in Complementary Forms

Similar to the primary Shapley-Snow algorithm, the complete version of the complementary
algorithm can be modified to compute the sparse as well as dense complementary equilibrium
strategies of a given game. Assume that A is nonsingular. Let B = A−1. In addition, assume that
eT Be 6= 0. We then have the Algorithms 5 and 6:

Algorithm 5: A Sparse Complementary Shapley-Snow Algorithm
For k = 1, . . . , n do

For each q ∈ Qk do
If (eT BeBqq − Bq·eeT B·q) is nonsingular then

y∗q = (eT BeBqq − Bq·eeT B·q)−1Bq·e,
λ∗ = (1 + eT B·qy∗q)/eT Be.

End
If y∗q ≥ 0 and λ∗Bp·e > Bpqy∗q then

y∗ is a complementary equilibrium strategy, exit.
End

End
End

Algorithm 6: A Dense Complementary Shapley-Snow Algorithm
For k = n, . . . , 1 do

For each q ∈ Qk do
If (eT BeBqq − Bq·eeT B·q) is nonsingular then

y∗q = (eT BeBqq − Bq·eeT B·q)−1Bq·e,
λ∗ = (1 + eT B·qy∗q)/eT Be.

End
If y∗q ≥ 0 and λ∗Bp·e > Bpqy∗q then

y∗ is a complementary equilibrium strategy, exit.
End

End
End

Let x∗ and y∗ be a pair of primary and complementary equilibrium strategies. Since x∗ and y∗ are
complementary to each other, if x∗ is the sparsest primary equilibrium strategy, y∗ must be the densest
among all complementary equilibrium strategies. Similarly, if x∗ is the densest, y∗ must be the sparsest.
As we have discussed in previous sections, dense equilibrium strategies can be computationally

Games 2018, 9, 46 9 of 15

more costly than the sparse ones. Therefore, they may be computed more efficiently through their
complementary strategies, which are sparse. In particular, the densest primary equilibrium strategy x∗

may be computed through the corresponding complementary strategy y∗. The latter is the sparsest
among all complementary equilibrium strategies and can be found efficiently using Algorithm 5,
the Sparse Complementary Shapley-Snow Algorithm. Indeed, as we can see in Table 4, the time for
computing the densest equilibrium strategy x∗ using Algorithm 3, the primary dense Shapley-Snow
algorithm is much longer than that for computing the corresponding complementary strategy y∗ using
Algorithm 5, the sparse complementary Shapley-Snow algorithm. More specifically, the computation
time is reduced by 7 to 15 times in 10 tested games. Note that the 10 tested games are the same
randomly generated ones as shown in Tables 1–3. Figure 2 displays a more direct comparison between
the primary and complementary algorithms for computing the densest equilibrium strategies of
these games.

Table 4. Sparse Complementary vs. Primary Dense Shapley-Snow.

Game 1 2 3 4 5 6 7 8 9 10

‖ · ‖0 6 11 9 10 13 14 9 7 10 13
PrimDense 774 482 684 596 203 107 675 744 580 204

SparseCompl 114 48 86 67 15 7 86 108 68 15

Table legend: Game—Tested 10 games; ‖ · ‖0—The number of positive components in the densest
equilibrium; PrimDense—Time in seconds using Algorithm 3, the primary dense Shapley-Snow algorithm;
SparseCompl—Time in seconds using Algorithm 5, the sparse complementary Shapley-Snow algorithm.

1 2 3 4 5 6 7 8 9 10
Games

0

100

200

300

400

500

600

700

800

Ti
m

e
[S

ec
]

Complementray vs. Primary Shapley-Snow for Computing Dense Equilibriaum Strategies

Diamond -- Using primary algorithm

Square -- Using complementary algorithm

Figure 2. Performance Results: The computing times for obtaining the densest equilibrium strategies
for 10 randomly generated games using the complementary vs. primary Shapley-Snow algorithms.

In order to obtain more statistical assessments, we have also tested the primary and
complementary Shapley-Snow algorithms, i.e., Algorithm 3 and Algorithm 5, for computing the
densest equilibrium strategies for an additional 100 randomly generated games, each again with
20 strategies. The results further confirm that the complementary algorithm outperforms the primary
algorithm for all the test cases. More specifically, the average time required by the primary algorithm is
519.98 s, while the time by the complementary algorithm is only 53.88 s, about an order of magnitude
faster. Figure 3 shows more detailed comparisons between the two algorithms. Note that the time
required by both algorithms varies for different games, depending on the density of the densest
equilibrium strategy of the game, but the relative difference in time between the two algorithms

Games 2018, 9, 46 10 of 15

remains about the same: In Figure 3, the x-axis corresponds to the time used by the primary algorithm,
while the y-axis to that by the complementary algorithm. Each circle in the graph corresponds to the
times required by the primary and complementary algorithms for one of the tested games. The density
of the densest strategies found ranges from 4 to 16 and is color coded on the circles: The density, i.e.,
the richness or more specifically, the number of nonzero components of the strategy, denoted as ‖x∗‖0,
increases in the order of 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, as the color of the circle changes in
the order of dark blue, blue, light blue, brown, light brown, red, light red, pink, light pink, purple,
light purple, orange, light orange, respectively. Note that all the circles are above the line y = 0.0530x
and below y = 0.1381x, showing that the computation time by the complementary algorithm can be
as small as 5.3 percent of the time by the primary algorithm, and at most 13.81 percent. In average,
the former is about 9.61 percent of the latter, as indicated by the median line y = 0.096x. Note also
that in general, for both algorithms, the lower the density of the densest equilibrium strategy found,
the longer the computation time. For the primary algorithm, this is because more relatively large
systems need to be solved if the density of the densest strategy is lower. For the complementary
algorithm, it means that the density of the corresponding complementary strategy is higher, which
also requires the solution of more systems, although beginning with relatively small ones.

0 100 200 300 400 500 600 700 800 900

Primary Time [Sec]

0

20

40

60

80

100

120

C
om

pl
em

en
ta

ry
 T

im
e

[S
ec

]

||x*||0 :
4 6 8 10 12 14 16

y = 0.1381x

y = 0.0530x

y = 0.0961x

Figure 3. Performance Results: Shown in the figure are the computing times for obtaining the densest
equilibrium strategies for 100 randomly generated games using the complementary vs. primary
Shapley-Snow algorithms (i.e., Algorithm 5 vs. Algorithm 3). The x-axis corresponds to the time used
by the primary algorithm, while the y-axis to that by the complementary algorithm. Each circle in the
graph corresponds to the times required by the primary and complementary algorithms for one of the
tested games. The density of the densest strategies found ranges from 4 to 16 and is color coded on
the circles: The density, i.e., the richness or more specifically, the number of nonzero components of
the strategy, denoted as ‖x∗‖0, increases in the order of 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, as the
color of the circle changes in the order of dark blue, blue, light blue, brown, light brown, red, light
red, pink, light pink, purple, light purple, orange, light orange, respectively. Note also that all the
circles are above the line y = 0.0530x and below y = 0.1381x, showing that the computation time by
the complementary algorithm can be as small as 5.3 percent of the time by the primary algorithm,
and at most 13.81 percent. On average, the former is about 9.61 percent of the latter, as indicated by the
median line y = 0.096x.

Games 2018, 9, 46 11 of 15

Finally, as a special case, we have also tested a game related to allele selection in genetic
studies [5,28–32]. Assume that there are n alleles at a given genetic locus. Let x ∈ S be a selection
strategy for the alleles, with xi being the allele frequency for allele i. Let G = (V, E) be a graph
representing allele matching, where V = {1, 2, . . . , n} is a set of nodes corresponding to the alleles,
and E is a set of links between the nodes. If allele i and j can make a successful genotype, then there
is a link between node i and j. Then, an evolutionary game can be defined for allele selection with
the adjacency matrix A for graph G as the payoff matrix, where Ai,i = 1/2 for all i, Ai,j = 1 for all
(i, j) ∈ E and i 6= j, and Ai,j = 0 for (i, j) 6∈ E and i 6= j.

We have considered an allele selection game with n = 20, i.e., 20 alleles and A being the adjacency
matrix for the graph shown in Figure 4. It is easy to verify that for this game, x∗ ∈ S, with x∗i = 1/16
for i = 1, . . . , 16 and x∗i = 0 for i = 17, . . . , 20, is an equilibrium strategy, as it satisfies all the
necessary and sufficient conditions for equilibrium strategies as stated in (4). It turns out that x∗ is
also the densest equilibrium strategy for this game. We have thus applied both primary (dense) and
(sparse) complementary Shapley-Snow algorithms to compute the densest equilibrium strategy for
this game and recorded the computing times. Our results showed that both algorithms recovered
the densest equilibrium strategy x∗ accurately. However, the complementary Shapley-Snow took
only 0.89, 0.93, 0.88 s in three runs, while the primary Shapley Snow required 14.11, 14.20, 14.45 s,
respectively, again suggesting that the complementary algorithm can be more or less an order of
magnitude more efficient than the primary one for computing the densest equilibrium strategy for
a game.

Note that in all our test cases, we should be able to obtain the same set of equilibrium strategies
for each game using either primary or complementary algorithms, including the sparsest and densest
ones. In other words, if we obtain a set of equilibrium strategies x∗ for a given game using the primary
algorithm, we should be able to obtain all the corresponding complementary strategies y∗ using
the complementary algorithm. In this way, we can obtain from all y∗ found by the complementary
algorithm the same set of equilibrium strategies x∗ found by the primary algorithm, and vice versa.
Otherwise, the sparsest equilibrium strategy x∗ found in the primary dense algorithm may not
necessarily be found in the sparse complementary algorithm, if the latter cannot find the corresponding
complementary strategy y∗. This property is important, but is not so obviously shown in the
descriptions of the algorithms. We therefore provide a more formal verification in the following.

8

1 2

3

7 4

6 5

16

9 10

12 15

11

13 14 20 19
9

18 17

Figure 4. Genetic Matching Graph: There are 20 nodes in the graph, with node i representing allele i,
i = 1, . . . , 20. If allele i and j make a successful genotype, there is a link between node i and j.

Games 2018, 9, 46 12 of 15

As required by the algorithms, we assume that payoff matrix A is nonsingular. Let s = {1, . . . , n}.
We then show that for each equilibrium strategy x∗ with positive components x∗p that is found by the
primary Shapley-Snow algorithm, a corresponding complementary strategy y∗ with y∗p = 0 and y∗q ≥ 0
can be found by the complementary Shapley-Snow algorithm, where p = {i : x∗i > 0}, and q = s\p.
Note that in the primary algorithm, an equilibrium strategy x∗ with positive components x∗p is found if
App is nonsingular and eT

p A−1
pp ep 6= 0. On the other hand, the corresponding complementary strategy

y∗ with yp = 0 and y∗q ≥ 0 is obtained by the complementary algorithm if (eT BeBqq − Bq·eeT B·q) is
nonsingular and eT Be 6= 0, where B = A−1. Therefore, all we need to show is that for the given pair of
p and q, App is nonsingular and eT

p A−1
pp ep 6= 0 if and only if (eT BeBqq − Bq·eeT B·q) is nonsingular and

eT Be 6= 0, which follows immediately from the following two theorems.

Theorem 1. Let p and q be two subsets of indices, and p = s\q. Assume that A is nonsingular. Then, Bqq is
nonsingular if and only if App is nonsingular, where Bqq = {Bi,j : i, j ∈ q} and App = {Ai,j : i, j ∈ p}.

Proof. If App is nonsingular, then Cqq = Aqq − Aqp A−1
pp Apq is a Shur’s complement of A [33]. Since A

is nonsingular, det{A} = det{App}det{Cqq} 6= 0. It follows that det{Cqq} 6= 0 and Cqq is nonsingular.
Since Bqq = C−1

qq , Bqq is nonsingular. Reversely, if Bqq is nonsingular, then Dpp = Bpp − BpqB−1
qq Bqp is

a Shur’s complement of B. Since B is nonsingular, det{B} = det{Bqq}det{Dpp} 6= 0. It follows that
det{Dpp} 6= 0 and Dpp is nonsingular. Since App = D−1

pp , App is nonsingular.

Theorem 2. Let A be a payoff matrix. Assume that A is nonsingular, B = A−1, and eT Be 6= 0.
Let Eqq = eT BeBqq − Bq·eeT B·q. Then, Epp is nonsingular if and only if App is nonsingular and eT

p A−1
pp ep 6= 0.

Proof. If eT Be 6= 0, it suffices to show that

Fqq = Bqq −
Bq·eeT B·q

eT Be
(13)

is nonsingular if and only if App is nonsingular and eT
p A−1

pp ep 6= 0.
Let uq = Bq·e and vq = BT·qe/eT Be. Then

Fqq = Bqq − uqvT
q . (14)

By Sherman-Morrison-Woodbery Formula [33], Fqq is nonsinglar if and only if Bqq is nonsingular
and 1− vT B−1

qq u 6= 0. In addition,

F−1
qq = B−1

qq +
B−1

qq uvT B−1
qq

1− vT B−1
qq u

. (15)

By Theorem 1, Bqq is nonsingular if and only if App is nonsingular. In addition,

1− vT B−1
qq u (16)

= 1−
eT B·qB−1

qq Bq·e
eT Be

=
eT(B− B·qB−1

qq Bq·)e
eT Be

=
eT

p (Bpp − BpqB−1
qq Bqp)ep

eT Be

Games 2018, 9, 46 13 of 15

Since Bpp − BpqB−1
qq Bqp is a Shur’s complement of B, (Bpp − BpqB−1

qq Bqp)−1 = (B−1)pp.
But B−1 = A. Therefore, (Bpp − BpqB−1

qq Bqp)−1 = App and

1− vT B−1
qq u =

eT
p A−1

pp ep

eT Be
. (17)

It follows that 1− vT B−1
qq u 6= 0 if and only if eT

p A−1
pp ep 6= 0.

Again, an equilibrium strategy x∗p can be found in either the primary algorithm under the
conditions App is nonsingular and eT

p A−1
pp ep 6= 0 or in the complementary algorithm with its

complementary strategy y∗q under the conditions Bqq is nonsingular and eT Be 6= 0. Based on the
above two theorems, the two sets of conditions are equivalent and therefore, x∗p can indeed be found
by either algorithm, and so is y∗q .

6. Concluding Remarks

In this paper, we have considered the problem of computing the equilibrium strategies of a given
evolutionary game, complete, sparse, or dense. We are particularly interested in computing the dense
equilibrium strategies, for they may represent more diverse ecological conditions in biology or more
even distributions of funds in financial investment. If such system states can be determined, further
analysis on related properties such as the stabilities of the states and their dynamic behaviors may
provide great insights into maintaining the diversities of the system and preventing certain species
from extinction. In any case, the dense equilibrium strategies are more costly to compute than the
sparse ones as we have demonstrated in the paper. We have therefore formulated a complementary
version of the game for a given primary one, and shown that computing a dense strategy for the
primary version then becomes computing a sparse strategy in the complementary version, which can
be done much more efficiently.

We have implemented the primary and complementary Shapley-Snow algorithms in Matlab for
all the complete, sparse, and dense versions. We have tested these algorithms on randomly generated
games and analyzed their performance. In particular, we have shown that the complementary
algorithm is on average about 10 times faster than the primary algorithm for finding the densest
equilibrium strategies for the given games. We have also particularly tested a more realistic game
related to allele selection in genetic studies. The results on this game are consistent with those for
randomly generated games: The computing time to find the densest equilibrium strategy for the game
using the complementary algorithm is more or less an order of magnitude more efficient than using
the primary algorithm.

In our algorithms, the conditions under which a primary equilibrium strategy x∗ is found are
different from those under which the corresponding complementary equilibrium strategy y∗ is found.
Therefore, it is not clear if y∗ can always be found by the complementary algorithm given x∗ found by
the primary algorithm, and vice versa. In other words, if a set of equilibrium strategies x∗ is obtained
using the primary algorithm, it is not clear if all the corresponding complementary strategies y∗ can be
found using the complementary algorithm, and vice versa. In any case, in the end of Section 5, we have
provided a formal justification showing that the two sets of conditions are equivalent, and the two
algorithms should be able to produce and only produce all the corresponding equilibrium strategies.
Note that for our complementary algorithms to work, we did assume the payoff matrix A to be
nonsingular, which will limit to some extent the applicability of the algorithms.

The focus of this paper is on computation and especially on computation of dense equilibrium
strategies. Many related issues have not yet been addressed. For example, we have only concerned
ourselves with the richness of the strategies but not with the evenness, which can be important in
practice. Further development of algorithms that can find both rich and even equilibrium strategies
can be interesting. In economic application, the payoff of a strategy may correspond to the risk of
investment. The higher the payoff, the lower the risk. Therefore, it would be interesting to find

Games 2018, 9, 46 14 of 15

not only a dense strategy but also a dense strategy with the highest possible payoff. Then, a more
extensive search for such a strategy may be required in the current algorithms. Finally, we have not
considered the evolutionary stability of equilibrium strategies, either sparse or dense, while it is of
great concern in both biological and economic applications. We will investigate how to compute sparse
and dense equilibrium strategies efficiently while at the same time justifying their stabilities in our
future research efforts.

Author Contributions: Y.H. and Z.W. developed and analyzed the algorithms. Y.H. performed all computational
work. Y.H. and Z.W. finished the paper.

Funding: This work is partially funded by the NIH/NIGMS grant R01GM072014 and by the NSF/DMS
grant DMS0914354.

Acknowledgments: The authors would like to thank the anonymous referees and the associate editors for their
patiently reading the paper and providing many valuable suggestions for the revision of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hall, B.; Hallgrimsson, B. Strickberger’s Evolution, 5th ed.; Jones & Bartlett Learning: Burlington, MA,
USA, 2013.

2. Smith, M.J.; Price, G.R. The logic of animal conflict. Nature 1973, 246, 15–18. [CrossRef]
3. Smith, M.J. Evolution and the Theory of Games; Cambridge University Press: Cambridge, UK, 1982.
4. Weibull, J.W. Evolutionary Game Theory; MIT Press: Cambridge, MA, USA, 1995.
5. Hofbauer, J.; Sigmund, K. Evolutionary Games and Population Dynamics; Cambridge University Press:

Cambridge, UK, 1998.
6. Webb, J.N. Game Theory: Decisions, Interaction and Evolution; Springer: Berlin, Germany, 2007.
7. Nash, J. Equilibrium points in n-person games. Proc. Natl. Acad. Sci. USA 1950, 36, 48–49. [CrossRef]

[PubMed]
8. Nash, J. Non-cooperative games. Ann. Math. 1951, 54, 286–295. [CrossRef]
9. Daskalakis, C.; Papadimitriou, C.H. On oblivious PTAS’s for Nash equilibrium. In Proceedings of the 41st

Annual ACM Symposium on Theory of Computing, (STOC 2009), Bethesda, MD, USA, 31 May–2 June 2009;
ACM: New York, NY, USA, 2009; pp. 75–84.

10. Gilboa, I.; Zemel, E. Nash and correlated equilibria: Some complexity considerations. Games Econ. Behav.
1989, 1, 80–93. [CrossRef]

11. Conitzer, V.; Sandholm, T. Complexity results about Nash equilibria. In Proceedings of the 18th International
Joint Conference on Artificial Intelligence (IJCAI 2003), Acapulco, Mexico, 9–15 August 2003; pp. 765–771.

12. Chen, X.; Deng, X.; Teng, S. Sparse games are hard. In Proceedings of the 2nd International Workshop on
Internet and Network Economics, (WINE2006), Patras, Greece, 15–17 December 2006; pp. 262–273.

13. Motzkin, T.S.; Straus, E.G. Maxima for graphs and a new proof of a theorem of Turan. Can. J. Math. 1965, 17,
533–540. [CrossRef]

14. Pardalos, P.M.; Ye, Y.; Han, C. Algorithms for the solution of quadratic knapsack problems. Linear Algebra
Its Appl. 1991, 152, 69–91. [CrossRef]

15. Bomze, I.M.; Budinich, M.; Pardalos, P.M.; Pelillo, M. The maximum clique problem. In Handbook of
Combinatorial Optimization; Du, D.Z., Pardalos, P.M., Eds.; Springer: Boston, MA, USA, 1999; pp. 1–74.

16. Shapley, L.; Snow, R. Basic solutions of discrete games. Ann. Math. Stud. 1950, 24, 27–35.
17. Lemke, C.E.; Howson, J.T., Jr. Equilibrium points and bimatrix games. J. SIAM 1964, 12, 413–423. [CrossRef]
18. Mangasarian, O.L.; Stone, H. Two-person, nonzero-sum games and quadratic programming. J. Math.

Anal. Appl. 1964, 9, 348–355. [CrossRef]
19. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 1996, 58, 266–288.
20. Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B 2003, 67,

301–320. [CrossRef]
21. Donoho, D.L. For most large underdetermined systems of linear equations the minimal 1-norm solution is

also the sparsest solution. Commun. Pure Appl. Math. 2006, 59, 797–829. [CrossRef]

http://dx.doi.org/10.1038/246015a0
http://dx.doi.org/10.1073/pnas.36.1.48
http://www.ncbi.nlm.nih.gov/pubmed/16588946
http://dx.doi.org/10.2307/1969529
http://dx.doi.org/10.1016/0899-8256(89)90006-7
http://dx.doi.org/10.4153/CJM-1965-053-6
http://dx.doi.org/10.1016/0024-3795(91)90267-Z
http://dx.doi.org/10.1137/0112033
http://dx.doi.org/10.1016/0022-247X(64)90021-6
http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x
http://dx.doi.org/10.1002/cpa.20132

Games 2018, 9, 46 15 of 15

22. Candes, E.J.; Romberg, J.K.; Tao, T. Stable signal recovery from incomplete and inaccurate measurements,
Commun. Pure Appl. Math. 2006, 59, 1207–1223. [CrossRef]

23. Candes, E.J.; Wakin, M.B.; Boyd, S.P. Enhancing sparsity by reweighted L1 minimization. J. Fourier Anal. Appl.
2008, 14, 877–905. [CrossRef]

24. Zhang, Y. Theory of compressive sensing via l1-minimization: A non-RIP analysis and extensions. J. Oper.
Res. Soc. China 2003, 1, 79–105. [CrossRef]

25. Gaston, K.; Spicer, J. Biodiversity: An Introduction; Wiley-Blackwell: Hoboken, NJ, USA, 2004.
26. Markowitz, H.M. Portfolio selection. J. Financ. 1952, 7, 77–91.
27. Elton, E.; Gruber, M. Modern Portfolio Theory and Investment Analysis; Wiley: Hoboken, NJ, USA, 2014.
28. Vickers, G.T.; Cannings, C. On the number of stable equilibria in a one-locus, multi-allelic system. J. Theor. Biol.

1988, 131, 273–277. [CrossRef]
29. Vickers, G.T.; Cannings, C. Patterns of ESS’s I. J. Theor. Biol. 1988, 132, 387–408. [CrossRef]
30. Cannings, C.; Vickers, G.T. Patterns of EES’s II. J. Theor. Biol. 1988, 132, 409–420. [CrossRef]
31. Bomze, I.M. Evolution towards the maximum clique. J. Glob. Optim. 1997, 10, 143–164. [CrossRef]
32. Burger, R. The Mathematical Theory of Selection, Recombination, and Mutation; Wiley: Hoboken, NJ, USA, 2000.
33. Horn, R.; Johnson, C. Matrix Analysis, 2nd ed.; Cambridge University Press: Cambridge, UK, 2013.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/cpa.20124
http://dx.doi.org/10.1007/s00041-008-9045-x
http://dx.doi.org/10.1007/s40305-013-0010-2
http://dx.doi.org/10.1016/S0022-5193(88)80225-X
http://dx.doi.org/10.1016/S0022-5193(88)80080-8
http://dx.doi.org/10.1016/S0022-5193(88)80081-X
http://dx.doi.org/10.1023/A:1008230200610
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Shapley-Snow Algorithms
	Dense vs. Sparse Equilibria
	Complementary Formulation of Evolutionary Games
	Computing Dense Equilibria in Complementary Forms
	Concluding Remarks
	References

