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Abstract: This paper studies the spatial joint evolution of cooperative behavior and a partially
assortative matching institution that protects cooperators. We consider cooperation as characterized
by a cultural trait transmitted via an endogenous socialization mechanism and we assume that
such trait can diffuse randomly in space due to some spatial noise in the socialization mechanism.
Using mathematical techniques from reaction-diffusion equations theory, we show that, under some
conditions, an initially localized domain of preferences for cooperation can invade the whole
population and characterize the asymptotic speed of diffusion. We consider first the case with
exogenous assortativeness, and then endogeneize the degree of social segmentation in matching,
assuming that it is collectively set at each point of time and space by the local community. We show
how relatively low cost segmenting institutions can appear in new places thanks to the spatial
random diffusion of cooperation, helping a localized cultural cluster of cooperation to invade the
whole population. The endogenous assortative matching institution follows a life cycle process:
appearing, growing and then disappearing once a culture of cooperation is sufficiently established in
the local population.
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1. Introduction

The emergence and persistence of cooperation is a classical issue in natural and social sciences.
This question is often analyzed in game theoretical situations like the Prisoner’s Dilemma or the
Public Good provision game, reflecting the conflict between individual interest, collective rationality
and altruism. The biological, economic and game theoretical literatures highlight various routes
to sustain cooperation in communities. A first perspective takes an evolutionary viewpoint and
considers the evolution of altruistic traits or cooperative preferences subject to some genetic or cultural
selection forces ([1,2]). A second approach assumes the existence of specific institutions or social
mechanisms, such as reputation building in repeated relationships or segregation in social interactions
(assortative matching), that incentivize or protect cooperation in a community ([3–5]). Another strand
of the literature highlights the importance of space and the diffusion process of cultural dimensions
that help sustain modes of cooperation in various social contexts (see for instance [6], and more
recently [7,8]). Interesting historical examples related to this perspective are the spatial neolithic
transition from hunting-gathering into farming and stockbreeding in Europe with its emphasis both
on demic diffusion and cultural diffusion1 (see [11,12]), the rise and decline of merchant guilds as

1 In the anthropology literature, the demic diffusion model assumes that farming spread due to the migration of farmers into
new regions [9], while the cultural diffusion model assumes that hunter-gatherers tribes learned agricultural technics from
neighbouring farming populations [10].

Games 2018, 9, 58; doi:10.3390/g9030058 www.mdpi.com/journal/games

http://www.mdpi.com/journal/games
http://www.mdpi.com
http://dx.doi.org/10.3390/g9030058
http://www.mdpi.com/journal/games
http://www.mdpi.com/2073-4336/9/3/58?type=check_update&version=2


Games 2018, 9, 58 2 of 27

organizations promoting exchanges and cooperation among traders in different parts of medieval
Europe (see [13–17]), or recently, the diffusion of a “sharing culture” through which local communities
come up with creative initiatives, based on sharing and collaboration, to serve their daily needs with
economic alternatives to traditional service provision (private or public) ([18]).

The purpose of this paper is to contribute to this line of research by analyzing how preferences
evolution and institution building can jointly evolve and interact to sustain cooperation in a spatial
context. Specifically, we consider the spatial transmission and diffusion of a cultural trait for
cooperation in a context where a local institution of social segregation (assortative matching) can be
endogenously decided by some political collective decision making mechanism. To do this, we develop
a continuous space framework in which preferences are locally transmitted across generations through
a cultural transmission process à la Bisin-Verdier (Bisin and Verdier 2001, [19]), and also diffuse
randomly in space due to some spatial noise in socialization. Additionally, following [3,5], we introduce
the presence of an assortative matching institution by which cooperators can partially segregate
themselves for their social interactions. In contrast to the previous literature however, we assume that
the degree of assortativity and extent by which matching between cooperators is biased, is endogenous,
costly to implement, and decided collectively at the local community level. We describe this in the
sequel as the degree of institutional assortativity that prevails at the community level.

In such a context, we analyse the spatial co-evolution of the cultural trait of cooperation and
the local institution of assortative matching that facilitates the expression of this culture. Specifically,
the questions we address are the followings: how do preferences for cooperation evolve in time and
space? When is it that cooperative preferences initially located in a limited region give rise to a cultural
diffusion wave that successfully invades the whole population in space? Under which conditions
will such phenomenon happen? What is the equilibrium spatial and time co-evolution of a culture of
cooperation and the (endogenous) local institutions that promote such culture?

The paper provides the following contributions. First on the technical side, and in contrast to
agent-based simulations models analyzing cooperative behaviors in discrete spatial environments
such as lattice or networks frameworks ([8] and others), we approach the problem of spatial diffusion
of cooperation in a continuum space, applying for this purpose mathematical techniques and results
from partial differential reaction-diffusion equations theory. This perspective, relatively new to
economists and social scientists, is useful as it allows the derivation of specific analytical results on
the spatial evolution of cooperation and the assortative matching institutions that interact with these
cultural patterns.

Starting with the benchmark case of exogenous assortative matching institutions as described
in [5], or [3] in a non spatial context, we show that for a degree of institutional assortativity above
a certain threshold, the existence of a spatially localized cultural cluster of cooperators may allow
the diffusion of a culture of cooperation to the whole spatial population on an infinite domain.
More precisely, we are able to provide analytical conditions for the existence of a positive traveling wave
of a culture of cooperation that invades the whole population. In this case, we characterize the
asymptotic speed of diffusion, and show that it is increasing in some crucial fundamentals of the
problem: the degree of institutional assortativity and the intensity of the taste for cooperation in the
preference structure.

We then extend the framework to the case of endogenous and costly assortative institutions
implemented at the local community level, and we analyze the interaction between cultural
transmission and the emergence of these matching institutions along the spatial process of diffusion of
a culture of cooperation. We show how relatively low cost assortative matching institutions can appear
in new places thanks to the spatial random diffusion of cooperation, and in turn facilitate a localized
cluster of cooperative preferences to invade the whole population. Again, we provide conditions
for the existence of a traveling wave of a culture of cooperation. We also study the resulting spatial
pattern of institutional evolution. We show that the equilibrium degree of assortativity follows a non
monotonic path along the diffusion process in space. Places with initially no cooperators and no local
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institution of social segmentation, thanks to the diffusion process, will be the locus of emergence of an
assortative matching mechanism, first growing and then disappearing once cooperators have reached
a sufficient proportion of the population inside the local community. This highlights an interesting
example in which culture and institutions act initially as dynamic complements and then as dynamic
substitutes along the diffusion process.

Finally, while our analytical results are provided for diffusion processes on infinite domains, we
provide in the appendix numerical simulations to show that the main qualitative insights derived
analytically persist on finite domains.

• Related Literature

Our paper connects directly to the large literature about cooperation evolving on a discrete space
structure, i.e., lattices or networks (see Eshel, Samuelson and Shaked (1998), [8,20,21])2. The main result
in that literature is that a structured population with interactions limited to neighbors often sustains
the long run existence of local clusters of cooperation (and even invasion over the full structure) under
conditions where, without space, one would not expect cooperation to survive from an evolutionary
perspective. Our approach differs from the previous ones along two dimensions. First, while in the
previous models cooperators’ movement was directed and purposeful, we assume here that cultural
traits diffuse locally with some random direction in space due to a spatial random component in the
socialization mechanism associated to cultural transmission. Second, this literature mainly investigates
the properties of the discrete spatial dimension through simulations. Here we consider a continuum
spatial structure that allows us to obtain some general analytical results.

The mathematical biology literature has also applied some spatial models with a continuum space
to economic games of cooperation (see for instance [7,23]). However, our paper differs from these in
two ways. First, we consider cultural evolution based on intergenerational socialization instead of
biological evolution based on fitness. Second and more importantly, we study the interaction between
cultural diffusion and social institutional building, by allowing for the possibility of the emergence of
an endogenous assortative matching institution set at the local level, according to the proportion of
cooperators and defectors weighted by their “political power ” in the community. The analysis then
exhibits the existence of dynamic complementarities and substituabilities between preferences and
institutions spatially, and it generates an example of the endogenous “rise-and-fall” of “cooperation
supporting” institutions following a diffusion “wave”pattern over time and space.

Our work connects as well to recent economic papers which discuss the links between the
emergence of cooperation and the existence of segregation in interactions. Reference [24] consider
for instance the interplay between assortativity in actions and homophily as induced by cultural
intolerance. They show that it induces states where there is perfect correlation between culture and
behavior with all agents from one cultural group cooperating, and all agents from the other cultural
group defecting. In contrast to this work, in our framework, cultural types are not fixed and evolve
along a cultural transmission process both across generations and across space. In a similar vein,
Reference [25] propose a model of local interactions with endogenous network formation, and show
how cooperators and defectors endogenously cluster themselves in separated components, supporting
cooperation and segregation altogether. Our framework differs in two ways. First, as already said,
we consider a continuum space structure as well as an endogenous intergenerational cultural
transmission process. Second, segregation comes in our work from a centralized collective action
problem at the community level, rather than as a random opportunity to break or create a link for
some local interaction.

Closer to our work is the recent paper [26] which investigates how assortativity, jointly with
cooperation, can be driven by evolution. The authors consider an evolutionary game theoretical

2 See [22], chapters 8 and 9 for a good introduction/review of this literature.
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framework in which assortativity evolves by ‘democratic consensus’, and show that full-or-null
assortativities turn out to be long-run stable in most cases. In our framework, assortativity is also
determined by some collective decision making process. In contrast we introduce an explicit resource
cost for the design of the endogenous degree of assortativity, and investigate how this assortativity
evolves over time and space. In particular, we show that along with the diffusion process of a spatial
cooperative wave, assortativity follows a non monotonic life cycle evolution at the community level.

Finally, by emphasizing the interaction between the diffusion of a culture of cooperation and the
emergence of assortative institutions, we relate to the recent literature on culture and institutions, and
in particular the work by [27]3 that formally analyzes the joint evolution of culture and institutions
in more general institutional and cultural contexts. We complement this piece of work by presenting
a specific example that explicitly focuses on the spatial dimension of the coevolution of culture and
institutions. Interestingly, our analysis exhibits as well the existence of dynamic complementarities
and substituabilities between preferences and institutions spatially.

The paper is organized as follows. Section 2 presents the main structure of the model,
the interaction game between cooperators and defectors and the cultural transmission mechanism.
Section 3 adds the spatial structure and shows analytically when there exists a traveling wave of a
culture of cooperation on an infinite domain. Section 4 studies the case of endogenous assortative
matching institutions. Finally, Section 5 provides a short conclusion. All the proofs are relegated to the
appendix, as well as the numerical simulations.

2. The Model

We outline in this section a standard model of cooperation without the spatial dimension which
will be added in the next section of the paper.

2.1. An Interaction Game

Consider a classical social interactions model of cooperation where at each point of time t the total
population N is composed of individuals endowed with a preference for cooperation (i.e., cooperators
denoted as C) and individuals with a preference for defection (i.e., defectors denoted as NC). Let q(t)
denote the normalized proportion of cooperators and 1− q(t) the normalized proportion of defectors.

There are overlapping generations of agents living first as children, and then as adults/parents.
Individuals get socialized to a specific preference pattern when they are children and then interact
socially when they are adults. More specifically, at each time t, adult individuals who already possess
the trait C or NC, get matched by pairs and play a perfect information interaction game structured
as Table 1.

Table 1. Payoff matrix.

Player j

C NC

Player i C G + δi , G + δj −L + δi , B
NC B, −L + δj 0,0

Where G > 0 is the payoff gain from cooperation when this is played by both players, −L < 0
is the payoff loss cooperation entails facing non cooperation, B is the gain from defection in front of
cooperation. Finally, δi reflects an “intrinsic” utility gain an individual i has in choosing the action

3 See [28] for a recent survey of the empirical literature.
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“cooperation”. We assume that this characteristic is dichotomous and can take two values depending
on the cultural trait of the individual. More precisely for any player i:4

δi =

{
δ if i ∈ C
0 if i ∈ NC

We assume the following restrictions on the payoff matrix:

Assumption H1:
δ > max(B− G, L)

B > G
2G > B− L

(1)

where the first part of H1 ensures that the intrinsic taste for cooperation δ of type C individuals is
large enough to induce them to act as unconditional cooperators (i.e., to always prefer to cooperate).
The second part of H1 simply assumes that the social interaction game between two NC individuals
has the classical prisoner’s dilemma structure. Defection (i.e., play NC) is a dominant strategy for
such individuals. Finally the third part of H1 says that total surplus maximization is obtained by full
cooperation (i.e., both players playing C).

In this context, it is well known that cooperation can evolve when there is some degree of
social “segmentation” in the matching process between individuals and cooperators are able to
interact more frequently with members of their own group than with a randomly selected individual.
More specifically, following [4,5], and defining ρ ∈ (0, 1) as the degree of assortative matching in the
population5, the probability that a cooperator meets another fellow cooperator is ρ + (1− ρ)q. For the
moment we take ρ as exogenous. Later on we will endogenize the level of institutional segmentation
at the community level.

2.2. Cultural Transmission

All adult members, just before dying, have one offspring and transmit to that offspring their trait
according to a Bisin-Verdier model of intergenerational cultural transmission ([19]). More specifically,
each offspring is born without defined preferences. This offspring is first exposed to his parent’s
cultural trait. Direct vertical socialization to the parent’s trait, say i ∈ {C, NC}, occurs with some
endogenously determined probability τt

i . If a child from a family with trait i is not directly socialized,
which occurs with probability 1− τt

i , she is then subject to outside socialization. In that case, the child
is matched to a passive role model randomly chosen in the population so that she adopts trait C
with probability q(t) and trait NC with probability 1− q(t). Now for i, j ∈ {C, NC}, denote by Pij

t
the probability that a child from a family with trait i is socialized to trait j. By the Law of Large
Numbers, Pij

t also denotes the fraction of children with a type i parent who have preferences of
type j. The socialization mechanism described above can then be characterized by the following
transition probabilities:

PC,C
t = τt

C + (1− τt
C)q(t)

PC,NC
t = (1− τt

C)(1− q(t))

PNC,NC
t = τt

NC + (1− τt
NC) (1− q(t))

PNC,C
t = (1− τt

NC)q(t).

4 Obviously the same expression holds for the value δj of player j.
5 Typically the parameter, ρ, may be viewed as capturing the level of institutional segmentation structuring social interactions

in a way that allows cooperators to partially choose their partner. For instance in the case of a market exchange
interaction, the institution can be seen a closed local market structure where participants have a mechanism to screen their
commercial partners.
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Using these probabilities, we have that the cultural dynamics of the cooperators q(t) are then
given by:

q(t + 1) = q(t)PC,C
t + (1− q(t))PNC,C

t

or, equivalently,
q(t + 1)− q(t) = q(t)(1− q(t))

(
τt

C − τt
NC
)

At the continuous time limit, we obtain the following simple dynamic replicator equation

q̇(t) = q(t)(1− q(t))
(
τt

C − τt
NC
)

(2)

Essentially one finds back a cultural replicator version of the process by which preferences get
selected in the population. In contrast to the standard replicator dynamics in evolutionary game
theory involving only the difference between fitness relevant payoffs, in the cultural replicator version
of (2), what matters for cultural selection is the difference between vertical transmission rates across
cooperators’ and defectors’ families.

Following [19,29], the vertical transmission rates τt
i are endogenized by assuming that parents

are paternalistic and spend resources to transmit their own trait to their offspring.6 Under simple
conditions (see the Appendix), for each type i ∈ {C, NC} the vertical transmission rate τt

i is typically
obtained as a function τ

(
∆Vi) of the “so-called” paternalistic motivation ∆Vi of a parent of type i to

transmit his trait. It is expressed as ∆Vi = Vii − Vij where Vii is the expected payoff obtained by a
child that takes the same trait i as his parent, and Vij is the expected payoff obtained by a child taking
the other cultural trait j 6= i, but as perceived through the filter of the preferences of the parent of trait i.
Moreover, assuming that the cost of socialization is a quadratic function of the vertical transmission
rate, it can easily be shown that for ∆Vi ≥ 0 the function τ (.) is just a linear increasing function
τ
(
∆Vi) = d · ∆Vi with d > 0.7

In the context of the previous game, and the assortative matching hypothesis, one can easily
compute the utilities payoff Vii and Vij for (i, j) ∈ {C, NC} with j 6= i and get the expressions of the
paternalistic motivation ∆Vi of a parent of type i ∈ {C, NC} as

∆VC = VC,C −VC,NC = δ + G[ρ + (1− ρ)q]− L(1− ρ)(1− q)− (1− ρ)qB

∆VNC = VNC,NC −VNC,C = (1− ρ)qB− [G[ρ + (1− ρ)q]− L(1− ρ)(1− q)]

It is natural to assume G > B − L, ρ <
B− G

B
. Moreover we assume that d < min

{
1

δ+G , 1
L

}
to ensure that the socialization rates τC and τNC are always between 0 and 1 for any value of ∆Vi.
The evolutionary dynamics of the frequency of cooperators in the population then writes as

q̇ = q(1− q)[τ
(

∆VC
)
− τ(∆VNC)]

= dq(1− q)[δ + 2(ρG− (1− ρ)L) + 2(1− ρ)(G + L− B)q].
(3)

The following assumption H2 captures the restrictions of assumption H1 and ensures the result
of Proposition 1:

6 To simplify notations from here onward we omit time superscript whenever there is no risk of confusion.
7 These properties reflect simply the fact that the larger the paternalistic motivation of a parent, the larger his socialization

effort, and therefore the larger the vertical transmission rate.
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Assumption H2:

2L > δ > L

B− L
2
> G > B− L

ρmax > ρ > ρmin.

(4)

where ρmax :=
L− δ/2
G + L

and ρmin := max
(

B− G− δ/2
B

, 0
)

Proposition 1. Under assumption H2, the dynamic equation describing the evolution of cooperation (3) admits
three fixed points:

q = 0, q = 1 and q = q∗(ρ) =
δ/2 + ρG− (1− ρ)L
−(1− ρ)(G + L− B)

The interior equilibrium q∗ (ρ) is unstable, while the corner equilibria 0 and 1 are stable equilibria with respective
basins of attraction [0, q∗(ρ)[ and ]q∗(ρ), 1].

The conditions of assumption H2 could be interpreted in the following way. In order to have an
interior mixed equilibrium q∗ where both cooperators and defectors are present, the intrinsic gain
of cooperation, δ, should be high enough to allow cooperators to act unconditionally, but also not
too high since otherwise defectors would never be able to persist with cultural selection. The second
condition ensures that the cooperative gains G should take intermediate values for socialization to
always be strictly positive for both types of traits (i.e., τC and τNC > 0 for all values of q ∈ [0, 1]).
Moreover, in order for cooperators to survive in the long run in the population, the assortativity of the
matching process should be high enough (ρ > ρmin) to allow the cooperators to protect themselves but
not too high (ρmax > ρ) otherwise defectors could not survive.

Proposition 1 therefore states that under these assumptions on the parameters of the game,
the problem of cooperators and defectors we presented is a “bistable” case where the interior
equilibrium q∗ is repulsive while the two extreme equilibria, q = 0 and q = 1, are attractive. When
the initial conditions are such that 0 ≤ q(0) < q∗ the cultural dynamics converge to the steady state
q = 0 and we have the extinction of the cooperative trait. Conversely when q∗ < q(0) ≤ 1, the system
converges to q = 1 and there is extinction of the noncooperative trait. Cooperation gets transmitted to
the whole population, when it starts already above the threshold q∗.

3. Adding the Spatial Structure

Under the previous simple evolutionary model, the cooperative culture has to exceed a given
initial threshold q∗ to invade the whole population. How is such conclusion affected when we add
a spatial structure? Should the cooperative trait be present over the full space to survive cultural
selection? In this section, we provide conditions such that the culture for cooperation needs to exist
only on a relatively small domain in order to invade spatially the full population.

Specifically, assume that after the classic Bisin-Verdier socialization mechanism, there is a spatial
noisy component of socialization. Children can be socialized to their neighbors’ cultural trait through
a random local diffusion of cooperative and defective traits. More precisely, a child at location x on
the real line R could be randomly re-socialized with a cultural trait coming from location x− dx or
x + dx, meaning that cultural traits can move locally with random direction in space. While the most
relevant papers describing spatial cooperators dynamics usually consider a discrete lattice where agents
interact with their neighbors and then replace them with a purposeful movement ([8]), we differ in the
following ways. First, we assume that interactions are strictly local and happen in a community located
at x. Second, we assume that individuals cannot physically move and, given that each individual
has only one offspring, the size of a community located at a point x is fixed at a constant level N.
Third, after social interaction and reproduction and intergenerational cultural transmission, the new
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generation (the socialized children) can be randomly resocialized to a neighbors’ trait. Specifically,
while individuals cannot move physically, we assume that cultural information moves with random
local direction in space causing therefore a spatial noise in the final stage of the socialization mechanism
of children. Because of intergenerational cultural transmission and the spatial noise component in the
socialization mechanism, the types of individuals in each community will change overtime and space.
More precisely, the frequency of cooperators in community x can be denoted as q(t, x) = C(t, x)/N,
where C(t, x) is the number of cooperator types at time t in community x. Interactions happening
at the community level located at x are then characterized by frequencies q(t, x) of cooperators and
1− q(t, x) of non cooperators.

Finally, we consider a continuum spatial structure and an infinite domain (R ) to have analytical
and general results. We will then show with some numerical simulations how these results remain
generally true in a finite domain.

Using a classical mathematical argument (see [30], p. 395), one can show that when cultural traits
move randomly in a small time interval ∆t on a localized small domain of size ∆x, and that one passes
to the continuous limit ∆x → 0, ∆t → 0 with a constant diffusive assumption that (∆x)2 ' 2∆t,8

then the local random diffusion process of cultural information can be described through a laplacian
operator. The cultural dynamics describing the evolution of the local frequency of cooperators q(t, x)
rewrite therefore as a partial differential equation of the following form

∂q
∂t
− ∂2q

∂x2 = q(1− q)
[
τ
(

∆VC(q)
)
− τ(∆VNC(q))

]
with initial time condition describing the initial spatial frequency of cooperators on the full domain:
q(0, x) = q0(x) with q0(x) a real function such that 0 ≤ q0(x) ≤ 1 for all x ∈ R. Substitution of ∆VC(q)
and ∆VNC(q) provides the partial differential equation:{

∂q
∂t −

∂2q
∂x2 = Dq(1− q)(q− q∗ (ρ))

0 ≤ q0(x) ≤ 1.
(5)

with D = 2d(1− ρ)(G + L− B) > 0 and q∗ (ρ) =
δ/2 + ρG− (1− ρ)L
−(1− ρ)(G + L− B)

.

A reaction-diffusion equation similar to (5) was firstly introduced by R. Fisher (1937) [31] to
describe the wave of advance of an advantageous gene. The Fisher’s equation could be considered as
a spatial extension of the logistic equation and rapidly spread in mathematical biology to describe a
wide range of different phenomena. A less known application of Fisher’s equation is the one made
by [32]) who applied this particular reaction-diffusion equation in evolutionary anthropology to study
the spread of early farming in Europe. It is clear that this mathematical representation simplifies the
diffusion process making it continuous in time and space. However, as stated by [32], even when
real diffusion is discontinuous, it often operates over short intervals of space and time. A continuous
temporal and spatial diffusion theory may then still provide useful insights on the nature of the spatial
cultural dynamics.

To describe the diffusion process of the cooperative culture in a spatial context, it is of specific
interest to analyze solutions of (5) in the form of a traveling wave. A traveling wave is a particular
type of solution on an infinite domain obtained by a change of variables such that it connects the two
homogeneous steady states (here 0 and 1) and travels without change of shape. Specifically, if q(x, t)
represents a traveling wave, the shape of the solution will be the same for all time and the speed of
propagation of this shape is a constant usually denoted by c. If we look at this wave in a traveling frame

8 In the literature, the standard diffusive assumption is (∆x)2 ' 2D∆t where D is the constant coefficient of diffusion of the
process. Here for simplicity, we pose D = 1.
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moving at speed c it will appear stationary. The traveling wave is therefore a tractable theoretical tool
to describe how a diffusive phenomenon happens in time and space (see the Mathematical Appendix
for the exact definition).

In the case of system (5), we can apply a classical partial differential equations’ theorem (see the
theorem in the Appendix) that ensures the existence of a unique traveling wave that moves with
speed c, whose sign is given by the sign of the integral

∫ 1
0 f (q)dq with f (q) = Dq(1− q)(q− q∗ (ρ))

Furthermore, using a classical result (see [33], p. 234) for reaction-diffusion equations of the
following form

∂q
∂t
− ∂2q

∂x2 = Dq(1− q)(q− q∗)

we can compute the exact speed and the profile function φ(.) of the traveling wave q(x, t) = φ(x + ct).
In particular, the speed is given by

c =
√

D√
2
(1− 2q∗) (6)

and the function φ(.) has the following shape:

φ(ξ) =
1
2

[
1 + tanh

(√
D

2
√

2
ξ

)]
(7)

where ξ = x + ct. Because we use ξ = x + ct as the traveling wave coordinate, a solution with c > 0
corresponds to a wave moving from right to left on the spatial domain R. We could equally well have
used x− ct as the traveling wave coordinate, to obtain waves moving from left to right for positive c
(this is actually the choice we made in Figure 1).

In the context of our Equation (5), we obtain the speed of propagation

c =
G− B− L + δ + (G + L + B)ρ

[(1− ρ)(G + L− B)]1/2 . (8)

We can now state the following result.

Proposition 2. Under the hypothesis (4) there exists ρ∗ = B+L−δ−G
B+L+G such that for ρ > ρ∗ a localized set of

cooperators can invade the whole space, i.e., there exists a traveling wave that moves with positive speed c > 0.
The value of the cooperation diffusion speed c is an increasing function of ρ and δ. Conversely for ρ < ρ∗,
a localized set of non cooperators can invade the whole space, i.e., there exists a traveling wave that moves
with negative speed c < 0. The absolute value of the non cooperation diffusion speed |c| = −c is a decreasing
function of ρ and δ.

Proposition 2 provides a simple characterization of the sign of the diffusion speed c of the traveling
wave. When this speed is positive, it implies that starting from an initial configuration where there
are just noncooperative preferences, the appearance of a small cluster of a culture of cooperation with
enough assortative matching and whose proportion is larger than q∗(ρ), is enough for cooperation
to invade the whole space.9 Conversely, when the diffusion speed c is negative, a small cluster of
non cooperative preferences (in a proportion larger than 1− q∗(ρ)), can fully invade an initial spatial
configuration of cooperative preferences, provided that there is not too much assortative matching.

In the simple non spatial model of Section 2, cooperative preferences could only diffuse in the
full population if their frequency initially exceeded the threshold q∗ (ρ). With a local random spatial
component of socialization, the requirement for the spatial diffusion of the culture of cooperation is
weaker. Cooperative preferences still need to exceed q∗ (ρ) at some point of space. However, to invade

9 Note that by (6), condition ρ > ρ∗ is equivalent to the condition q∗ (ρ) < 1/2.
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the full population, it is now sufficient to have this condition satisfied on a small localized domain.
In other words, even with an initial “average”lower than q∗ (ρ) in space, cooperative preferences
can still take advantage of their local success to take over the whole population (see the numerical
simulations on finite domains for an intuitive idea).

Inspection of (8) also shows that the speed of propagation of cooperation is an increasing function
of the degree of segregation ρ and of the intensity of preference for cooperation δ. Furthermore, looking
at the Expression (7) and the value for D, we can easily observe that the higher is G the steeper is the
profile of the traveling wave (the “jump” between 0 and 1) while ρ has the opposite effect, the higher
the segregation the smoother becomes the profile of the wave.10

c

1

ξ
′

Figure 1. Profile of the traveling wave resulting from Proposition 2. This figure shows the traveling
wave front connecting the two equilibria, the one where the population is composed only by cooperators
(q = 1) and the one where there are just defectors (q = 0). Under the hypothesis of Proposition 2,
the traveling front moves from the left to the right with constant positive speed, c, showing the diffusion
of cooperators. See [30] for more detailed explanations about traveling wave fronts.

The previous results have been proved analytically for infinite spatial domains since on finite
domains the notion of traveling wave has no meaning. However, if the domain is finite but large
enough, the solution of the partial differential reaction-diffusion Equation (12) qualitatively follows for
some time the profile of a traveling wave. In the appendix we present and discuss a Matlab simulation
to analyze how the spatial diffusion process will happen on a finite one dimensional domain and
how the invasion fronts resemble to the profile of a traveling wave. We can easily observe (see the
Appendix D) that, given an initial datum, the smaller is q∗ the faster is the invasion.Furthermore,
the profile of the solution resembles to the profile of the traveling wave we characterized for an
infinite domain.

4. Diffusion of Cooperation and Matching Institutions

In the previous section we have shown that a high enough degree of social segmentation ρ and
a random spatial process of socialization induce a diffusion mechanism that allows the invasion of
cooperative preferences in the whole space, even when such preferences are initially localized only
in a small domain. In this section, we analyze the interaction of the process of spatial diffusion of
preferences with the emergence of assortative matching institutions promoting cooperation at the
local level.

4.1. Endogenous Assortative Matching Institutions

To do this, we consider the case where the degree of assortativity ρ is endogenous and chosen
by a collective decision mechanism at the local level. The parameter ρ allows cooperators to protect
themselves from exploitation by defectors. Clearly since it shapes social interactions inside the
community, the choice of ρ can be a source of conflict between cooperators and defectors as it favors

10 Of course, these comparative statics are opposite for the absolute value of the speed of spatial propagation of a non
cooperative culture as in this case |c| = −c > 0.
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the former and penalizes the latter. Presumably, the outcome of such collective decision problem
will depend on the relative political strength of the two groups. We highlight these features in the
simplest way by assuming that at each point of time, ρ is determined at the community level by
the maximization of a social welfare function reflecting the sum of the utilities of the two groups of
individuals, weighted by their political power, that we simply assume to be proportional to their
population size in the community.11

Specifically, we consider first the non spatial case with a given community characterized by a
frequency q of cooperators. The community selects the institutional assortativity parameter ρ by the
following social choice maximization program:

max
ρ

[qVC,C(ρ) + (1− q)VNC,NC(ρ)− ψ(ρ)] (9)

where ψ(ρ) represents the cost of the endogenous institution that is borne by the whole community12.
We assume that the cost function is increasing and convex, (i.e., ψ′ > 0, ψ′′ > 0), with the Inada
conditions ψ(0) = ψ′(0) = 0, and ψ(1) = ψ′(1) = ∞. Moreover we assume that ψ′′′ ≤ 0 for
technical reasons.

Substituting the expressions of VC,C(ρ) and VNC,NC(ρ) in (9) and using the hypothesis
G + L− B > 0 we find that the optimal degree of assortativity ρ̃(q) is given by:

ψ′(ρ̃) = q(1− q)(G + L− B). (10)

Inspection of (10) shows immediately that the optimal degree of assortative matching is a non
monotonic function of the frequency q of cooperators in the community. The intuition for this
is the following. Cooperators are in favor of social segmentation while defectors are against it.
A first effect is associated to the negative intensive margin effect of q on the marginal benefit of
segmentation for cooperators. The marginal benefit of segmentation for each cooperator writes indeed
as ∂VC,C

∂ρ = (G + L)(1− q) and it declines with the frequency of cooperators q. As the population
becomes more homogeneous in terms of cooperative individuals, random matching provides naturally
more encounters between cooperators and the payoff benefit for a cooperator to separate himself from
defectors gets smaller.

At the same time, there is also a positive extensive effect of q, due to the fact that when the
cooperative group increases in size, it has more political influence in the collective choice problem
determining the optimal value of segregation. The aggregate effect of q on q ∂VC,C

∂ρ = (G + L)(1− q)q is
therefore non monotonic, increasing for low values of q and decreasing for high values of q.

In a symmetric way, the aggregate marginal gain of segmentation for defectors
(1− q) ∂VNC,NC

∂ρ = −(1− q)qB < 0 is negative and also a non monotonic function of q. Because of
this, it is clear that defectors do not have any incentive to invest in ρ. Combining both, the aggregate
weighted social welfare benefit of segmentation is then simply

q
∂VC,C

∂ρ
+ (1− q)

∂VNC,NC

∂ρ
= (G + L− B)q(1− q)

11 An alternative political process could be to allow for some deterministic voting decision on ρ inside the comunity. This creates
a discontinuity of the endogenous degree of assortative matching as a function of the fraction of cooperators q (depending on
whether there is a ccoperative or non cooperative majority), and consequently a technical difficulty for the application of
the theorems of reaction diffusion equations in the spatial context. Our stylized smooth description of collective decision
making at the community level preserves enough continuity for the theorems of reacrion diffusion to be applied without
problems in our context.

12 The cost Ψ (ρ) of setting up an assortative matching institution with parameter ρ is financed by lump-sum taxes on all
individuals in the community.
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and it is also non monotonic in q, reflecting the conflicting extensive and intensive margins effects for
the two groups.

In a non spatial context, the dynamics of cooperators writes as:

q̇ = (1− ρ)[G + L− B]q(1− q)[q− q∗(ρ)]

with q∗(ρ) =
(L− δ/2)− ρ(G + L)
[G + L− B](1− ρ)

Observing that q′∗ρ (ρ) =
−(G + δ/2)

[G + L− B](1− ρ)2 < 0, we assume that q∗(0) =
L− δ/2

G + L− B
< 1, or

B− δ/2 < G, so that we can study the case in which there exists just one interior equilibrium. Note
also that

q∗(ρ̂) = 0 ⇔ ρ̂ =
L− δ/2
G + L

< 1.

We can prove that indeed ρ̂ < 1/2 (see the Appendix B.3).
Substituting the optimal value of community segregation ρ̃(q), the dynamics can thus finally be

rewritten as
q̇ = [1− ρ̃(q)][G + L− B]q(1− q)[q− q∗(ρ̃(q))] (11)

The following lemma, whose proof is relegated to the appendix, characterizes the cultural steady
states of the non spatial dynamics with endogenous segmentation:

Lemma 1. If ψ′′′ ≤ 0 and ψ′′(1) >
(G + L)2

(G + δ/2)
we have that q = 0 and q = 1 are two stable equilibria and

there exists a unique interior unstable equilibrium qs ∈ (0, 1).

The dynamics are illustrated in Figure 2. On Figure 2, we plot in the space (ρ, q) the two curves
ρ = ρ̃(q) and q = q∗(ρ); under our assumption B− δ/2 < G, they only cross at one interior point
qs ∈ (0, 1). It is easy to see that for all q < qs, we have q < q∗(ρ̃(q)) and therefore q̇ < 0. On the
opposite for all q > qs, we have q > q∗(ρ̃(q)) and consequently q̇ > 0.

q

q*(0)

1

ρ( q)

q*(ρ)

~

ρ0

qs

ρs
ρ̂ 1/2

Figure 2. Graphic of ρ̃(q) and q∗(ρ) and cultural dynamics.
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4.2. Adding the Spatial Structure

We now add the spatial structure as we did in the basic model with exogenous assortative
matching. The partial differential equation driving the spatial evolution of the culture of cooperation
in the domain x ∈ R writes now as:{

∂q
∂t −

∂2q
∂x2 = [1− ρ̃(q)][G + L− B]q(1− q)[q− q∗(ρ̃(q))]

0 ≤ q0(x) ≤ 1.
(12)

As we saw before, the sign of the speed of the traveling wave is given by the sign of the integral
of the reaction term, i.e., the right-hand side of (12).

sign c = sign
∫ 1

0
[1− ρ̃(q)]q(1− q)[q− q∗(ρ̃(q))]dq

where we have used the fact that G + L− B > 0.
In order to have more precise analytic results, we parametrize the cost function as ψ(ρ) = αψ0(ρ)

with α > 0. From this, it follows that the optimal institutional degree of segregation ρ̃(q, α) is
determined by:

ψ′0(ρ̃) =
q(1− q)(G + L− B)

α

and we have limα→0 ρ̃(q, α) = 1 and limα→∞ ρ̃(q, α) = 0.
Since ψ′ is monotonic in ρ, for all q ∈ [0, 1] , we obtain that ρ̃(q, α) < ρ̂ when

α >
G + L− B

4ψ′0(ρ̂)
:= α̂ 13. In the sequel, we will therefore limit our attention to α ∈ (α̂, ∞), ensuring

therefore that for all q ∈ (0, 1) the interior steady state q∗(ρ̃(q, α)) is strictly positive.
We obtain the following characterization of a traveling wave with endogenous assortative

matching institutions:

Proposition 3. There existsBmax ∈ (G + δ− L, G + L] such that:

• if B < G + δ− L, there exists a traveling wave for all α ∈ (α̂, ∞), such that an initially localized cluster of
cooperators may invade the full spatial population;

• if G + δ− L < B < Bmax, there exists α̃ ∈ [α̂, ∞) such that for α ∈ (α̂, α̃) there is a traveling wave
with positive speed such that a localized cluster of cooperators may invade the full population ; conversely,
for α ∈ (α̃, ∞) there exists a traveling wave such that a localized cluster of defectors may invade the
full population;

• if B > Bmax there exists a traveling wave for all α ∈ (α̂, ∞) such that a localized cluster of defectors may
invade the full population.

The proof of the proposition is relegated to the appendix but is mainly based, as in the case of the
exogenous institution, on the computation of the sign of the integral

I(α) =
∫ 1

0
[1− ρ̃(q, α)]q(1− q)[q− q∗(ρ̃(q, α))]dq

that characterizes the sign of the speed of diffusion of a traveling wave solution of (12).

13 Indeed, all q ∈ (0, 1) ρ̃(q, α) < ρ̂ when maxq(ψ′(ρ̃(q, α))) < ψ′(ρ̂), that is when ψ′0(ρ̂) > maxq(ψ′0(ρ̃(q, α))) =
G + L− B

4α
;

which in turn translates into α >
G + L− B

4ψ′0(ρ̂)
:= α̂.
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The first part of the previous proposition states that when the gains from cooperation
(material payoff, moral payoff or both) are high enough, a localized cluster of cooperators above
the threshold may invade the whole population by slowly diffusing spatially independently of the
cost of building an assortative institution that protects locally the cooperators. Importantly this
cultural diffusion process is accompanied by a spatial institutional life cycle process. When cooperative
preferences diffuse to a new location x, cooperators at this location start to use their “political
influence” (as reflected by their local frequency) to promote the building up of an assortative matching
institution that protects them from interacting with defectors. Thanks to that, in that location x, the
intergenerational incentives to transmit cooperative preferences are further enhanced locally, and the
proportion of individuals q = q(x, t) endowed with a culture of cooperation keeps on growing in the
community. This in turn supports a steadily increasing equilibrium institutional level of assortativity
ρ̃(q, α) in the community. This positive interaction between the cultural dynamics of cooperative
preferences and the institutional dynamics of assortativity continues until the frequency of cooperators
crosses a certain threshold. At this stage, there are enough cooperators in the local community that it
becomes less worth paying the cost of a highly selective social matching institution. Consequently, the
equilibrium institutional degree of assortativity ρ̃(q, α) starts to decline, while the cultural diffusion of
cooperative preferences steadily increases. This process goes on up to the point where the community
is fully composed of cooperators and the assortative matching institution is abandoned because of its
positive cost.

Interestingly, during the diffusion of the culture of cooperation in a local community, the life cycle
of the local institution of assortative matching provides an example where the institutional and cultural
dynamics exhibit a first phase of dynamic complementarities (with positive feedbacks between the
evolution of assortative matching institution and the diffusion of the culture of cooperation), and then
a second phase of dynamic substituabilities (where on the contrary the assortative matching institution
coevolves negatively with the culture of cooperation).

The second part of the proposition highlights the case where the gains of cooperation take
intermediate values, not high enough to always ensure the diffusion of a culture of cooperation and
not too low to always induce defectors invasion. In this case, when institutional building is not too
costly (associated with low values of α, i.e., α ∈ (α̂, α̃)), it can help a localized cluster of cooperators to
diffuse in the whole space and invade the whole population. Conversely, the proposition also says
that, if the cost to maintain an assortative matching institution is too high (associated with values of α

such that α ∈ (α̃, ∞)), there exists a traveling wave in which now a localized cluster of defectors is able
to invade a population of cooperators by diffusing in the whole space.

Lastly, the third part of the proposition states that when the gains of cooperating are too low,
a localized cluster of defectors above the threshold may invade a population of cooperators by slowly
diffusing spatially independently of the cost of building an assortative institution.

4.3. Diffusion of the Endogenous Institution

As already noted, when cooperators are able to invade the whole population, the endogenous
assortative matching institution that supports such diffusion of a culture of cooperation follows a life
cycle process as described in Figure 3. As cooperative preferences start to appear in sufficient frequency
in a given place x, the institution of assortative matching emerges as well at x, and increasingly helps
cooperator individuals to segregate. This promotes further a local cultural change biased towards
preferences for cooperation. When the local frequency of cooperators passes a threshold, the local
institution of assortative matching enters in a declining phase and slowly disappears from location x.
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Figure 3. Qualitative illustration of the dynamics of the endogenous institution when cooperators
are able to invade. The x axis represents the space while the orange arrow gives the direction of
the time-evolution.

It is useful to compare the case where the level of the institution is exogenously settled
(see Section 4) to the case where the population can decide endogenously the degree of social
segmentation associated to the institution.

For this, recall from Proposition 2 that for the case of an exogenous institution of assortative
matching there is a threshold of assortativeness ρ∗ = B+L−δ−G

B+L+G such that with any given matching
institution with assortativeness ρ > ρ∗, there exists the possibility of the spatial diffusion of a preference
for cooperation (i.e., the existence of a traveling wave of a culture of cooperation).

Recall as well from (10) that the highest degree of social segmentation ρmax(α) that can be obtained
with an endogenous institution associated with an implementation cost ψ(ρ) = αψ0(ρ) is given by
the condition

αψ′0(ρ) = max
q∈[0,1]

q(1− q)(G + L− B) =
(G + L− B)

4

Then we have the following proposition:

Proposition 4. When G + δ− L < B < Bmax, for any α ∈ (α̂, α̃) such that there is a traveling wave allowing
cooperators to invade the full population, the maximum degree of segmentation ρmax(α) generated along that
wave by the assortative matching institutions is such that ρmax(α) > ρ∗.

This proposition explores the intermediate parameters case G + δ− L < B < Bmax where both
traveling waves for full diffusion of cooperative preferences and diffusion of defector preferences
can exist depending on the cost of the institution. It says that along a traveling wave that allows the
spatial diffusion of the culture of cooperation with an endogenous assortative matching institution
(i.e., when the cost of institutional building is not too high with α ∈ (α̂, α̃)), this institution, at its
peak, always segments more than the minimum degree of segmentation ρ∗ necessary to get the same
diffusion of cooperative preferences with exogenous assortative matching. This highlights the fact
that along its life cycle associated to the diffusion of the preferences for cooperation (see Figure 4),
the local endogenous matching institutions both start with a low degree of assortativity and steadily
become more separative than what would be necessary to allow the diffusion of cooperation with
exogenous assortative matching. These two elements reflect the importance of the joint interaction
between institution building and diffusion of preferences that is not taken into account in Section 4
with exogenous matching institutions.
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Figure 4. This figure compares the case where the level of the institution is exogenously settled at ρ∗ to
the case where the population can decide endogenously the degree of social segmentation associated
to the institution, ρ(α).

5. Conclusions

In this paper, we study the dynamic and spatial evolution of cooperative behavior and endogenous
assortative matching institutions that protect cooperators. We consider cooperation as a cultural trait
transmitted via an endogenous socialization mechanism that includes the usual vertical and oblique
channels at the local level as well as a random horizontal spatial component. First, we consider
an exogenous assortative matching institution that allows cooperators to partially segment their
social interactions with defectors. Considering a continuum space structure and using mathematical
techniques and results from reaction-diffusion equation theory, we investigate the conditions for a
culture of cooperation to invade the whole spatial population and we characterize the determinants of
its asymptotic speed. We then endogeneize the assortative matching institution assuming that it is set
at the community level according to the proportion and political power of the cooperators. When the
technology of institution building is relatively efficient, a protective institution can appear in new
places thanks to the spatial random diffusion of cooperation. Along the spatial diffusion process of the
cooperation trait, local assortative matching institutions follow a life-cycle process by which the degree
of assortativity first gradually grows and then declines as the preference for cooperation becomes
majority inside the community.

In future research, this model of spatial diffusion of culture and institutions could be extended
in various directions. First, our collective decision process for the choice of an assortative matching
institution at the community level could be expanded to take into account more realistic political
mechanisms reflecting the relative power of the different groups. Additionally, one may think about
expanding our analysis of spatial cultural and institutional diffusion to other types of strategic
interactions, such as coordination or anti-coordination game structures, rather than the cooperation
situation that we describe here. Also, we could introduce the possibility for purposeful directional
movement of cooperators and defectors according to some explicit payoff relevant motivation.
Finally, our reaction-diffusion framework highlights two important forces that may affect the spatial
composition of cultural and institutional structures in a society: cultural replicator mechanisms and
random diffusion of (cultural) information at the local level. Introducing cost/benefit margins on
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cultural transmission motivation and institution building allowed us to relate these two forces to
economic fundamentals like returns to cooperation, intrinsic motivation for cooperation or technology
features on institution building of screening and segregation. We hope that the ideas and techniques
that we developed here in a somewhat abstract framework can be stepping stones for more applications
in specific economic and social contexts.
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Appendix A. Cultural Transmission

We provide here some microfoundations for our cultural replicator in (3).
Following Bisin and Verdier (2001) [19], we endogenize the vertical transmission rates τt

i by
assuming that parents have a motivation to spend resources to transmit their own trait to their
offspring (to simplify notations from here onward we omit time superscript whenever there is no risk
of confusion).

More precisely we assume that a parent of type i ∈ {C, NC} is paternalistic and chooses his
socialization rate τi in order to maximize the following utility function:

Vi =
[

PiiVii + PijVij
]
− C(τi) (A1)

where Vii is the expected payoff obtained by a child that takes the same trait i as his parent, and Vij

is the expected payoff obtained by a child taking the other cultural trait j 6= i in the group, but as
perceived through the filter of the preferences of his parent of trait i. Finally, C(τi) represents the cost
of socialization, i.e., the cost of the resources (time, money etc.) that the parent has to spend to transmit
his trait to his child. According to the payoffs of the previous game and our assortative matching
hypothesis, the utilities for a cooperator and a defector having a child like themselves will be:

VC,C = δ + G[ρ + (1− ρ)q]− L(1− ρ)(1− q)

VNC,NC = (1− ρ)qB

and

∆VC = VC,C −VC,NC = δ + G[ρ + (1− ρ)q]− L(1− ρ)(1− q)− (1− ρ)qB

∆VNC = VNC,NC −VNC,C = (1− ρ)qB− [G[ρ + (1− ρ)q]− L(1− ρ)(1− q)]

The standard [19] model assumes a cultural substitution mechanism of transmission of the
cooperative trait whereby minorities do a greater effort to purposefully socialize their offspring.
Such effect always leads to long turn cultural heterogeneity. As we are interested in the diffusion of a
cultural trait rather than its long run persistence, we abstract here from such effect by considering a
form of socialization costs that neutralizes cultural substituability. Specifically we assume the following
socialization cost functions:

C(τC) =
τ2

C
2d

(1− q), C(τNC) =
τ2

NC
2d

q
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where the terms 1− q and q help neutralizing the cultural substitution mechanism that is intrinsic in the
socialization mechanism á la Bisin-Verdier.

Solving parents’ maximization problem (A1), we obtain:

τC = d · ∆VC, τNC = d · ∆VNC.

Since we want the two previous endogenous probabilities τC and τNC to be positive, we impose

that G > B− L and ρ <
B− G

B
. The evolutionary dynamics of the cooperators thus writes

q̇ = q(1− q)(∆VC − ∆VNC)

= q(1− q)[δ + 2(ρG− (1− ρ)L) + 2(1− ρ)(G + L− B)q].
(A2)

Appendix B. Proofs of Propositions

Appendix B.1. Proof of Proposition 1

We first need to show that the set of hypothesis (4) imply the ones we had made before to have a
social dilemma with positive endogenous probabilities. While all the hypothesis concerning the social
dilemma game and the τc are implied trivially by (4), the last hypothesis concerning the endogenous
probability for defectors τNC deserves some computations. Since

B− G
B

>
B− G
B + L

hypothesis (4) guarantees also that

B− G
B

>
L− δ/2
G + L

:= ρmax (A3)

Therefore assuming ρ < ρmax implies that ρ < (B− G)/B
We now want to study the equilibria of Equation (3) and their stability. In order to simplify the

notation we will denote its right-hand side by f (q). Equation (3) admits two trivial fixed points q = 0
and q = 1. We now want to prove that under hypothesis (4) it admits also an interior fixed point,
q∗ ∈ (0, 1). Imposing the condition f (q∗) = 0 we find

q∗ =
δ/2 + ρG− (1− ρ)L
−(1− ρ)(G + L− B)

In order to have q∗ > 0 and q∗ < 1 we have to impose

G ≥ B− L
L− δ/2
G + L

:= ρmax > ρ > ρmin :=
B− G− δ/2

B
.

Such a ρ exists if and only if ρmax > ρmin, i.e.,

(L− δ/2)B > (B− G− δ/2)(G + L) (A4)

and this is always the case since condition (A4) simply translates into δ > −2G.
We have thus shown that the conditions (4) are sufficient to have the existence of the interior

equilibrium q∗.
We can now easily show that under the same conditions we are in a classical bistable case.

The bistable case is characterized by the presence of three equilibria (in our case q = 0, q = 1 and q∗)
of which two ( q = 0 and q = 1) are stable, i.e., attractive, and one (the interior one q∗) is unstable,



Games 2018, 9, 58 19 of 27

i.e., if we move slightly away from q∗ we are going to converge either to the state q = 0 or to q = 1. In
order to have a bistable case we need that ∂q f (0) < 0 and ∂q f (1) < 0. The first condition writes

∂q f (0) = δ + 2(ρ(G + L)− L) < 0 ⇐⇒ L− δ/2
G + L

> ρ

and this is always the case under (4).
The second condition writes as

∂q f (1) = −[δ + 2(ρG− (1− ρ)L) + 2(1− ρ)(G + L− B)] < 0 ⇐⇒ ρ >
B− G− δ/2

B

and this is always the case under (4).
We have thus shown that under the hypothesis (4), the problem of cooperators and defectors

we presented is a bistable case where the interior equilibrium q∗ is unstable while the two extreme
equilibria, q = 0 and q = 1, are stable. Therefore, if 0 ≤ q(0) < q∗ we will, in the long run, converge to
the state q = 0 and have the extinction of cooperators, while if q∗ < q(0) ≤ 1 we will converge to the
state q = 1 and have the extinction of defectors.

Appendix B.2. Proof of Proposition 2

Since [(1− ρ)(G + L− B)]1/2 > 0, imposing the condition c > 0 we find that

ρ∗ =
B + L− (δ + G)

B + L + G
.

The only thing we need to check is that, under the set of hypothesis (4), ρ∗ < ρmax.
We thus need to show that

L− δ/2
G + L

>
B + L− (δ + G)

B + L + G

Developing and simplifying some terms this inequality can be rewritten as

−G(G + L− B) <
δ

2
(G + L− B)

and since G + L− B > 0 it becomes

−G <
δ

2
that is always verified since we have assumed both δ and G to be positive.

Appendix B.3. Proof of Lemma 1

We now want to find the conditions under which we are in a bistable case as in the exogenous
institution section. We define Θ(q) = q− q∗(ρ̃(q)) and observe that Θ(0) = −q∗(ρ̃(0)) = −q∗(0) < 0
and Θ(1) = 1− q∗(ρ̃(1)) = 1− q∗(0) > 0. Note also that

q∗(ρ̂) = 0 ⇔ ρ̂ =
L− δ/2
G + L

< 1.

We can prove that indeed ρ̂ < 1/2. By contradiction if ρ̂ > 1/2 we should have that G < L− δ < 0
and this is is not possible since G is the payoff gain from cooperation when this is played by both
players and we have assumed it to be positive.

In order to be in a bistable case we need to find conditions that ensure the existence of an unique
qs ∈ (0, 1) such that Θ(qs) = 0 and Θ′(qs) > 0.
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Θ′(qs) = 1 +
(G + δ/2)(1− 2qs)

[1− ρ̃(qs)]2ψ′′(ρ̃(qs))

≥ 1− (G + δ/2)
[1− ρ̃(qs)]2ψ′′(ρ̃(qs))

≥ 1− (G + δ/2)
[1− ρ̂]2ψ′′(ρ̂)

= 1− (G + L)2

(G + δ/2)ψ′′(ρ̂)
> 0 ⇔ ψ′′(ρ̂) >

(G + L)2

(G + δ/2)

(A5)

where we have used that qs = q∗(ρ̃(qs)) and therefore qs > 0 implies q∗(ρ̃(qs)) > 0 that in turn implies
ρ̃(qs) < ρ̂.

We have thus shown that there exists a unique qs ∈ (0, 1) such that Θ(qs) = 0, Θ(q) < 0 ∀ q < qs

and Θ(q) > 0 ∀ q > qs.

Appendix B.4. Proof of Proposition 3

We define

I(α) =
∫ 1

0
[1− ρ̃(q, α)]q(1− q)[q− q∗(ρ̃(q, α))]dq

and we want to compute its sign.

I′(α) =
∫ 1

0
[−∂αρ̃(q, α)q(1− q)[q− q∗(ρ̃(q, α))]− [1− ρ̃(q, α)]q(1− q)∂ρ̃q∗(ρ̃(q, α))∂αρ̃(q, α)]dq

=
∫ 1

0
[−∂αρ̃(q, α)q(1− q)[q− q∗(ρ̃(q, α)) + (1− ρ̃(q, α))∂ρ̃q∗]dq

Since [q − q∗(ρ̃(q, α)) + (1 − ρ̃(q, α))∂ρ̃q∗] < 0 we have that sign[I′(α)] = sign[∂αρ̃(q, α)] < 0.
Moreover

lim
α→∞

I(α) =
∫ 1

0
q(1− q)[q− q∗(0)]dq =

1
12
−

q∗0
6

lim
α→∞

I(α) > 0 ⇔ q∗0 <
1
2

.

Therefore for any q∗0 ∈ (0, 1
2) we will have that I(α) > 0 ∀ α ∈ (α̂, ∞), meaning that there will

exist a traveling wave with positive speed, i.e., cooperators can invade.
For q∗0 ∈ (1

2 , 1), we compute the value of I(α̂). In order to do so, we compute the integral by
substitution using the new variable ρ̃. Since the function defining implicitly ρ̃ is not monotonic in the
interval q ∈ (0, 1) we split the integral in two parts q ∈ (0, 1/2) and q ∈ (1/2, 1). We therefore define

ρ̃max =

[
ψ
′
0

(
G + L− B

4α

)]−1

and observe that when α = α̂ we have that ρ̃max = ρ̂. In order to do the substitution of variables we
now compute q as a function of ρ̃ in the two intervals. We have

q1 =
1−

√
1− 4α

G+L−B ψ
′
0(ρ̃)

2
q2 =

1+
√

1− 4α
G+L−B ψ

′
0(ρ̃)

2

dq =
αψ
′′
0(ρ̃) d ρ̃

(G + L− B)(1− 2q)
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And using that α̂ =
G + L− B

4ψ′0(ρ̂)
we have that

dq|α=α̂ =
ψ
′′
0(ρ̃) d ρ̃

4ψ
′
0(ρ̂)(1− 2q)

and

q(1− q)|α=α̂ =
ψ
′
0(ρ̃)

4ψ
′
0(ρ̂)

.

and

q1|α=α̂ =
1−

√
1− ψ

′
0(ρ̃)

ψ
′
0(ρ̂)

2
q2|α=α̂ =

1+
√

1− ψ
′
0(ρ̃)

ψ
′
0(ρ̂)

2
Therefore

I(α̂) =
∫ 1

0
[1− ρ̃(q, α̂)]q(1− q)[q− q∗(ρ̃(q, α̂))]dq

=
∫ ρ̂

0
[1− ρ̃]

ψ
′
0(ρ̃)

4ψ
′
0(ρ̂)

[q1− q∗(ρ̃)]
ψ
′′
0(ρ̃) d ρ̃

4ψ
′
0(ρ̂)(1− 2q1)

+
∫ 0

ρ̂
[1− ρ̃]

ψ
′
0(ρ̃)

4ψ
′
0(ρ̂)

[q2− q∗(ρ̃)]
ψ
′′
0(ρ̃) d ρ̃

4ψ
′
0(ρ̂)(1− 2q2)

We substitute and integrate by parts and after tedious but straightforward computations we obtain

I(α̂) =
∫ ρ̂

0

ψ
′
0(ρ̃)

[4ψ
′
0(ρ̂)]

2

ψ
′′
0(ρ̃)(√

1− ψ
′
0(ρ̃)

ψ
′
0(ρ̂)

) (G + L + B)
(G + L− B)

(ρ̃− ρ∗)dρ̃

where we have defined, as in the previous exogenous section, ρ∗ =
B + L−G− δ

G + L + B
. We can easily see

that a sufficient condition for I(α̂) to be positive is G + δ > B + L and it is equivalent to q0 < 1/2.

We now observe that since
(G + L + B)

(G + L− B)[4ψ
′
0(ρ̂)]

2
> 0 the sign of I(α̂) is given by the sign of

Ĩ(α̂) =
∫ ρ̂

0
ψ
′
0(ρ̃)

ψ
′′
0(ρ̃)(√

1− ψ
′
0(ρ̃)

ψ
′
0(ρ̂)

) (ρ̃− ρ∗)dρ̃

and

∂B Ĩ(α̂) =
∫ ρ̂

0
−ψ

′
0(ρ̃)

ψ
′′
0(ρ̃)(√

1− ψ
′
0(ρ̃)

ψ
′
0(ρ̂)

) 2G + L + δ

(G + L + B)2 dρ̃ < 0.

Since for B = G + δ− B we have that I(α̂) > 0 and ∂B Ĩ(α̂) < 0 there exists a Bmax > G + δ− B
such that I(α̂, Bmax) < 0. Moreover Bmax ≤ G + L since when B = G + L we have

Ĩ(α̂) =
∫ ρ̂

0
ψ
′
0(ρ̃)

ψ
′′
0(ρ̃)(√

1− ψ
′
0(ρ̃)

ψ
′
0(ρ̂)

) (ρ̃− L− δ/2
G + L

)dρ̃

=
∫ ρ̂

0
ψ
′
0(ρ̃)

ψ
′′
0(ρ̃)(√

1− ψ
′
0(ρ̃)

ψ
′
0(ρ̂)

) (ρ̃− ρ̂)dρ̃ < 0.
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Appendix B.5. Proof of Proposition 4

Assume G + δ− L < B < Bmax. We want to look at the sign of I(α∗) where α∗ is defined as
ρmax(α∗) = ρ∗. We have that

ψ
′
0(ρmax(α

∗)) =
G + L− B

4α∗
= ψ

′
0(ρ
∗)

Therefore α∗ = G+L−B
4ψ
′
0(ρ
∗)

> α̂ and

I(α∗) =
∫ ρ∗

0

ψ
′
0(ρ̃)

[4ψ
′
0(ρ
∗)]2

ψ
′′
0(ρ̃)(√

1− ψ
′
0(ρ̃)

ψ
′
0(ρ
∗)

) (G + L + B)
(G + L− B)

(ρ̃− ρ∗)dρ̃ < 0

Since G + δ− L < B < Bmax we know that it exists α̃ < α∗ such that ∀ α ∈ (α̂, α̃) there exists a
positive traveling wave and cooperators may invade. Moreover, ρmax(α̃) > ρ∗, meaning that starting
from zero, the institution will grow and reach a higher level than the one required for invasion in the
case of an exogenous institution.

Appendix C. Derivation of the Laplacian as the Limit of a Local Random Walk in 1 Dimension

We will here briefly show how we can derive the laplacian from a random walk process. A slightly
more complex argument could be used for our density variable q(t, x), for a more detailed and
exhaustive explanation see [30], p. 395.

Since here we will limit our attention to the one dimensional case we will indicate with ∆ the

time/spatial increment while the 1 dimensional laplacian will be simply denoted by
∂2

∂x2 .

Let’s consider a particle that moves with a random walk and denote p(x, t) the probability that a
particle released at x = 0 at time t = 0 reaches location x at time t. At time t−∆t the particle was at
x +∆x or x−∆x. Thus if α and β are the probabilities that a particle will move to the right or to the left

p(x, t) = αp(x−∆x, t−∆t) + βp(x + ∆x, t−∆t), α + β = 1. (A6)

If there is no bias in the random walk α = β = 1/2. Expanding the right-hand side of (A6) in
Taylor series we get

∂p
∂t

=

[
(∆x)2

2∆t

]
∂2p
∂x2 +

(
∆t
2

)
∂2p
∂t2 + ...

We now pass to the limit ∆x→ 0 and ∆t→ 0 in such a way that (∆x)2 ' 2D̄∆t, where D̄ is called
diffusion coefficient, and we get

∂p
∂t

= D̄
∂2p
∂x2 (A7)

The random walk derivation of the laplacian we have done strongly relies on the assumption
that the limit (∆x)2 ' 2D̄∆t. Less restrictive hypothesis could be made to derive the laplacian but the
version presented here is the most intuitive one.

Appendix D. Numerical Simulations on Finite Spatial Domains With Exogenous Institutions

The previous results have been proved analytically for infinite spatial domains since on finite
domains the notion of traveling wave has no meaning. However, if the domain is finite but large
enough, the solution of the partial differential reaction-diffusion Equation (12) qualitatively follows
for some time the profile of a traveling wave. In this section, we present a Matlab simulation to
analyze how the spatial diffusion process will happen on a finite one dimensional domain and how
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the invasion fronts resemble to the profile of a traveling wave. For matter of simplicity, we run the
simulation, after imposing the normalization D = 1.

In the two simulations that we show in this section, we also have set q∗ = 0.3. We can easily
observe that, given an initial datum, the smaller is q∗ the faster is the invasion. On the contrary when
q∗ approaches the value 0.5 the initial datum needed for cooperators to invade should have a bigger
and bigger support. The two figures below show two numerical simulations for which an initially
concentrated cluster of preferences for cooperation (red line) slightly above the fraction q∗ = 0.3
(green dashed line) invades the whole space slowly reaching everywhere the quota q = 1. The thin
blue lines represent the time-evolution of the process (the pictures are taken every 8 units of time) and
the orange arrows show the direction of the invasion. We can easily see how the profile of the solution
resembles to the profile of the traveling wave we characterized for an infinite domain.

The first simulation uses as initial conditions the characteristic function of the interval [−2, 2]
while the second figure has as an initial datum a two picked cluster of cooperators. In this latter case,
we show that even when in a certain interval of the initial cluster’s domain cooperators are below the
critical non spatial threshold q∗ they can still invade the whole space.
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Figure A1. The figure shows a numerical simulation in one dimension where an initially concentrated
cluster of cooperators (red line) above the fraction q∗ (green dashed line) invades the whole space
slowly reaching everywhere the quota q = 1. The thin blue lines represent time-evolution and the
orange arrows show the direction of the invasion.
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Figure A2. The figure shows another numerical simulation in 1D where the initial datum is a two

picked cluster, namely: q0 =
0.8

cosh(x− 3)
+

0.8
cosh(x + 3)

. Even if in a certain interval of the initial

datum’s domain cooperators are below the threshold they can still invade the whole space.
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Figure A3. Starting from the left up going to the right and then to the following row, the values chosen
here are: q∗ = 0.1; q∗ = 0.2; q∗ = 0.3; q∗ = 0.35; q∗ = 0.3625; q∗ = 0.368975; q∗ = 0.3725; q∗ = 0.375.
We can see that for the last simulation, q∗ = 0.375, the initial datum we have chosen has not a big
enough domain to invade.

In this paper we have proven that it is possible even for an initially localized cluster of cooperators
to invade the whole population. However, according to the value of the intermediate unstable
equilibrium q∗, the initial cluster needs to have a bigger or smaller support in order to be able to invade.
Here we fix the support of the initial datum at the interval [−2, 2] putting the maximum number
of cooperators on this domain (q0 = 1 on [−2, 2]). We then show that as q∗ grows from q∗ = 0.1 to
q∗ = 0.375 the wave of advance of the cooperators slows its speed and at a certain point the initial
datum we have fixed is not sufficient anymore to invade and cooperators disappear.
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Appendix E. Reaction-Diffusion Equations, Definitions and Main Theorems

We will here briefly state some classical definitions and results in reaction-diffusion equations
that are useful in order to understand the analysis we have made. For a more detailed analysis see [30],
p. 395 or [33], p. 232.

Appendix E.1. Traveling Waves

Let’s consider a basic, homogeneous, reaction-diffusion equation:

∂ts− ∆s = f (s)

and assume that
f (0) = f (1) = 0; f Lipschitz.

To show general results, we here prefer to use a different notation and call the variable s instead
of q.

Definition A1. A traveling front (TF) is a solution of the form s(x, t) = v(ξ). Where the function v is obtained
after a change of variables, ξ = x− ct, and is a real function that solves the ordinary differential equation{

−v
′′ − cv

′
= f (v)

v(−∞) = 1; v(+∞) = 0
(A8)

The function f could be classified into three main categories

Appendix E.2. CASE 1: Monostable

0 1 s

f (s)

when f is positive ( f (s) > 0 ∀ s ∈ (0, 1)).
We have a particular subcase called KPP type when f is C1 near 0 and f (s) < f

′
(0)s ∀ s ∈ [0, 1].

Appendix E.3. CASE 2: Combustion or Ignition Type

0 1θ s

f (s)

when ∃ θ ∈ (0, 1) such that {
f (s) = 0 ∀ s ∈ [0, θ]

f (s) > 0 ∀ s ∈ (θ, 1).

In this case the reaction needs a certain threshold to start.
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Appendix E.4. CASE 3: Bistable

0 1 s

f (s)

θ

when ∃ θ ∈ (0, 1) such that {
f (s) < 0 ∀ s ∈ (0, θ)

f (s) > 0 ∀ s ∈ (θ, 1).

A classical theorem in reaction diffusion equation regarding the existence of traveling waves is
the following:

Theorem A1. In cases where f is of the Ignition type or bistable (CASES 2 and 3), there exists a unique speed
c for which there exists a solution v of (A8). This solution v is unique (up to shifts) and c has the sign of∫ 1

0 f (s)ds.
In the monostable case (CASE 1) there exists c∗ > 0 such that (A8) has a solution v if and only if c > c∗.

For fixed c the solution is unique (up to shifts).

In the the KPP case (CASE 1bis) c∗ = 2
√

f ′(0).

The proof of this result is not trivial and could be found in the founding papers of this literature
such as [34–36].
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