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Abstract: We consider a dominant platform provider operating both legacy and new platforms that
connects users with suppliers in a two-sided market context. In addition to the typical indirect
network effects in the two-sided market, backward compatibility works on the new platform.
Thus, users joining the new one can also enjoy the services provided by suppliers using the legacy
platform. Users and suppliers are linearly differentiated between two platforms as in the Hotelling
model and play a subscription game of choosing one platform at the lower level. The suppliers
in the new platform may suffer from congestion, which can be alleviated by platform provider’s
investment on the new one. The platform provider also determines price margins for the supplier
sides. Our equilibrium (eq.) analysis in the subscription game identifies an interior eq. (coexistence
of both platforms in both sides). Though the backward compatibility plays a stabilizing role for the
interior eq., its stability is fragile due to the network effects. Rather, some boundary eq.’s, where at
least one side tips to the legacy or the new platform, are more likely to be stable. The backward
compatibility is a key factor that characterizes the stable boundary eq.’s. The upper stage game is
led by the platform provider, which tries to maneuver the system toward one of the stable boundary
eq.’s using price margins and investment. The platform provider prefers an all-new boundary eq.
when the indirect network effect and the maximum price margin for the new platform are large; thus,
it puts a significant investment in the new one. With a small indirect network effect for suppliers,
however, the platform provider does not invest in the new platform and choose a separate boundary
eq. where two sides split into different platforms. Whether the user side completely tips to the new
one (completely separated eq.) or not (partially separated eq.) depends on the backward compatibility.
The relative advantage of the all-new eq. over the separate eq.’s in terms of social welfare from
both sides depends on the backward compatibility as well as the indirect network effects for the
new platform.

Keywords: two-sided market; platform development; indirect network effect; backward
compatibility; stage game; system dynamics; interior equilibrium; boundary equilibrium; stability
analysis; equilibrium choice

1. Introduction

Two-sided market models provide a new perspective to view the platform industries such as
credit cards, newspapers, telecommunications, Internet services, and many others (see References [1–3]
for more examples of the two-sided markets). In a two-sided market, two distinct parties are connected
to each other through a platform that constitutes a set of the institutional agreements necessary to
realize a transaction between these parties [2,4]. A key characteristic here is the presence of network
externalities or network effects between the two groups. Thanks to the network effects, the market
power of a dominant platform is expected to be quite stable across generations. Platform providers
of operating systems (OS; e.g., Windows, iOS, Android, etc.) and social network services (SNS; e.g.,
Facebook) present representative examples of this kind of successive dominance.

Games 2018, 9, 76; doi:10.3390/g9040076 www.mdpi.com/journal/games

http://www.mdpi.com/journal/games
http://www.mdpi.com
https://orcid.org/0000-0003-4308-1587
http://www.mdpi.com/2073-4336/9/4/76?type=check_update&version=1
http://dx.doi.org/10.3390/g9040076
http://www.mdpi.com/journal/games


Games 2018, 9, 76 2 of 24

Persistent dominance over successive generations in a two-sided market, however, requires a
special type of network effect that enables the maintenance of compatibility between current and
new generations: that is, the backward compatibility. The representative global platforms introduced
above suggest an important role of the backward compatibility for sustaining their dominant positions.
However, different platform industries show different patterns of platform management (old vs new vs
both) in the presence of the backward compatibility. For example, some users of PC OS (e.g., Windows)
take their automatic OS version updates in stride and others do not (as of May 2018, 31.3% for Windows
10.x vs 43.8% for Windows 7.x worldwide, source: https://www.netmarketshare.com), while suppliers
(third-party software providers) are quite slow in adjusting their applications to the latest version.
On the other hand, both users and suppliers (app developers) of iPhone iOS promptly upgrade their
programs and toolkits to the new version of the OS. It did not take a long time for the latest iOS version
(iOS 11.x) to reach more than 70% after its first release in 2017 spring (as of 27 June 2018, 78.0% for iOS
11.x vs 11.7% for iOS 10.x worldwide, source: https://david-smith.org/iosversionstats).

Though the backward compatibility is crucial for strategic decisions of the platform providers,
especially planning to upgrade their platforms, many studies on the two-sided markets have paid little
attention to this feature. To our knowledge, there have been few studies presenting a stylized game
model for this issue. We explicitly deal with the version management of a dominant platform provider
and the role of the backward compatibility together with other typical features in the two-sided
markets (e.g., indirect network effects).

The paper is organized as follows. In the next section, we present some prior works relevant to
the two-sided market and compatibility issues. Section 3 presents a stylized model incorporating the
backward compatibility into a two-sided market framework developed on the basis of Hotelling’s
linear differentiation model. The second half of this section analyzes various equilibria and their
stabilities. In the next section, we conduct analyses of a dominant platform provider’s decisions on its
platform upgrade and present some experimental results to confirm the analyses. Lastly, Section 5
summarizes key findings, discusses implications of this study to platform strategy, and concludes the
paper by providing future research directions.

2. Two-Sided Market and Compatibility: Literature Review and Our Approach

Studies on two-sided markets could have been developed around the compatibility issues.
When References [5,6] paid attention to the paradigm shift in the software industries and introduced
the notion of the indirect network effect, the compatibility in the system markets [7–9] was one of
the key features to study: for example, product compatibility with rivals and cross-generational
(or vertical) compatibility. Early studies on the two-sided markets such as References [10,11] also
touched on some issues regarding the compatibility under competition and the backward compatibility.
Number-theoretical studies on the two-sided markets, however, focused on a pricing structure designed
by a platform and strategic implications or empirical tests of the indirect network effects in practice.
Our study aims at incorporating not only typical core features of the two-sided markets—indirect
network effect and price structure—but also the backward compatibility into a stylized model.

Our survey starts with theoretical literature on the network effects and the two-sided markets,
which includes some early works like [1–3,10–14], to name a few. They provide widely applicable
models and deal with markets for credit cards, console games, PC software, advertising through
web portals and yellow pages, etc. ([4,15]), which provide an excellent overview of the two-sided
market studies. The majority of the two-sided market studies focus on the pricing structure together
with a subsidization strategy across two sides since it serves as a fundamental driver for maximizing
profits of the platforms in the two-sided markets. Not much attention, however, has been paid to the
compatibility issues, in particular, the backward compatibility arising at the moment of migration from
the current to a new platform. For competing platforms, much attention has been paid to changes
in the competitive landscape with switching costs or compatibility. For example, Reference [16]
considers the interaction effects of switching costs and network externality in a dynamic game frame.

https://www.netmarketshare.com
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It identifies the conditions of overturning the classical U-shaped relationship between the degree of
switching costs and platform’s pricing levels. As a result, lowering switching costs does not guarantee
an improvement of the social welfare. Reference [17] deals with the issue of switching costs in the
two-sided markets, where the switching costs are endogenously determined. Moreover, by considering
content procurement control and sequential entry of the platform, it reveals that the structure and
origin of the switching costs are also the key elements of the competition.

Compatibility with a rival’s product or service under network effects as in telephone
networks [5,18–22] has drawn particular interests. Here, incompatibility could produce a tipping,
where all the new customers join one network [23]. Reference [6] presents a dynamic model where
competing firms may have an incentive to implement compatibility in their products to supplement
price competition. Along this line, Reference [24] shows that compatibility may be utilized for
alleviating research and development (R&D) competition at the stage of new product development.
References [25,26] also present strategic aspects of compatibility with complementary products.
Reference [27] develops a dynamic model which deals with consumer entrance choice upon the
chance of emerging new technology. Reference [28] provides a two-stage game model for compatibility
choice decision and suggests the notion of planned obsolescence. This research track could have
naturally extended to competing platforms in a two-sided market. However, there have not been many
studies addressing the compatibility issue in a two-sided market except the following.

However, the compatibility issue in the two-sided markets has been mostly addressed within the
context of platform competition. Reference [29] examines the effect of users’ multi-homing decisions on
compatibility between two networks. Reference [30] extends the frameworks of [27,28], and provides
a stylized model for compatibility mode choice (“compatibility regime” in their term) to explain
how the mode choice depends on some characteristics (e.g., interdependence of installed bases and
market growth rate) of the two-sided markets. Reference [31] deals with a monopoly platform in a
two-sided market, which has an incentive to maintain incompatibility for foreclosing competition in
its complementary market. Reference [32] also extends the scheme of planned obsolescence [28] to the
two-sided markets. References [17,33] examine the cases of competing platforms, where incompatibility
gives rise to benefits for dominant platform player. Reference [34] studies compatibility mode choice
of two competing platforms in a two-sided market. They also show how each phase of the product life
cycle affects the compatibility strategy of platforms. References [4,35] focus on the inter-generational
nature of information technology (IT) services via the backward compatibility as well as the typical
indirect network effect in the two-sided markets. Both provide empirical results for particular platform
industries: Reference [35] for hand-held video console games and Reference [4] for wireless carriers’
mobile Internet services. Both also address the mechanism of the double-edged sword nature of the
backward compatibility—i.e., a tool for extending the lifespan of existing platforms and a catalyst
for migration toward new platforms—and show these effects in their respective industries. Among
these studies, however, only References [30,35,36] directly address the backward compatibility in the
two-sided market framework.

The primary interest of this study is also the roles of the backward compatibility as well as
other typical features of the two-sided markets (i.e., indirect network effects and pricing structure)
in platform switch. However, our perspective and approach to the backward compatibility are quite
different from those in the prior studies. First of all, the main research objective here is to address
the platform selection issue in a more general two-sided market context. Thus, when developing a
model, we do not have a particular digital service in mind, while References [4,30,35] are all closely
related with the game console industries. Instead, the study background in mind is broader IT service
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platforms (e.g., OS platforms in mobile and personal computer (PC), SNS platforms, etc.), which do
not necessarily depend on durable complementary goods like a game console.1

Our approach is clearly different from those in the empirical studies like References [35,36]
since we build a conceptual, stylized model to frame the backward compatibility issue from the
two-sided market perspective. In this sense, we pursue a similar track to the one in Reference [30].
For example, we also develop a stage game model including the platform development decision of a
dominant platform provider. However, their context and modeling approach is very different from
ours. Reference [30] considers the backward compatibility as a decision variable (similar to the role
of the converter in Reference [20]) of a monopoly platform provider. Furthermore, their model is
constructed on the diffusion scheme employed in Reference [27] for deriving a dynamic implication
from the perspective of market growth. By contrast, our main focus is not to determine an optimal
level of the backward compatibility, but to identify a platform selection as an equilibrium (hitherto
undiscovered or insufficiently dealt with in the two-sided market studies). Thus, we sacrifice the
endogeneity of the backward compatibility in our modeling. Instead, we are now free of presuming
a set of compatibility regimes (possible configurations of compatibility implementation across two
platforms) employed in Reference [30]. Furthermore, our perspective on the dynamics of the platform
development suggests a stability analysis so that we can verify whether a candidate equilibrium
(i.e., a possible compatibility mode) is sustainable or not.

In our modeling and analysis section, one could also easily find out many different aspects
between this study and the previous ones. For example, we do not consider the possibility of
technological breakthrough across the successive platforms [28,30]. Instead, we assume that the
technological difference between the two platforms is modest. While our model incorporates possible
price discrimination between two platforms as in Reference [28,37] (however, neither in the two-sided
market framework), it focuses on a margin of price discrimination within which the platform provider
could utilize its pricing strategy. We are also interested in the investment decision of the dominant
platform provider for alleviating congestion in a new platform, which is a quite common problem in
IT service platforms.

Last but not least, the equilibrium analysis here will be somehow new to traditional economics
literature. In addition to the traditional interior equilibrium, we pay much attention to the boundary
equilibria, each of which represents an extreme compatibility mode. Furthermore, we analyze not only
static equilibria but also their stabilities in terms of system dynamics. Accordingly, despite the static
nature of the equilibria, we could provide some insights to the dynamics of platform selection with
regard to the backward compatibility as well as other key features of the two-sided markets.

3. Baseline Model and Equilibrium Analysis

3.1. Baseline Model: Structure, Players, and Payoffs

We consider a monopoly or a dominant platform provider that operates two platforms A and
B. Without loss of generality, we assume that those platforms A and B are based on the current
technology and new emerging technology, respectively. Both platforms connect suppliers and users,
thereby exerting the indirect network effect in a two-sided market explained in the previous sections.
Even when both platforms share the same ownership, two platforms may virtually compete to achieve
the market share in each side. This will happen when a new version of the platform was developed
in a different department of the same platform provider. Or, a platform provider (as part of its

1 This statement does not mean that IT service platforms do not require hardware. Upon (at least) version update, however,
these platforms do not seriously take care of relevant hardware or durable goods (if any) such as a PC and mobile handset.
For example, we do not have to change PC when upgrading OS. However, in the case of video console games, users must
change their hardware (console) in order to enjoy a new version of game applications.
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business strategy) may let different versions of the platform be selected through a competition in the
marketplace. Release of new version for OS will be an example of this case.

In this study, we consider the case where the new platform (B) provides all the services that the
current platform (A) does. For example, platform B represents a recent version of mobile OS that runs
most apps developed for the previous OS version. Another example is a newly deployed fast line
Internet connection that guarantees high-resolution video streaming (e.g., UHD Netflix service) as well
as traditional Internet services like email and web surfing. Thus, platform B is “backward compatible”
in the sense that it may accommodate all the services designed for platform A.

The backward compatibility may be related to the vertical as well as the horizontal differentiation.
This study, however, focuses on the latter and postulates the relevant contexts, for example, technically
savvy users or early adopters (e.g., children of adolescence) who prefer a new platform version to the
old one versus technically insensitive users or followers (e.g., middle-aged parents). In this context,
Apple and Samsung are releasing a new version of their smartphones every year while retaining the
old versions for a while. Google’s Android version management and telcos’ network infrastructure
transition (e.g., 3G to 4G/LTE) can also be understood in the same vein.

Under the context described above, we develop a stylized model as follows. Our demand model
assumes that both users and suppliers are horizontally differentiated based on their preferences for
two distinct platform versions a la Hotelling [38]. That is, a user (a supplier) is situated on an interval
[0, 1], and this location reveals his/her preferences for both platforms. Here, we employ θ (φ) for
the user index (the supplier index) representing his/her preference to the platforms. Without loss of
generality, the left end point of the interval (0) is supposed to represent the user (the supplier) who
most prefers A to B, while the right end point (1) represents the index of the player who most prefers B
to A: that is, θ, φ = 0 for the extreme platform-A-lover and θ, φ = 1 for the extreme platform-B-lover.
Following the convention of the Hotelling model, users are uniformly populated over the line segment.
This normalization of the horizontal differentiation implies that our model focuses on the market share
in each side. The same configuration is applied to the supplier side (refer to Figure 1).
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Figure 1. Dominant platform provider running two competing platforms (A and B).

Now, we incorporate the traditional features of the two-sided markets: indirect network effects.
First, αk represents the indirect network effect in the user side for platform k (k = either A or B). That is,
αk represents how users in platform k benefit from the supplier side on the same platform. Similarly,
let βk denote the indirect network effect in the supplier side for platform k (k = A, B). We set the
network effects in platform A—αA and βA—at 1, and focus on the relative effects of network effects
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between the platforms. In this way, we can save the subscripts, and let α and β respectively represent
the corresponding indirect network effects for the users and the supplier in platform B.

We also introduce the cross-platform network effect δ, which, by definition, measures users’
benefits from the backward compatibility in the new platform (B). Users subscribing to platform B
enjoy not only the services that suppliers in platform B provide but also the ones provided by suppliers
in platform A. For example, users of a fast Internet connection (e.g., Google fiber) are able to access
premium services (e.g., UHD video streaming) as well as traditional services that are insensitive to
delay (e.g., email). Those who update their iPhone OS, say to iOS 11.x, are also able to use most apps
developed for iOS 10.x. Note that, however, this effect is “asymmetric”. δ works only for platform B
thanks to the backward compatibility, and it directly benefits users, not suppliers.2 Furthermore, δ = 0
means that there is no benefit from the directional interactions between the users in the new platform
and the suppliers in the legacy platform: that is, no backward compatibility.

The backward compatibility of platform B may come at the cost of congestion, or negative network
externality in the new platform, especially when this platform is in the early phase of the life cycle.
We consider this kind of congestion effect on the suppliers, and employ ω to denote the degree of
congestion (or the negative network externality) in the supplier side of platform B. However, we also
consider a countermeasure that the platform provider carries out in order to alleviate this negative
externality. As the platform provider makes investment in the new platform, it enhances its capability
to accommodate more suppliers and provides better quality of service through this platform. Thus,
the congestion factor ω is a decreasing function of the amount of investment I in platform B: i.e.,
ω = ω(I) and ωI ≡ ∂ω/∂I < 0.

In an environment where the state variables change dynamically, consider a given time period
(in the following description, however, the symbol for time lapse will be omitted). The state variables
(e.g., the market shares) at a given time may change over the next period since they interact with
each other under the conditions determined by other variables and parameters. We will first define
static (i.e., at an arbitrary time) relationships among the variables and parameters, then introduce the
adjustment dynamics that lead the system states to the next period.

Let xk and yk represent the current market shares of platform k (k = A, B) in the user side and
the supplier side, respectively. We assume that each market is saturated so that xB = 1− xA and
yB = 1− yA. Therefore, any user or supplier must join exactly one platform, which makes us simply
denote x and y as the market shares of platform A in the user side and in the supplier side, respectively.3

We now define the payoffs of users and suppliers as follows. Here, µk(θ) means the payoff of the
user who is situated at θ on [0, 1] and chooses platform k (k = A, B). πk(φ) is similarly defined as the
payoff imputed to the supplier with index φ in platform k (k = A, B). The dominant platform provider
charges the users and the suppliers for their platform usage. Pt

s is the service fee charged upon the
players in side t (t = U (user), S (supplier)) with platform s (s = A, B).

� Payoffs for User θ (users’ utilities):

µA(θ) = y− θ − PU
A (1)

µB(θ) = α (1− y) + δ y− (1− θ)− PU
B = θ − (α− δ) y + α− 1− PU

B (2)

� Payoffs for Supplier φ (suppliers’ profits):

πA(φ) = x− φ− PS
A (3)

2 But the suppliers receive “indirect” benefits through the indirect network effect [30,36]; call this effect
“forward compatibility”.

3 This assumption of the saturated market is not too restrictive since the model considers the situation where a new platform
with the backward compatibility has been introduced to (gradually) replace the legacy one. Therefore, all players?users and
suppliers?are assumed to have already joined the legacy platform.
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πB(φ) = β (1− x)−ω(I) (1− y)− (1− φ)− PS
B = φ− β x + ω(I) y + β− 1−ω(I)− PS

B (4)

Let’s suppose that PU
A = PU

B = P (fixed) due to the reasons below. First, policy or regulatory
requirement where price differentiation in the user side should not be allowed. For example, the net
neutrality legislation prohibits the network providers from discriminating subscribers of different
types of networks. Furthermore, many real-world cases support the strategic utility of our approach
despite its simplification on PU . Indeed, this setting naturally arises from the competition on the user
side. As a result, the prices fixed at a negligible or even zero level are frequently observed on many
user-facing platforms whose primary concerns are to attract eyeballs.4 For example, the price paid
to Google for a search is zero, as is the price paid to Twitter or Facebook for joining and using their
social networks. Adobe’s free distribution of the pdf reader is another representative example [1,3].
Reference [34] also assumes a fixed royalty rate for the user side in the e-book platforms on the basis of
the agency pricing model. In this circumstance, the platform provider controls only the price margin
between the user side and the supplier side in each platform; that is, ∆A ≡ PS

A − P and ∆B ≡ PS
B − P.

Each side market is normalized; that is, the entire demand in each market is set to one.
We also consider operating costs C(I) incurred from improving the advanced platform (B). Given P
(under regulation or competition pressure that makes price differentiation in the user side across
the platforms impossible), the dominant platform provider that owns and operates both platforms,
decides the price margins ∆k ≡ PS

k − P (k = A, B) as well as the scale of investment I so that it can
maximize its total profits from both platforms.

� Payoff of the Platform Provider:

Π(∆A, ∆B, I|x, y) = P + y PS
A + (1− y) PS

B − C(I) = y ∆A + (1− y) ∆B + 2P− C(I), (5)

where CI ≡ ∂C/∂I is positive.

The whole situation is modeled as a two-stage game, which proceeds as follows. In the first
stage, the dominant platform provider determines the price margins (∆A and ∆B) and the amount
of investment (I) in platform B. This leads us to the next stage that we named “subscription game”,
where both users and suppliers simultaneously respond to the price margins and the quality of
platform B and choose the platform they join. In this stage, their payoffs depend on the current
reference players whose positions (x and y) respectively represent the market share of platform A in
the corresponding side. Thus, the market share of each platform in each side of a two-sided market
here is “endogenously” determined through the interrelated platform subscription game. If the current
status is out of equilibrium, then there will be an incentive for some players to change their decisions
in the next period. In our approach, the subscription game will be governed by dynamics5 to be
described in the next section.

3.2. Equilibrium and Stability Analysis of Subscription Game

This section elaborates the notions of the reference players and the dynamics of players’ behaviors
between the consecutive periods. We start with defining some notions that will play a fundamental
role in our approach. A “critical” user θc in the user side indicates the user (also the location of the user)
whose payoff is indifferent across the platforms given the current market shares x and y. Accordingly,

4 However, it does not mean that this pricing should be exogenous. The zero-pricing is likely to be endogenously determined
since one side of a two-sided market often receives subsidies. The primary purpose of setting PU = 0 here is to make the
entire model mathematically tractable.

5 It is actually modeled as a continuous adjustment process in the second stage. Thus, the distinction of period here and in the
next section is just a conceptual one for explanation.
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we can express θc = θc(x, y). Similarly, we define the “critical” supplier φc (φc = φc(x, y)). Thus,
critical players should satisfy the following relationships at the same time:

µA(θ
c) = µB(θ

c) and πA(φ
c) = πB(φ

c). (6)

Since we are dealing with the situation where both markets are saturated, we allow either µA(θ
c)

(=µB(θ
c)) or πA(φ

c) (=πB(φ
c)) to have a negative value. Given P, ∆k (k = A, B), and I (thereby ω(I),

too), we derive the equations for θc and φc in terms of x and y from Equations (5) and (6) as follows.

� Equations identifying critical participants:

θc(x, y) = {(α− δ + 1)y + 1− α}/2 (7)

φc(x, y) = {(β + 1)x−ω(I)y + ω(I)− β + 1 + ∆B − ∆A}/2 (8)

If there is an interior equilibrium (xe, ye), it will occur at the point where the market share of
each platform coincides with the corresponding critical participant in both markets: that is, xe = θc

and ye = φc. If the current market share x and θc in the user side (y and φc in the supplier side) do
not coincide, then there exist users (suppliers) whose payoffs can be raised by changing their choices:
that is, switching to the other platform. If θc > x (φc > y), then users (suppliers) between x and θc

(y and φc), who currently reside in platform B, would have been better off by switching to platform
A. On the other hand, if θc < x (φc < y), then users (suppliers) between θc and x (φc and y) would
have been better off by moving from A to B. Accordingly, it is natural to define the system dynamics
as follows.

� System dynamics:

.
x/x = ρx (θc − x) = ρx{−2x + (α− δ + 1)y + 1− α}/2 (9)

.
y/y = ρy (φc − y) = ρy{(β + 1)x− (ω(I) + 2)y + ω(I)− β + 1 + ∆B − ∆A}/2 (10)

subject to x, y ∈ [0, 1],

where ρj (j = x, y) controls the speed of the adjustment process.

We first consider the “interior” equilibrium, where both platforms coexist on both sides. This type
of equilibrium corresponds to the traditional notion of the Nash equilibrium in most economics
literature. At an interior equilibrium (if exists), the adjustment process should halt; that is, both

.
x

and
.
y vanish. Thus, one can find an interior Nash equilibrium by solving the simultaneous linear

equation system f (x, y) = 0 and g(x, y) = 0, where f (x, y) = ρx x{−2x + (α− δ + 1)y + 1− α}/2
(Equation (9)) and g(x, y) = ρy y{(β + 1)x− (ω(I) + 2)y + ω(I)− β + 1 + ∆B − ∆A}/2 (Equation
(10)). With given ∆A and ∆B (price margins determined by the dominant platform provider at the
upper stage) and I (platform provider’s investment on platform B), one can derive not only the
trivial solution (x, y) = (0, 0) but also (x, y) 6= (0, 0) as identified in Proposition 1, which provides
more detailed analysis about the interior equilibrium in the subscription game. Hereafter, we fix
the adjustment speed ρA = ρB = 2 for simplifying expressions without significantly affecting the
qualitative characteristics of the analytical results.

Proposition 1 (Interior Equilibrium). Suppose that ∆A, ∆B, and I are determined by the platform provider
at the upper stage. We assume that one of the following sets of inequalities hold, where ∆ ≡ ∆B − ∆A:

Set I: (α− 1)(ω(I) + 2) < (α− δ + 1)(ω(I)− β + 1 + ∆) and (α− 1)(β + 1) < 2(ω(I)− β + 1− ∆)
if 2(ω(I) + 2) > (α− δ + 1)(β + 1),
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Set II: (α− 1)(ω(I) + 2) > (α− δ + 1)(ω(I)− β + 1 + ∆) and (α− 1)(β + 1) > 2(ω(I)− β + 1− ∆)
if 2(ω(I) + 2) < (α− δ + 1)(β + 1).

Let us define the following matrix and vectors for ease of reference and future use:

M =

(
−2 α− δ + 1

β + 1 −(ω(I) + 2)

)
, ξ =

(
x
y

)
, and k =

(
1− α

ω(I)− β + 1 + ∆

)
.

Then the interior (Nash) equilibrium in the subscription game (if exists) is unique. Specifically, at the interior
equilibrium (x, y) ∈ (0, 1)× (0, 1), the critical players θc and φc coincide with x and y, respectively, and they
are determined as follows:

x = −{(α− 1)(ω(I) + 2)− (α− δ + 1)(ω(I)− β + 1 + ∆)}/det(M) (11)

y = −{(α− 1)(β + 1)− 2(ω(I)− β + 1− ∆)}/det(M), (12)

where det(M) = 2(ω(I) + 2)− (α− δ + 1)(β + 1).
If the interior equilibrium exists, then it is stable if det(M) > 0 (i.e., under Set I). Otherwise (i.e., under

Set II), it is unstable (a saddle point).

Proof of Proposition 1. Omitted. Refer to the Appendix A. �

First, note that det(M), which determines the dynamics nature, is composed of key parameters
such as α, β, δ, and ω. Furthermore, each set of inequality conditions represents quite a different
context. Set I includes det(M) > 0, which implies a large congestion effect (ω); on the other hand,
det(M) < 0 in Set II requires that ω should not be too strong to overwhelm the indirect network
effects. However, the chance to attain a positive determinant of M (thereby, the interior equilibrium
being stable if exists) seems limited since neither α nor β is allowed to exhibit a proper scale for
det(M) > 0. For example, with δ = 0 and ω(I) > 1, at least one of α and β should be smaller than
one, which does not fit well with the conventional premise of the two-sided markets. Indeed, a stable
interior equilibrium (i.e., stable coexistence of both platforms on both sides) is less likely to be sustained
within most ranges of the indirect network effects when the backward compatibility prevails.

Figure 2 shows sample instances, each of which corresponds to its unique dynamics. Note that two
null-clines or demarcation curves (each is a trace of two-tuples on either

.
x = 0 in Equation (9) or

.
y = 0

in Equation (10)) have positive slopes if α− δ + 1 > 0, or α + 1 > δ, which implies that the strength
of the backward compatibility should not be too strong to overwhelm the indirect network effects.
One can also see the state (1, 1), where all the markets are stuck at the legacy platform, lies below
the

.
x null-cline. Furthermore, for α > 1, the

.
x null-cline has a positive y-intercept. Since these two

inequalities—α + 1 > δ and α > 1—seem quite natural and fit well with the two-sided market context
presumed in this study, and they will be maintained, hereafter.

On the other hand, the
.
y null-cline may take different forms based on the sign of the y-intercept

as well as the relative location of the state (1, 1). Thus, we now distinguish four types together with
their dynamics as drawn in the respective panels in Figure 2.

The relative magnitudes of those slopes define the sign of det(M), thereby determining the
stability of the corresponding case. Figure 2a shows a typical stable interior equilibrium, which occurs
around (0.35, 0.80) (i.e., 35% of users and 80% of suppliers in the legacy platform; 65% of users and
20% of suppliers in the new one). If the slopes of two null-clines are interchanged (not depicted
in Figure 2), however, the interior equilibrium (if exists) becomes a saddle point, which cannot be
stable. The coexistence of both platforms (on both sides) may be maintained near the saddle point
for a certain period of time if the current states happen to locate in the converging areas of the state
space. Once the adjustment process reaches the saddle point, however, this temporary coexistence
will eventually collapse down to a degenerate state with at least one side tipped into a single platform.
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It may be the temporary coexistence that we observe in practice (e.g., iOS and Windows examples in
the Introduction). In the other types displayed in the panels (b), (c), and (d) in Figure 2, the interior
equilibrium seldom occurs in the feasible region of the state space. Indeed, for a wide range of
reasonable parameters, the dynamics for these types produce similar patterns.
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As indicated by sample instances above, the interior equilibrium is probably uncommon in
a two-sided market. Furthermore, a stable interior equilibrium appears as an extraordinary case
in our framework of the two-sided market. In sum, Proposition 1 and the examples in Figure 2
suggest that a stable interior equilibrium will not be guaranteed in the competing platforms with
asymmetric backward compatibility. Accordingly, those results give a reason why we should
investigate “boundary” equilibria, where at least one of the sides tips to a specific platform; for example,
all users prefer platform B to platform A and choose B in a boundary equilibrium where x = 0.

However, the boundary equilibrium on one side will be highly likely to affect the other side
through the reinforcing feedback loops due to the indirect network effects, thereby pushing the other
side toward the same platform. Accordingly, it may not seem plausible that one side (say, the user
side) is locked in the one platform (say, platform A), while the other side (say, the supplier side) is
locked in the other (say, platform B). Instead, one may naturally put top priority on checking out
the possibilities and conditions that both markets tip to the same platform. However, the backward
compatibility and the congestion factor make it possible for both platforms to coexist at least on the
user side while all suppliers stick to the legacy platform. Instead, we may observe various types of the
boundary equilibrium. The following proposition presents the conditions under which these plausible
status as a boundary equilibrium, at least one side locked in a specific platform, can or cannot occur.
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Proposition 2 (Boundary Equilibria). Suppose that ∆A, ∆B, and I are determined by the platform provider
at the upper stage. Let us consider the following candidate boundary states: (0, 0), (1, 1), (0, 1), (0, z1), and (z2,
1), where 0 < z1 ≡ (ω(I) + 1 + ∆)/(ω(I) + 2) < 1 and 0 < z2 ≡ (2− δ)/2 < 1. The following statements
assert whether the respective candidates become a stable equilibrium or not:

1© ξ0 ≡ (0, 0) becomes a stable Nash equilibrium if α ≥ 1 and β ≥ ω(I) + 1 + ∆,
2© ξ1 ≡ (1, 1) cannot be a Nash equilibrium if δ > 0,
3© ξ2 ≡ (0, 1) becomes a stable Nash equilibrium if δ > 2 and ∆ > β + 1,
4© ξ3 ≡ (0, z1) becomes a Nash equilibrium if −ω(I) − 1 < ∆ < 1 and (2− δ)(ω(I) + 2) ≤

(1− ∆)(α− δ + 1); but, ξ3 is unstable,
5© ξ4 ≡ (z2, 1) becomes a stable Nash equilibrium if 0 < δ < 2, ∆ > δ(β + 1)/2, and α < δ + 1.

Proof of Proposition 2. Omitted. Refer to the Appendix A. �

Proposition 2 suggests that we do not need to focus on all the possible boundary equilibria. Instead,
it would be better to delve into only the stable equilibria for further consideration. The candidates
are ξ0, ξ2, and ξ4. At the boundary equilibrium ξ0, all users and suppliers tip to the new platform
B (see “All-B equilibrium” in Figure 3). On the other hand, at ξ2 and ξ4, the two sides split into
different platforms. In the former case, the user side tips to the advanced platform, while the supplier
side remains at the legacy one. Thus, users use the new platform only for the legacy services at
ξ2. In the latter, while the supplier side sticks to the legacy platform, the user side splits into two
platforms. That is, there still remains some users (z2) who are loyal and dedicated to the legacy
platform. The context of horizontal differentiation in our demand model seems to play an important
role in stabilizing the seemingly unreasonable equilibria—ξ2 and ξ4—since there should remain a
portion of users who prefer the new platform to the legacy one. If we had developed the demand
model on the basis of the vertical differentiation, then these equilibria would have been unstable.
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Figure 3 summarizes the results of Proposition 2. First of all, we cannot expect that both sides tip
to the relatively inferior platform. In other words, ξ1 = (1, 1) cannot be a Nash equilibrium without
negative backward compatibility δ. However, δ should be positive since we assume that the emerging
platform has a certain degree of the backward compatibility, at least in the user side. Accordingly,
the backward compatibility plays the role of reinforcing the relative advantage of platform B.
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However, the backward compatibility δ works as a double-edged sword as in Reference [36].
In fact, the size of δ is the key factor that determines the equilibrium type. In other words, the stable
equilibrium is distinguished based on δ = 2. With a relatively large δ (see the conditions in 3© and
ξ2 = (0, 1)), all the suppliers may remain in the old platform since all the users can use the advanced
platform to access the legacy services. On the other hand, for the backward compatibility, which is
smaller than one but quite comparable with the indirect network effect α (see the conditions in 5© and
ξ4 = (z2, 1)), it is possible that some users (the fraction of 1− z2) still use the advanced platform for the
legacy services. However, the size of δ is not the only factor that determines the equilibrium. In both
cases, the conditions require that the pricing gap ∆ in the supplier side be relatively big (i.e., ∆B � ∆A),
which may hinder the suppliers from switching to the advanced (but highly costly) platform.

On the other hand, both sides will tip to the new platform (i.e., ξ0 = (0, 0)) under milder
conditions than those for ξ2 and ξ3. The stability of this equilibrium does not require a specific range
on the strength of the backward compatibility. Indeed, what is required for tipping to the new platform
is two simple conditions on the indirect network effects α and β, together with some condition on
platform provider’s decisions of investment (I) and price margins (∆A and ∆B). The first condition,
α > 1, means that the indirect network effect in the user side for platform B should be stronger than
the one for platform A (note that it is set at 1 in our model), which fits well in the context of this study.
The second condition, β > ω(I) + 1 + ∆, requires that either the congestion effect or the pricing gap in
the supplier side should not be so high as to overwhelm the indirect network effect in the supplier side
for platform B.

Proposition 3 also implies a clear difference between “All-B equilibrium”, ξ0 and “separate
equilibria”, ξ2 and ξ4 in terms of the platform investment. The platform provider’s switching to the
advanced platform and its efforts to attract and tie the suppliers to the new platform (i.e., maintaining
ξ0) will require a certain amount of investment (I > 0). On the other hand, inducing only the user side
to the new platform and preventing the suppliers from switching to the new one could go without
investment (I = 0) or with a small investment. We will deal with this issue in the next section.

Since we identify the static equilibria and analyze their stability as a consequence of a dynamic
process, the stable equilibria can be thought of as the plausible steady states. Indeed, these are the
most promising outcomes in the subscription game played at the lower stage of the entire game
model. Accordingly, one may view the equilibrium dynamics here in the perspective of a platform
provider’s maneuver toward a stable state with its decision variables as a tool for this purpose. Such an
interpretation explains why we put emphasis on the stability of an equilibrium. In other words,
an unstable equilibrium presents just a fragile snapshot that could exist only within a short period.
In the next section, we deal with the upper stage led by the dominant platform provider and complete
our whole model.

4. Platform Development in a Two-Stage Game: Synthesis

This section presents the upper stage and completes the entire game model by analyzing the
platform provider’s strategic decisions on the control variables that correspond to the key parameters
in the subscription game in Section 3.2. We also analyze the overall outcomes in terms of the social
welfare. Presented first is the decision process and context of platform provider’s behavior implied
by the findings in the previous sections. Here, the platform provider is supposed to have an ability
to select its best equilibrium (mostly a boundary one to be explained below) and maneuver both
sides toward the target state by setting the decision parameters in the subscription game. As a
result, the platform provider determines its platform development plan (a possible configuration
of compatibility implementation across two platforms)6 as an outcome of the entire game. We also
evaluate the outcomes at the target states and compare them in the perspective of the social welfare.

6 This is similar to the notion of compatibility regime in Reference [30].



Games 2018, 9, 76 13 of 24

4.1. Platform Provider’s Equilibrium Selection: Scenarios

This section delves into the strategic decision of the dominant platform provider who tries to
maximize its total profits from two platforms. Since the platform provider knows the stable equilibria
in the subscription game, it will choose the best one out of them in terms of maximizing its profit.
We ignore the intermediary steps toward a target state and focus on the profit stream at the destination
(i.e., the target state). Four candidate destinations arise first according to Propositions 1 and 2 (also refer
to Figure 3): one interior equilibrium and three boundary equilibria. We further exclude, however,
the interior equilibrium since there hardly exists a meaningful optimal solution for this state.7 As a
result, three boundary equilibria, ξ0, ξ2, and ξ4 in Proposition 2 constitute the candidate destinations
(target states) to which the platform provider would like to maneuver the entire system.

For each candidate, we construct a scenario or a specific dynamic context that guides and
constrains platform provider’s decisions. Three scenarios are listed below. α ≥ 1 is assumed
throughout the following scenario analysis. We also assume that the price margins ∆A and ∆B
have their own lower and upper bounds: that is, |∆A| ≤ ∆A and |∆B| ≤ ∆B, where ∆A and ∆B are
referred to “maximum price margin” for platform A and B, respectively. These assumptions are not
too restrictive since the platform provider is only able to control prices within a certain range in most
practical situations.

� Scenario I: Target Equilibrium of ξ0 = (0, 0)—“all-new-platform equilibrium”

This scenario describes a situation where the dominant platform provider controls the price margins and the
amount of investment, and maneuvers the two sides into ξ0, where all users and suppliers tip to the new platform
B. For the stability of this target state, this scenario requires platform provider’s decisions on investment I and
price margins ∆A and ∆B to satisfy ω(I) + ∆ ≤ β− 1, where ∆ ≡ ∆B − ∆A (Proposition 2- 1©).

� Scenario II: Target Equilibrium of ξ2 = (0, 1)—“completely separated equilibrium”

The two sides split into different platforms at this target state. That is, while the user side tips to the advanced
platform (B), the supplier side remains at the current platform. Thus, users use the new platform only for the
legacy services. For stability of this state, δ > 2 should be assumed, which means the backward compatibility
should be large. Further, the platform provider’s decisions on the price margins need to be maintained in the
following range: i.e., ∆ > β+ 1 (Proposition 2- 3©).

� Scenario III: Target Equilibrium of ξ4 = (z2, 1)—“partially separated equilibrium”

In this scenario, the supplier side sticks to the current platform (A) and the user side splits into two platforms.
That is, some users still remain (the fraction of z2) dedicated to platform A. Stability of this target state requires
0 < δ < 2 and α < δ + 1, which means both the backward compatibility and the indirect network effect on
platform A are quite limited (but they should not vanish). Further, the platform provider’s decisions on the price
margins need to be maintained in the following range: i.e., ∆ > δ(β + 1)/2 (Proposition 2- 5©).

Note that Scenarios II and III are exclusive. The strength of the backward compatibility (δ), which is assumed
to be exogenously given, determines which one, either II or III, is a plausible situation. Now, we analyze the
platform provider’s strategic decisions on the pricing to the supplier sides (∆A and ∆B) and the investment level
(I) under the contexts of the three scenarios above. We first present the optimal decisions for each scenario and
then compare the profits of the platform provider accordingly. The following proposition presents the platform
provider’s optimal decisions on ∆A, ∆B, and I for each scenario.

7 There is no “interior” optimal solution for the stable “interior” equilibrium. Here, the term “interior” associated with
optimality has nothing to do with the term “interior” in the equilibrium types. There may be a “boundary” optimal solution
for the stable interior equilibrium. However, even this chance is too meager to nominate the interior equilibrium as a valid
candidate on which the platform provider deliberates.
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Proposition 3. Assume C′(0) > 0, C′(0) ≈ 0, C′(1) � 0, and −ω′(1) ≈ 0.8 For ease of reference, let us define two
functions of I: ϕA(I) ≡ ∆A + β− ω(I)− 1 and ϕB(I) ≡ ∆B − β + ω(I) + 1. The following decisions of the platform
provider present an optimal solution for respective scenarios.

1© Scenario I: ∆∗A = ∆A and
{

∆∗B, I∗
}

, which satisfies exactly one of the following equation sets, a© or b©: a© ∆∗B =

ϕA(I∗) ≤ ∆B and C′(I∗) = −ω′(I∗), where I∗ and ∆∗B are sequentially determined or b© ∆∗B = ∆B = ϕA(I∗)
and C′(I∗) = −λ∗ω′(I∗), where ∆∗B, I∗, and λ∗ are sequentially determined,

2© Scenario II: a© If ∆B − ∆A > β + 1, then ∆∗A = ∆A, ∆A + β + 1 ≤ ∆∗B < ∆B, and I∗ = 0; b© Otherwise,
∆∗A = ∆B − β− 1 (≤ ∆A), ∆∗B = ∆B, and I∗ = 0,

3© Scenario III: a© If ∆B − ∆A > δ(β + 1)/2, then ∆∗A = ∆A, ∆A + δ(β + 1)/2 ≤ ∆∗B < ∆B, and I∗ = 0;
b© Otherwise, ∆∗A = ∆B − δ(β + 1)/2 (≤ ∆A), ∆∗B = ∆B, and I∗ = 0.

Proof of Proposition 3. Omitted. Refer to the Appendix A. �

The results in the proposition above are quite intuitive. If the platform provider chooses the equilibrium ξ0,
for example, it maneuvers the two-sided market system into the target state and keeps making the state persist.
Under the relevant constraints (conditions on the parameters specified in Proposition 2- 1© and the bounds on
the pricing, which are also specified as (C1) and (C2), respectively, in Appendix A) and the market situations
(all tipped to platform B at ξ0), its profit is determined by I and ∆B (refer to the objective function described in
(O1) in Appendix A). Thus, it could maximize its profit stream at the target state by increasing ∆B and decreasing
I as much as possible while maintaining the feasibility. Proposition 3- 1© specifies this strategy together with some
requirements for making the optimal decisions valid. Note that ∆∗A in Scenario I has no direct effect on the optimal
payoff of the platform since no supplier exists in platform A at ξ0. Similarly, ∆∗B’s in Scenarios II and III seem to
bear no practical meaning since this extra benefit cannot be realized in these scenarios where no supplier exists
in platform B. However, they work behind the scene and play a role of sustaining the respective target states
through suppressing the incentive for the participants to deviate (refer to the roles of the maximum price margins
in Proposition 3 and footnote 10). Table 1 summarizes platform provider’s profits in three scenarios.

Table 1. Platform provider’s payoffs in scenarios.

Scenarios Platform Provider’s Profits

Scenario I
a© Πξ0 = ϕA(I∗) + 2P− C(I∗) b© Πξ0 = ∆B + 2P− C(I∗)

(I∗ at C′(I∗) = −ω′(I∗); ϕA(I∗) ≤ ∆B) (I∗ at ∆B = ϕA(I∗))

Scenario II (δ ≥ 2) Πξ2 = ∆A + 2P− C(0)
Scenario III (δ ≤ 2) Πξ4 = ∆A + 2P− C(0)

Proposition 3 also shows a clear difference between Scenario I and Scenarios II and III. For example, choosing
the advanced platform and attracting and tying the suppliers to the same platform (Scenario I) require a certain
amount of investment (I∗ > 0), whereas inducing only the user side to the advanced platform and preventing the
suppliers from switching to the new one (Scenarios II and III) could go without investment (I∗ = 0). To achieve
this goal, the platform provider will certainly utilize ∆B in Scenario I (with all the suppliers tied up at platform
B). On the other hand, the payoff of the platform provider depends on ∆A in Scenarios II and III (with all the
suppliers tied up at platform A), which inevitably sets limits on leveraging the pricing structure.

Also note that once C(I) and ω(I) are known to have specific forms, 1© in the proposition above presents an
exact optimal solution. For example, with C(I) = a

(
eI − 1

)
and ω(I) = c·e−bI (a, b, and c are all positive

constants), Scenario I gives a© I∗ = ln(bc/a)/(b + 1) and ∆∗B = ϕA(I∗) = ∆A + β − c·e−bI∗ − 1, and b©
∆∗B = ∆B, I∗ = ln

{
c/
(
∆A − ∆B + β− 1

)}
/b, and λ∗ = −C′(I∗)/ω′(I∗) = a·e(b+1)I∗/(bc) (>0). Subsequently,

Πξ0 = ∆A + β + 2P + a− 1− c·{a/(bc)}b/(b+1) − a·{bc/a}1/(b+1).
The platform provider will choose ξ0 as its target state if Πξ0 ≥ Πξ2 , Πξ4 . Assuming sufficiently

large ∆A and ∆B, ∆∗B = ϕA(I∗) ≤ ∆B is more likely to hold. For simplicity, we set C(0) = 0 and define

8 These assumptions on the shapes of C(I) and ω(I) are not too restrictive. Typical examples of these functions can be found
in the following subsection.
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Ξ(I) ≡ β−ω(I)− C(I)− 1, whose local maximum occurs at I∗ in Proposition 3- 1©- a©. Then, from Table 1,
the inequality Πξ0 ≥ Πξ2 , Πξ4 reduces to Ξ(I∗) ≥ 0. Thus, with a sufficiently big indirect network effect for
suppliers (i.e., β ≥ ω(I∗) + C(I∗) + 1), the platform is apt to select ξ0 as its target state and makes all the markets
tip toward the advanced platform. On the other hand, with a small ∆B and ∆∗B = ∆B (· · · b©), Πξ0 ≥ Πξ2 , Πξ4 is
equivalent to ∆B ≥ ∆A + C(I∗), which does not match well with the premise of a small ∆B. We summarize these
findings in the following proposition.

Proposition 4. The platform provider is likely to choose ξ0 as its target state if both ∆B and β are sufficiently large. On the
other hand, with a small ∆B or a sufficiently large ∆A, the platform provider is very apt to select either ξ2 or ξ4 (depending
on the size of δ) as its target state.

The dominant platform provider will migrate to the new platform for both sides when the indirect network
effect for the suppliers (β) is sufficiently large and an extensive price margin (∆B) is available for higher pricing
for the new platform. Otherwise, particularly when the maximum margin ∆A for higher pricing at the current
platform is bigger than ∆B, the platform provider will maintain both platforms with (partial) separation of two
sides: (some) users in the new platform and all the suppliers in the legacy one. In this situation, the degree of the
backward compatibility (δ) determines the share of new platform in the user side. If δ is large (δ > 2 in our model)
then all the users join the new platform, while small δ (δ < 2) ties some users up in the current platform. In the
next section, we examine the consequences of three platform development cases in terms of the social welfare.

4.2. Social Welfare Analysis

Since platform provider’s decisions are contingent upon the situations characterized by some key parameters,
such as β, δ, ∆B, etc., it also affects participants’ payoffs differently and eventually the whole amount of value
created through the platform ecosystem. Here, the value created for the participants is measured by SW (social
welfare). As we have dealt with platform provider’s payoffs in the previous section, we focus on participants’
SW here.

Participants’ SW in the two-sided market is composed of two parts: users’ SW and suppliers’ SW. Given a
(target) state ξ = (x, y), they are defined as follows:

Users’ SW :
x∫

0

µA( θ|ξ)dθ +

1∫
x

µB( θ|ξ)dθ (13)

Suppliers’ SW :

y∫
0

πA(φ|ξ)dφ +

1∫
y

πB(φ|ξ)dφ (14)

Based on these definitions of participants’ SW, we derive users’ SW and suppliers’ SW in each scenario and
summarize the results in the followings.

� Scenario I: Target Equilibrium of ξ0 = (0, 0)—“all-new-platform equilibrium”

Users’ SW :
1∫

0

µB

(
θ
∣∣∣ξ0
)

dθ = α− P− 1
2

Suppliers’ SW :
1∫

0

πB

(
φ
∣∣∣ξ0
)

dφ =

{
β− P−ω(I∗)− ∆B − 1

2 ∆∗B = ∆B
1
2 − P− ∆A ∆∗B = ϕA(I∗)

(
≤ ∆B

) ,

where I∗ is the optimal investment in Proposition 3- 1©- b©. With C(I) = a
(
eI − 1

)
and ω(I) = ce−bI as in

the previous example, I∗ = ln
{

c/
(

β− ∆− 1
)}

/b.
� Scenario II: Target Equilibrium of ξ2 = (0, 1)—“completely separated equilibrium”

Users’ SW :
1∫

0

µB

(
θ
∣∣∣ξ2
)

dθ = δ− P− 1
2
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Suppliers’ SW :
1∫

0

πA

(
φ
∣∣∣ξ2
)

dφ =

{
−P− ∆A − 1

2 ∆∗A = ∆A
β + 1

2 − P− ∆B ∆∗A = ∆B − β− 1
(
≤ ∆A

)
� Scenario III: Target Equilibrium of ξ4 = (z2, 1)—“partially separated equilibrium”

Users’ SW :
z2∫

0

µA

(
θ
∣∣∣ξ4
)

dθ +

1∫
z2

µB

(
θ
∣∣∣ξ4
)

dθ =
δ2 + 2

4
− P

Suppliers’ SW :
1∫

0

πA

(
φ
∣∣∣ξ4
)

dφ =

{
−P− ∆A − δ−1

2 ∆∗A = ∆A
δβ+1

2 − P− ∆B ∆∗A = ∆B −
δ(β+1)

2
(
≤ ∆A

)
The following figures show the changes of users’ SW and suppliers’ SW as some key parameters vary.

In particular, the figures depict how these SW’s change as the backward compatibility (δ) varies for some
predefined network effects, α and β, where α takes 1 and 2, and β takes 1.2, 2, and 3.5 (β is adjusted to the conditions
required by the respective scenarios). We also try different combinations of

{
∆A, ∆B

}
with ∆A = ∆B = 1 as a base.

However, P = 0 is maintained throughout the experiments for ease of interpretation.9 Here, we employ specific
forms of C(I) = a

(
eI − 1

)
and ω(I) = c·e−bI (the same ones as in the previous example) to run experiments.

Specifically, in the baseline experiments, we set a = b = c = 1, thereby C(I) = eI − 1 and ω(I) = e−I .
Figure 4 demonstrates the behavior of users’ SW against δ in the baseline setting. Note that users’ SW in

Scenario I does not change as δ varies (since the users at ξ0 enjoy only the advanced services, they are not affected
by the strength of the backward compatibility). At the equilibria ξ2 and ξ4, on the other hand, users’ SW improves
as the backward compatibility increases. The level of users’ SW is lower than ones in Scenarios II and III with
α = 1. However, users’ SW at ξ0 gets better off when α increases. For a large α, Scenario III is infeasible, even at
low levels of δ and the corresponding users’ SW is inferior to that in Scenario I.
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Figure 5 demonstrates the behavior of suppliers’ SW against δ. We observe some differences from the
case of users’ SW. First, suppliers’ SW is affected by the indirect network effect for the suppliers (β). As β

increases, suppliers’ SW gets enhanced, particularly in Scenarios II and III. On the other hand, the strength of
the backward compatibility (δ) improves suppliers’ SW only in Scenario III. This outcome is quite natural since
both states, ξ0 and ξ2, provide only one type of services: new at ξ0 and legacy at ξ2 (i.e., no room for δ to play in
these scenarios).

9 Recall that the purpose of this study is not to investigate the pricing structure as in the original (and typical) two-sided
market studies even though platform provider’s decisions on the price margins (∆A and ∆B) plays an important role in
maneuvering the system and maintaining the stability of a target equilibrium. In this context, we simplified the pricing
structure (particularly, at the user side) when developing our model in Section 3. Accordingly, the fixed price P was assumed
to be given from the outside, and it contributes little to the platform provider’s decisions. Furthermore, the level of P does
not result in a qualitative difference since our model assumes full saturation in both sides.
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Figure 5. Suppliers’ SW changes as the backward compatibility (δ) varies.

In both side, SW’s at the all-new-platform equilibrium (ξ0) are always lower than the ones at the completely
separated equilibrium (ξ2). In the case of small α and β (Figures 4a and 5a), both SW’s at ξ0 are inferior, even to
those at the partially separated equilibrium (ξ4). These outcomes result from the characteristics of the equilibria.
For example, since the suppliers joining the advanced platform should pay the extra charge (∆∗B), suppliers’ SW
at ξ0 are liable to be poorer than those at ξ2 and ξ4, where the suppliers join the current platform without the
extra charge. In terms of the user side, the combination of α and δ determines the relative advantage of the
all-new-platform equilibrium. For a small α and a big δ (Figure 4a), the users locked in the all-new-platform
equilibrium suffer from frustration of their chance to make the most of the backward compatibility. On the other
hand, with a big α and a small δ (Figure 4b), users’ SW outperforms that of the partially separated equilibrium
thanks to the strong indirect network effect.

Note that platform provider’s investment alleviates not only the burden of operating the new platform (C(I))
but also the congestion effect (ω(I)) in the supplier side. With the functional forms of C(I) and ω(I) employed in
the experiments above, the investment efficiency is determined by the parameters like a, b, and c. It does not affect
users’ SW but suppliers’ SW at ξ0 (it does not affect suppliers’ SW in the separate equilibria—ξ2 and ξ4—either,
since no suppliers join the new platform there). We try various values for b with a and c fixed at some values.
Thus, as b increases, ω(I) shrinks, thereby improving the investment efficiency (i.e., reducing the congestion
effect for the suppliers). Figure 6 shows the increase of suppliers’ SW in the all-new-platform equilibrium as the
efficiency enhances (here, SW at ξ2 (the dashed line) are drawn just for reference). In Figure 6a, we employ the
same a and c as ones in the previous experiments; in Figure 6b, we eliminate the cost term in platform provider’s
profit function, which implies an operation cost of zero.
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We also track down the effects of the maximum price margins, ∆A and ∆B, on the suppliers’ SW (note that
the users’ SW is not affected by these parameters). For ease of comparison, we simulate two cases. First, ∆A is



Games 2018, 9, 76 18 of 24

fixed at 1 and ∆B varies from 0 to 3 with a big backward compatibility (in particular, δ = 3). In the second case,
∆B is fixed at 2 and ∆A varies from 0 to 3 with a weak δ (δ = 0.5). The indirect network effects α and β are set at 2
and 3, respectively, as in the previous experiments.

With a small backward compatibility (Figure 7b), the suppliers’ SW at ξ0 (the all-new platform equilibrium)
outperforms that at ξ4 (the partially separated equilibrium), while with a big backward compatibility (Figure 7a),
the overall performance is reversed. As the maximum price margin—∆A or ∆B—increases, the suppliers’ SW’s at
both equilibrium types decrease for a while.10 However, they stay at the same points beyond a certain threshold
of ∆A or ∆B (see the horizontal lines in Figure 7). This implies that the maximum price margins are not fully
utilized in platform provider’s optimal decisions (e.g., ∆∗B < ∆B).
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Based on our experimental outcomes, the all-new-platform equilibrium ξ0, which the platform provider
facing large β and ∆B prefers to the separate equilibria ξ2 and ξ4, may bring out lower SW’s for both participants
than those at least in ξ2. Moreover, as the maximum price margin for the new platform ∆B increases, the suppliers’
SW deteriorates, though this drop ceases beyond a certain threshold of ∆B. These results imply a possible
imbalanced distribution of value created across the platform ecosystem at the all-new-platform equilibrium.
Improvement of platform provider’s investment efficiency, however, enhances suppliers’ SW and alleviates this
imbalance even at ξ0. On the other hand, with a large α and a relatively higher maximum price margin for the
current platform (e.g., ∆A > ∆B), the platform provider may prefer the completely separated equilibrium ξ2,
thereby improving participants’ SW. Moreover, the user SW enhances as the backward compatibility (δ) increases
in this circumstance.

In sum, the backward compatibility works differently across the scenarios. Though the strength of this
factor improves suppliers’ SW in Scenario III (i.e., ξ4), it does not affect the supplier SW in Scenarios I and II
(i.e., ξ0 and ξ2) since the users in these scenarios are only one type. On the other hand, the users’ SW in Scenarios
II and III improves as the backward compatibility increases. The users in the separate equilibria cannot consume
the services from the suppliers without the backward compatibility, while the users locked in the all-new-platform
equilibrium are unable to enjoy the opportunity to utilize the backward compatibility even with a big δ. However,
users’ SW in Scenario I may outperform those in Scenarios II and III when the indirect network effect for the new
platform β is strong enough to compensate loss of chance for taking advantage of the backward compatibility.

5. Discussion and Conclusions

We presented a two-sided market model with two virtually competing platforms under the control of
a dominant platform provider: current legacy platform versus a new advanced platform with the backward
compatibility. We then identified and analyzed Nash equilibria in the setting of a two-stage game: the platform

10 This behavior is obvious in Scenario I (the all-new platform equilibrium) since the larger the pricing margin ∆B, the higher
the cost that the suppliers in the new platform should pay. Without suppliers joining in platform B in other scenarios
(the separate equilibria), however, the payoffs of the suppliers in platform A are still affected by ∆B, which sets an upper
bound for ∆A.
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provider’s decisions on key parameters at the top and participants’ subscription game at the bottom. Our first
finding was that the backward compatibility (δ) could play a role of stabilizer for the interior equilibrium—the
coexistences of both platforms on both sides. Without δ, there exists little chance that a stable interior equilibrium
emerges. However, the presence of sizable δ does not necessarily guarantee the existence of a stable interior
equilibrium. Indeed, even with a moderate backward compatibility, the interior equilibrium (if exists) is vulnerable
to a small perturbation or shock. Thus, we considered boundary equilibria—at least one side tipped to a single
platform—together with the conditions for their stability. Lastly, we studied what boundary equilibrium the
dominant platform provider would choose as a target state, and then compared the outcomes from the target
states in terms of participants’ social welfare (SW).

Our study outcomes provide popular dominant platform provider like MS, Google, Apple, Facebook,
etc. with strategic implications for managing their platform ecosystem. For example, it is interesting to utilize
strategically the role of the backward compatibility. Even though we do not incorporate the multi-homing feature
in our model, the coexistences of two competing platforms on both sides (the interior equilibrium) or at least on
the user side (ξ4, the partially separated equilibrium) in Scenario III is possible by means of δ. Thus, the role of
the backward compatibility is crucial for these platform providers, particularly with mild (not too strong) indirect
network effects. This is interesting since it suggests that a similar phenomenon of the coexistence of competing
platforms is possible through different mechanisms: one with multi-homing [29] and the other with backward
compatibility. We briefly deal with two cases regarding the backward compatibility as well as the traditional
network effects.

The dominant PC OS providers, particularly MicroSoft (MS), have maintained steady installed bases, both in
the user side and the supplier side. MS provides regular updates (e.g., security dispatches) for Windows versions
(e.g., from Windows 10 ver. 1507 to Windows 10 ver. 1511). A similar phenomenon is observed in minor version
updates of the mobile OS (e.g., Android Oreo ver. 8.0 to Oreo ver. 8.1). Since many users do not pay much
attention to these updates, which usually take place automatically, only a small fraction of users (say, tech-savvy
users) are aware of their versions. Thus, β, the indirect network effect of the suppliers (e.g., third-party software
developers) for the newly updated version, cannot be too large. Furthermore, there will be no gap between the
maximum price margins ∆A and ∆B (i.e., ∆ ≈ 0). As a result, most users (intentionally or not) use the newest
version of their OS, while most third-party suppliers remain the old version of OS; that is, they seldom customize
their software and applications until the version jumps. This outcome resembles the separate equilibria (ξ2 and
ξ4), which confirms what our propositions suggest.

On the other hand, we could observe another type of equilibria when many platform participants of PC
or mobile OS are aware of their versions. This will correspond to a major change or new update in the platform
version (e.g., from Windows 8 to Windows 10; from Android Nougat to Android Oreo). When a new update is
released, both users and suppliers are required to decide whether to update the OS version and customize apps,
respectively. In the case of Apple’s iOS, 89.1% of iPhone devices implemented iOS ver. 11.x as of 1 June 2018
(https://david-smith.org/iosversionstats/) after its first worldwide release in September 2017. The third-party
developers have also widely adopted iOS ver. 11.x. The swift transition to this new version was unusual.
Great attention from both sides toward the version update implies a big β: probably, β > α since the developers
probably have more concerns than the users. In addition, the platform provider is able to implement various
pricing strategies over a wide range (i.e., ∆ from minus to plus). When a big β prevails over δ, the outcome may
look similar to ξ0 (the all-new-platform equilibrium) and both sides quickly switch to the new platform. However,
in the early stage of the new release, the key parameters α, β, and δ are not big in general. When these parameters
are small or in moderate size within a delicate range (e.g., Figure 2a), we may observe the (temporary) coexistence
of both platforms, which corresponds to the stable interior equilibrium or the transition states near a saddle
point. For example, iOS version 10.x had a market share of 68.5% in one year after its first worldwide launch in
September 2016, and it coexisted for a considerable period of time with previous versions (iOS ver. 9.x or earlier),
which took more than 23% of the market share (http://gs.statcounter.com/ios-version-market-share/).

The short case studies above may fall short of perfect analysis since the stylized model is necessarily limited
by its assumptions and other abstractions. This study is no exception to such an inherent limit. First, our model
ignores the vertical differentiation, particularly on the user side. The vertical differentiation, however, could be at
least as important as the horizontal one in some situations regarding the backward compatibility: for example,
IT services that require durable hardware like consoles for video games. Second, some parameters, in particular,
the strength of the backward compatibility (δ) and the user price level (PU), are given exogenously for the sake of
analytical tractability. However, the platform provider may utilize them as strategic leverage, which requires that
they should be endogenously determined (and updated from time to time).

https://david-smith.org/iosversionstats/
http://gs.statcounter.com/ios-version-market-share/
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Lastly, the set-up of a dominant platform provider also excludes possible competition effects. In particular,
the mode of competition (e.g., Cournot vs Stackelberg) or the phase in the life cycle (e.g., in References [19,31])
will affect the degree of the backward compatibility, thereby making the level determined endogenously. Thus,
our future works will proceed along a couple of directions for extending the current model. First of all, the overall
context within which our modeling and analysis were conducted could be extended. For example, we are studying
an oligopolistic platform competition in a two-sided market and the effect of the backward compatibility on
the competitive landscape (e.g., in the dynamic game frame employed in References [16,17]). Incorporating
competition into our framework probably also requires changing the role of the backward compatibility from an
exogenous parameter to a strategic variable of competing platform providers (e.g., the backward compatibility as
a tool of entry deterrence as in Reference [35]). We also consider elaborating the equilibrium selection stage by
adopting the optimal control theory in order to delve into the dynamics toward a target state.

Funding: This research was supported by the National Research Foundation of Korea Grant funded by the Korean
Government (grant number: NRF-2014S1A5A2A01013466).
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Appendix A

Proof of Proposition 1. The interior rest (or stationary) point (x, y) of the dynamics Equations (9) and (10) are the
solution of the simultaneous equations M·ξ+ k = 0, or M·ξ = −k. It is a well-known fact in the dynamic system
theory that the rest point (x, y) (if it exists) constitutes a Nash equilibrium. Furthermore, the uniqueness comes
from the linearity of the simultaneous equations. Either set of inequalities above guarantees that the rest point
is positive.

To show instability, it suffices to show that at least one eigenvalue of M is positive when det(M) < 0.

Indeed, under the inequalities above, M has two distinct eigenvalues, λ1 = −
{
(ω(I) + 4)−

√
Γ
}

/2 and

λ2 = −
{
(ω(I) + 4) +

√
Γ
}

/2, where Γ ≡ ω(I)2 + 4(α− δ + 1)(β + 1) > 0 (note that det(M) < 0 implies
α − δ + 1 > 0). The maximum eigenvalue is λ1 and positive if det(M) < 0; while the minimum one (λ2) is
always negative. Therefore, if det(M) < 0 (as specified in the inequality conditions of Set II), then the interior
equilibrium becomes a saddle point. Otherwise (i.e., det(M) > 0), the interior equilibrium is stable. �

Proof of Proposition 2. We first present the proof for 1© ξ0. Direct comparisons of payoffs at (0, 0) show that
if the conditions in 1© hold then µA(θ)|ξ0 ≤ µB(θ)|ξ0 and πA(φ)|ξ0 ≤ πB(φ)|ξ0 for any θ and φ in [0, 1].
Thus, the conditions serve for ξ0 to be a Nash equilibrium. As for the stability of ξ0, we consider a small
perturbation ε (� 1), which put the market shares off the boundary equilibrium. Then, the dynamics Equations
(9) and (10) around ξ0 sends the perturbation (ε, ε) back to ξ0 since both

.
x(ε, ε) = ε((α− δ− 1)ε+ 1− α) and

.
y(ε, ε) = ε((β−ω(I)− 1)ε+ ω(I)− β + 1 + ∆) are negative under the inequality conditions in 1©. That is,
the boundary Nash equilibrium ξ0 is locally stable against any small perturbation.

2© With a positive backward compatibility (δ > 0), however, there is always an incentive to deviate from
ξ1, in particular, for users whose location is smaller than 1− δ/2. That is, choosing platform A at ξ1 cannot be a
best response for those users. Therefore, the state ξ1 corresponding to 100% market shares of the legacy platform
cannot be an equilibrium.

3© The overall process of the proof for the case of ξ2 is similar to the one for ξ0. First, with δ > 2,
µA(θ)|ξ2 ≤ µB(θ)|ξ2 for all θ ∈ [0, 1], and with ∆ > β+ 1, πA(φ)|ξ2 ≥ πB(φ)|ξ2 for any φ ∈ [0, 1]. Furthermore,
the two inequality conditions in 3© make the corner state ξ2 stable since both

.
x < 0 and

.
y > 0 hold for any

perturbation (ε, 1 − ε) around ξ2. For example,
.
x(ε, 1− ε) = ε{−(α− δ + 3)ε− δ + 2} < 0 for any sufficiently

small ε if δ > 2. Similarly, for ∆ > β + 1,
.
y(ε, 1− ε) > 0. Thus, any small deviation from ξ2 moves back to ξ2,

which establishes the local stability of ξ2.
4© The overall process showing that ξ3 constitutes a Nash equilibrium is also similar to the previous cases.

Under the inequality conditions in 4©, µA(θ)|ξ3 ≤ µB(θ)|ξ3 for all θ ∈ [0, 1] and πA(φ)|ξ3 ≤ πB(φ)|ξ3 for
φ ∈ [z1, 1], where z1 = (ω(I) + 1 + ∆)/(ω(I) + 2). However, it is impossible to find a sufficiently small ε that
makes the perturbation (ε, z1 − ε) around ξ3 move back to ξ3 since

.
y(ε, z1 − ε) < 0 for any ε < β/(ω(I) + β + 3).

Hence, ξ3 presents an “unstable” Nash equilibrium.
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5© Lastly, ξ4 constitutes a Nash equilibrium since µA(θ)|ξ4 ≤ µB(θ)|ξ4 for all θ ∈ [z2, 1] and πA(φ)|ξ4 ≥
πB(φ)|ξ4 for all φ ∈ [0, 1], where z2 = 1− δ/2, if the first two inequalities in 5© are satisfied. Stability analysis is
similar to the previous cases. Again, we consider two perturbation types (z2− ε, 1−ε) and (z2 + ε, 1−ε), and show
that

.
x(z2 − ε, 1− ε) > 0,

.
y(z2 − ε, 1− ε) > 0,

.
x(z2 + ε, 1− ε) < 0, and

.
y(z2 + ε, 1− ε) > 0. In particular, we need

the third inequality condition in 5© for
.
x(z2 + ε, 1− ε) < 0. Thus, under three inequalities in 5©, a sufficiently

small deviation in any direction around ξ4 moves back to ξ4. This establishes the local stability of ξ4. �

Proof of Proposition 3. We apply the Karush–Kuhn–Tucker (KKT) condition to each optimization problem in the
corresponding scenario and find an optimal solution {∆∗A, ∆∗B, I∗}. Then, the proofs are straightforward.

1© Scenario I

In Scenario I, the platform provider’s optimization problem is as follows:

max Πξ0 = ∆B + 2P− C(I) (O1)
∆A, ∆B, I

subject to ∆B − ∆A + ω(I) ≤ β− 1 (C1)

|∆A| ≤ ∆A , |∆B| ≤ ∆B , 0 ≤ I ≤ 1 (C2)

.

The Largrangian objective function becomes L = ∆B + 2P − C(I) + λ(∆A − ∆B −ω(I) + β− 1) +
λA1

(
∆A − ∆A

)
+ λA2

(
∆A + ∆A

)
+ λB1

(
∆B − ∆B

)
+ λB2

(
∆B + ∆B

)
+ λI(1− I), where non-negative λ’s are the

multipliers associated with respective constraints: e.g., λ for constraint (C1) and λI for investment I ∈ [0, 1].11

Then, the KKT condition gives the following three (in)equalities:12

∂L
∂∆A

= λ− λA1 + λA2 = 0,
∂L

∂∆B
= 1− λ− λB1 + λB2 = 0, and

∂L
∂I

= −C′(I)− λω′(I)− λI ≤ 0.

Note λA1λA2 = λB1λB2 = 0 at an optimal (dual) solution. Considering first the binding cases of I∗ = 0
or 1. If I∗ = 0, then λ∗I = 0, which results in λ∗

(
= λ∗A1

)
≤ −C′(0)/ω′(0) ∈ (0, 1). However, both λ∗ and

λ∗A1 > 0 require ∆∗A = ϕB(0) = ∆A at the same time, which only holds with extremely rare coincidence.
Ruling out this extraordinary situation, we conclude that I∗ = 0 cannot be an optimal decision. If I∗ = 1 then
−λ∗ω′(1) = λ∗I + C′(1), which requires λ∗ 6= 0 (otherwise, λ∗I < 0). Furthermore, λ∗ ≤ 1 (otherwise, λ∗B1 < 0).
However, λ∗I ∈ (0, 1) cannot be compatible with the non-negativity of λ∗I under the assumptions C′(1)� 0 and
−ω′(1) ≈ 0. In sum, these binding cases of I cannot produce an optimal decision on investment.

The complementary slackness for constraint 0 ≤ I ≤ 1 requires λI = 0 for I∗ ∈ (0, 1) (as asserted in
1© above), thereby λ∗ω′(I∗) = −C′(I∗) < 0. Thus, λ∗ > 0, which implies ∆∗B − ∆∗A + ω(I∗) = β − 1 due to

the complementary slackness for (C1). If one sets |∆∗A| < ∆A then both λA1 and λA1 vanish, which leads to
λ∗ = 0 and contradicts λ∗ > 0. Accordingly, ∆∗A = ∆A, λ∗ = λ∗A1, and ∆∗B = min

{
∆B, ∆A + β−ω(I∗)− 1

}
.

Now, we face two (exclusive) possibilities. a© If ϕA(I∗) ≡ ∆A + β− ω(I∗)− 1 < ∆B, both λB1 and λB2 vanish,
and λ∗ = λ∗A1 = 1, which results in ω′(I∗) = −C′(I∗) and ∆∗B = ϕA(I∗). b© Otherwise, ∆∗B = ∆B and
λ∗B1 = 1− λ∗, where λ∗ ∈ (0 , 1] and λ∗B1 ∈ [0 , 1). Note that as λ∗ decreases (from λ∗ = 1 before), so does I∗,
and vice versa. Also note that ϕA(I∗) decreases with I∗. Thus, as ϕA(I∗) decreases down to ∆B, one can determine
λ∗ (hence λ∗B1, too), at which ϕA(I∗) equals ∆B (i.e., ϕA(I∗) = ∆B).

Lastly, the second order sufficient condition is satisfied since the objective function (O1) is concave and the
constraint qualification also holds since all the constraints (C1) and (C2) are linear in the decision variables.

Similar (and somewhat tedious) procedures are applied to Scenarios II and III for proof.

11 Here, we use the KKT condition for mixed variable types: i.e., ∆A and ∆B free of sign, and I with the non-negativity (simple
lower bound) constraint. Thus, we can save the multiplier for I ≥ 0.

12 We omit other (in)equalities in the KKT condition. For example, there are five (primal) feasibility conditions
(each for the corresponding constraint), as well as another five complementary slackness conditions (each for the
corresponding constraint).
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2© Scenario II

In Scenario II, the platform’s optimization problem is as follows:

max Πξ0 = ∆A + 2P− C(I) (O2)
∆A, ∆B, I

subject to ∆B − ∆A ≥ β + 1 (C3)

|∆A| ≤ ∆A , |∆B| ≤ ∆B , 0 ≤ I ≤ 1 (C2)

.

Now, the Lagrangian objective function becomes L = ∆A + 2P − C(I) + λ(∆B − ∆A − β− 1) +
λA1

(
∆A − ∆A

)
+ λA2

(
∆A + ∆A

)
+ λB1

(
∆B − ∆B

)
+ λB2

(
∆B + ∆B

)
+ λI(1− I), where non-negative λ’s are the

multipliers associated with the respective constraints as in the proof of 1©. The KKT condition gives the following
(in)equalities:13

∂L
∂∆A

= 1− λ− λA1 + λA2 = 0,
∂L

∂∆B
= λ− λB1 + λB2 = 0, and

∂L
∂I

= −C′(I)− λI ≤ 0.

Note that the optimal decisions for {∆A, ∆B} and I are separated. As I is subject to the non-negativity
constraint, an optimal I∗ should satisfy I∗∂L(I∗)/∂I = −I∗

(
C′(I∗) + λ∗I

)
= 0, too. However, I∗ > 0 results in

λ∗I < 0, which goes against the non-negativity of λI . Thus, I∗ = 0.
Now, let’s assume ∆B − ∆A > β + 1 (· · · a©) and set ∆∗A = ∆A. Therefore, λ∗A1 = 1− λ∗ ≥ 0 and λ∗A2 = 0.

Here, λ∗ cannot be positive; otherwise, ∆∗B = ∆A + β + 1 (< ∆B) and λ∗B1 = λ∗B2 = 0, which leads to λ∗ = 0,
a contradiction to λ∗ > 0. On the other hand, λ∗ = 0 (thereby, λ∗A1 = 1) also results in λ∗B1 = λ∗B2 = 0 and
∆A + β + 1 ≤ ∆∗B < ∆B.

In the case of b© (· · · ∆B − ∆A ≤ β + 1), setting ∆∗B = ∆B results in λ∗B1 = λ∗ ≥ 0 and λ∗B2 = 0.
For λ∗B1 = λ∗ = 0, λ∗A1 = 1 and ∆∗A = ∆A, which leads to ∆B − ∆A ≥ β + 1, a contradiction to the premise
b©. On the other hand, positive λ∗ and λ∗B1 give ∆∗A = ∆B − β − 1 (≤ ∆A), which requires λ∗A2 = 0 and
λ∗A1 = 1− λ∗ ≥ 0: that is, positive λ∗ (= λ∗B1).

3© Scenario III

The proof for Scenario III is almost similar to the previous one. Now, platform provider’s optimization
problem is the same as the one in Scenario II except constraint (C3). The new constraint (C4) for this scenario
substitutes for (C3) as follows:

· · ·
subject to ∆B − ∆A ≥ 1

2 δ(β + 1) (C4)
· · ·

.

The Lagrangian objective function changes only in L = · · ·+ λ(∆B − ∆A − δ(β + 1)/2) + · · · . Therefore,
the similar reasoning suffices to show the outcomes for a© and b©. �
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