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Abstract: The hydroformylation of alkenes with CO and H2 to manufacture aldehydes is one
of the most large-scale chemical reactions. However, an efficient and recyclable heterogeneous
catalyst for alkene hydroformylation is extremely in demand in academia and industry. In this
study, a sulfated carbon nitride supported rhodium particle catalyst (Rh/S-g-C3N4) was successfully
synthesized via an impregnation-borohydride reduction method and applied in the hydroformylation
of alkenes. The catalysts were characterized by XRD, FTIR, SEM, TEM, XPS, and nitrogen adsorption.
The influence of the sulfate content, pressure of syngas, temperature, and reaction time, as well
as the stability of Rh/S-g-C3N4, on the hydroformylation was examined in detail. The delocalized
conjugated structure in g-C3N4 can lead to the formation of electron-deficient aromatic intermediates
with alkenes. The sulphate g-C3N4 has a defected surface owing to the formation of oxygen
vacancies, which increased the adsorption and dispersion of RhNPs on the surface of g-C3N4.
Therefore, Rh/S-g-C3N4 exhibited an outstanding catalytic performance for styrene hydroformylation
(TOF = 9000 h−1), the conversion of styrene could reach 99.9%, and the regioselectivity for the branched
aldehyde was 52% under the optimized reaction conditions. The catalytic properties of Rh/S-g-C3N4

were also studied in the hydroformylation of various alkenes and displayed an excellent catalytic
performance. Furthermore, the reuse of Rh/S-g-C3N4 was tested for five recycling processes, without an
obvious decrease in the activity and selectivity under the optimum reaction conditions. These findings
demonstrated that Rh/S-g-C3N4 is a potential catalyst for heterogeneous hydroformylation.
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1. Introduction

Hydroformylation (oxo process) has been extensively applied in industry to manufacture aldehydes
by the addition of CO and H2 to alkenes in one step with a 100% atom efficiency [1–3]. The aldehydes
formed are valuable industrial products and intermediates in the synthesis of bulk chemicals, such as
alcohols, carboxylic acids, esters, amines, and so on [4,5]. This green and clean synthetic route
was accidentally found by Otto Roelen during the Fischer-Tropsch process in 1938 [6]. Today,
this transformation represents one of the most large-scale reactions in industry. More than ten
million tons of “oxo chemicals” are manufactured by the hydroformylation reaction [7,8].
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Nowadays, commercial hydroformylation processes mainly involve homogeneous Rh-based
catalysis owing to the excellent performance that can be achieved under milder reaction conditions [9,10].
However, the reuse of homogeneous Rh-based catalysts is very inconvenient. The separation of
aldehydes or alcohols from homogeneous catalysts and the regeneration of expensive Rh-based
catalysts are the most difficult challenges in large-scale production. To overcome these limitations of the
homogeneous catalysis, various approaches for separating soluble Rh-based complex catalysts [11,12]
have been developed, such as non-aqueous ionic liquids, an aqueous/organic biphasic system,
supercritical carbon dioxide, a fluorous biphasic system, and supported catalysts [13–17]. Among these
approaches, supported catalysts are regarded as one of the most available approaches due to their
advantages of simple separation and good recycling properties [12,18–21]. In supported Rh-based
catalysts, heterogeneous supported Rh particle catalysts can provide a simple but efficient method
to overcome the weak point in alkene hydroformylation, and the catalytic activity of supported Rh
particle catalysts is constantly lower than that of homogeneous catalysts. Therefore, the development of
novel supported Rh particle catalysts with high activity and reusability remains extremely challenging
and timely.

In the design of heterogeneous supported Rh particle catalysts for alkene hydroformylation,
the most effective method is the selection of appropriate supports which have special properties to adjust
the metal particles, such as a dispersion capability, stability, and electron effects. Two-dimensional
layer-structured graphitic carbon nitride, named g-C3N4, possesses strong tri-s-triazine linked with
tertiary amine groups in each layer, and is a suitable catalytic material in the field of photocatalysis
and heterogeneous catalysis [22–24], owing to its high surface area, chemical and thermal stability,
amenability to chemical modification, particular electronic structure, and low-cost preparation.
Because the tri-s-triazine ring in each layer is aromatic, the 2D conjugated s-triazine prefers to form
a delocalized conjugated structure like that of graphite [22,25,26]. This special conjugated structure
not only interacts with double- and triple-bond reactants, such as alkenes and alkynes, but also
significantly improves electron transfer in the supports, improving the stability of well-dispersed metal
particles [27,28].

In particular, g-C3N4 has nitrogen pots with rich melon moieties, which are promising sites for
adjusting its electronic structures and original properties [29,30]. Heteroatomic doping with non-metals,
such as B, S, C, etc. [31–35], has formed a new series of g-C3N4-based catalysts with improved catalytic
performances, mainly in the field of photocatalysis. Xu et al. [36] reported that sulfur-doped g-C3N4

displayed an outstanding photocatalytic performance for H2 evolution under visible light with a good
stability compared to that of neat g-C3N4, owing to the carbon being substituted by sulfur in g-C3N4.
Parida et al. [37] reported that visible light-induced water reduction for H2 production catalyzed by
Au-sulfated g-C3N4 was increased by over 2.5 times compared to that of sulfated g-C3N4, 1.5 times
compared to that of Au-g-C3N4, and 35 times compared to that of neat g-C3N4.

In this contribution, we investigate the effect of sulfate on improving the deposition of Rh particles
on g-C3N4 and enhancing the catalytic performance of Rh/g-C3N4 in the hydroformylation of alkenes.
The g-C3N4, containing rich nitrogen pots, can disperse Rh particles to form abundant catalytic active
sites. Furthermore, the sulphate pre-treated procedure can not only adjust the surface functionality and
electronic structure of g-C3N4 to improve the electron transfer and form a more stable π conjugation
system, but also create a defected surface because of the formation of oxygen vacancies. This interaction
strengthens the adsorption and deposition of Rh particles on the defected surface of the g-C3N4.
Inspired by this understanding of the importance of sulfonation for the deposition of Rh particles,
an assumption is proposed that the deposited Rh particles on the sulfated surface of g-C3N4 can
exhibit an outstanding catalytic performance in styrene hydroformylation, as well as easy separation
and recycling.
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2. Results and Discussion

2.1. Characterization

XRD was applied to analyze the crystal phase, interlayer stacking, and structure of the synthesized
g-C3N4. In Figure 1a, the XRD pattern of neat g-C3N4 demonstrates a graphitic-like layer structure,
with two feature diffraction peaks at 27.4◦ and 13.1◦ (JCPDS-87-1526). The strong diffraction peak at
27.4◦ can be ascribed to the (002) crystal plane [23], typically representing the graphite-like characteristic
interlayer stacking structure of the conjugated aromatic systems, with an interlayer distance of about
0.326 nm. The minor diffraction peak at 13.1◦ can be ascribed to the (100) crystal plane, representing the
in-plane structural packing motif of tri-s-triazine units. The calculated lattice spacing is about 0.675 nm.
Furthermore, for the X%S-g-C3N4, Rh/g-C3N4, and Rh/3%S-g-C3N4, no significant change of the main
peaks at 13.1◦ and 27.4◦ can be observed, demonstrating that the modification of sulfur and rhodium
cannot affect the crystal structure of g-C3N4 and the structure of tri-s-triazine is chemically stable
during the structural modification. The XRD peaks of Rh do not appear in Rh/g-C3N4 and Rh/S-g-C3N4

owing to the low content and good dispersion of Rh particles.
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Figure 1. XRD patterns of (a) neat g-C3N4, (b) 1%S-g-C3N4, (c) 2%S-g-C3N4, (d) 3%S-g-C3N4, (e) 4%S-
g-C3N4, (f) 5%S-g-C3N4, (g) 6%S-g-C3N4, (h) Rh/g-C3N4 and (i) Rh/3%S-g-C3N4. 

In order to study the functional groups of neat g-C3N4, X%S-g-C3N4, Rh/g-C3N4 and Rh/3%S-g-
C3N4, FTIR spectroscopy spectra were recorded and shown in Figure 2, and the spectra for all the 
samples are greatly similar with each other. The peak at about 812 cm−1 is belong to the characteristic 
breathing mode of tri-s-triazine rings [23], while the strong band in the range of 1200–1700 cm−1 with 
the characteristic peaks located at 1238, 1325, 1412, 1574, 1639 cm−1, belongs to the characteristic 
stretching vibration of aromatic C-N heterocycles, and these are the typical absorption bands of 
triazine units. Another broad band in the range 3100–3300 cm−1 originates from the N-H vibration 
and the O-H vibration, owing to the unpolymerized amino groups and the water molecules adsorbed 
on the surface of g-C3N4. For Rh loaded g-C3N4 or S-g-C3N4, all the characteristic vibrational peaks of 
g-C3N4 are unchanged. 

Figure 1. XRD patterns of (a) neat g-C3N4, (b) 1%S-g-C3N4, (c) 2%S-g-C3N4, (d) 3%S-g-C3N4,
(e) 4%S-g-C3N4, (f) 5%S-g-C3N4, (g) 6%S-g-C3N4, (h) Rh/g-C3N4 and (i) Rh/3%S-g-C3N4.

In order to study the functional groups of neat g-C3N4, X%S-g-C3N4, Rh/g-C3N4 and
Rh/3%S-g-C3N4, FTIR spectroscopy spectra were recorded and shown in Figure 2, and the spectra
for all the samples are greatly similar with each other. The peak at about 812 cm−1 is belong to
the characteristic breathing mode of tri-s-triazine rings [23], while the strong band in the range of
1200–1700 cm−1 with the characteristic peaks located at 1238, 1325, 1412, 1574, 1639 cm−1, belongs to
the characteristic stretching vibration of aromatic C-N heterocycles, and these are the typical absorption
bands of triazine units. Another broad band in the range 3100–3300 cm−1 originates from the N-H
vibration and the O-H vibration, owing to the unpolymerized amino groups and the water molecules
adsorbed on the surface of g-C3N4. For Rh loaded g-C3N4 or S-g-C3N4, all the characteristic vibrational
peaks of g-C3N4 are unchanged.
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Figure 2. FTIR spectra of (a) neat g-C3N4, (b) 1%S-g-C3N4, (c) 2%S-g-C3N4, (d) 3%S-g-C3N4, (e) 
4%S-g-C3N4, (f) 5%S-g-C3N4, (g) 6%S-g-C3N4, (h) Rh/g-C3N4, and (i) Rh/3%S-g-C3N4. 
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tend to bend to decrease the surface energy. Many breakages and holes are present on the surface of 
the lamellar structures, owing to the release of NH3 and CO2 during the thermal condensation of urea. 
These holes produce a porous structure with a greater surface area in sulfated g-C3N4 samples. After 
sulfonation (Figure 3C), the g-C3N4 network decomposes and forms an irregular thin lamellar 
structure, resulting in an increase of the specific surface area. Simultaneously, this porous structure 
can also provide more growth sites for the formation of smaller-sized RhNPs. After the introduction 
of RhNPs on the 3%S-g-C3N4 (Figure 3D), the rhodium particles are uniformly dispersed on the 
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The morphologies and microstructural details of neat g-C3N4, 3%S-g-C3N4, and Rh/3%S-g-C3N4

were checked by SEM analyses in the Figure 3. Figure 3A reveals the formation of a slate-like, stacked
lamellar structure in neat g-C3N4. The enlarged view in Figure 3B reveals that the edges of g-C3N4

tend to bend to decrease the surface energy. Many breakages and holes are present on the surface
of the lamellar structures, owing to the release of NH3 and CO2 during the thermal condensation of
urea. These holes produce a porous structure with a greater surface area in sulfated g-C3N4 samples.
After sulfonation (Figure 3C), the g-C3N4 network decomposes and forms an irregular thin lamellar
structure, resulting in an increase of the specific surface area. Simultaneously, this porous structure can
also provide more growth sites for the formation of smaller-sized RhNPs. After the introduction of
RhNPs on the 3%S-g-C3N4 (Figure 3D), the rhodium particles are uniformly dispersed on the surface
of S-g-C3N4.
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The microstructures and morphologies of Rh/g-C3N4 and Rh/3%S-g-C3N4 samples were also
checked by TEM to analyze the shape, size, and distribution of RhNPs on the surface of g-C3N4.
In Figure 4, both Rh/g-C3N4 and Rh/3%S-g-C3N4 show an obvious lamellar structure of g-C3N4.
In Figure 4c,d, the Rh/3%S-g-C3N4 sample has a defected surface because of the formation of an
irregular porous structure, resulting in a strengthening of the adsorption of RhNPs onto the sulphated
g-C3N4. In addition, the uniform distribution of RhNPs on the g-C3N4 and S-g-C3N4 can be clearly
observed. All of the RhNPs are strongly adhered to the surface of g-C3N4. Moreover, the size of
Rh particles decreases more obviously in the case of S-g-C3N4 (2–3 nm) than that of neat g-C3N4

(6–7 nm), demonstrating that the sulfonation of g-C3N4 can efficiently improve the dispersion of
RhNPs and drastically decrease the particle size of RhNPs. This demonstrates the presence of a strong
interaction between the defected surface and RhNPs in sulfated g-C3N4 for forming smaller-sized
RhNPs, which means that more Rh atoms can be provided to form catalytic active species for the
hydroformylation of alkenes.
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The specific surface areas of the neat g-C3N4 and sulfated g-C3N4 are summarized in Table 1.
It is obvious that the specific surface areas of all the S-g-C3N4 are lower than that of neat g-C3N4

(115.8 m2 g−1), due to the sulphate process, which results in decomposition of the g-C3N4 network.
For the sulfated g-C3N4 samples, the specific surface area increases with the sulfur content from 1 to
3 wt.% and then decreases from 3 to 6 wt.% (the maximum is 78.8 m2 g−1 for 3%S-g-C3N4). The increase
of surface areas can be attributed to the sulphate process, which forms a porous structure on the layers
of g-C3N4. However, a further increase of the sulfur content may cause the aggregation of g-C3N4

layers and then decrease the specific surface areas of the samples.
XPS was further applied to study the chemical composition of the Rh/3%S-g-C3N4 sample as shown

in the Figure 5 and Figure S1. The C 1s spectrum in Figure 5a shows two peaks at binding energies of
284.6 and 287.6 eV. The peak at 284.6 eV can be attributed to the sp2 C-C bonds of graphitic carbon
adsorbed to the surface, whereas the peak at 287.6 eV corresponds to sp3-bonded C in the N-containing
aromatic ring (N-C=N) of g-C3N4 [38]. The N 1s peak in Figure 5b can be deconvoluted into three
peaks at 398.1, 399.8, and 404.1 eV. The main peak at 398.3 eV is typically ascribed to sp2-hybridized
nitrogen (C=N-C), and the other two peaks located at 399.8 and 404.1 eV can be attributed to the
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N-(C)3 groups and the charging effects, respectively [39]. Figure 5c shows the XPS spectrum of Rh 3d.
The strongest peak at 307.3 eV (Rh 3d5/2), together with the peak at 312.1 eV (Rh 3d3/2), corresponds
to the metallic Rh. The binding energy at 309.1 eV is attributed to the Rh3+ 3d5/2 peak, and 313.9 eV
is assigned to the Rh3+ 3d3/2 peak. This demonstrates that the impregnation-borohydride reduction
method can effectively load RhNPs on the surface of the S-g-C3N4.

Table 1. Textural properties of the neat g-C3N4 and X%S-g-C3N4.

Samples g-C3N4 1%S-g-C3N4 2%S-g-C3N4 3%S-g-C3N4 4%S-g-C3N4 5%S-g-C3N4 6%S-g-C3N4

SBET (m2 g−1) 115.8 70.1 71.0 78.8 73.6 58.4 39.6
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Scheme 1. Styrene hydroformylation to linear and branched aldehydes. 

The obtained results illustrating the catalytic performances of Rh/g-C3N4 and Rh/X%S-g-C3N4 
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2.2. Catalytic Performance

To study the catalytic performance of Rh/S-g-C3N4, styrene hydroformylation was chosen as the
model reaction to investigate the catalytic activity and selectivity of Rh/S-g-C3N4 catalysts in detail.
The formed aldehydes were 3-phenylpropanal and 2-phenylpropanal, as shown in Scheme 1.
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The obtained results illustrating the catalytic performances of Rh/g-C3N4 and Rh/X%S-g-C3N4

with different sulfur contents for styrene hydroformylation are summarized in Table 2. It can be seen
that the Rh/g-C3N4 catalyst displays an outstanding catalytic activity for styrene hydroformylation
(Entry 1, TOF = 5800 h−1), due to its 2D continuous lamellar structure similar to that of graphite,
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which determines its large exposed Rh active sites, high particle dispersion, and small particle size.
After sulfonation, all of the Rh/X%S-g-C3N4 catalysts exhibit far higher activities than the Rh/g-C3N4

catalyst, indicating that the excellent activity of Rh/X%S-g-C3N4 is closely related to sulfur doping.
Modifying sulfur atoms can promote the electron transfer of π-conjugated g-C3N4 to form a more
stable π-conjugated structure, which is beneficial for forming electron-deficient aromatic intermediates
with alkenes, leading to higher activity of the Rh/X%S-g-C3N4 catalysts. What is more important is
that the S-g-C3N4 has a defected surface because of the formation of oxygen vacancies (confirmed by
SEM and TEM), which can strengthen the adsorption of RhNPs onto the vacant oxygen sites and
promote the dispersion of RhNPs to form smaller and more uniform RhNPs, resulting in more active
species for styrene hydroformylation. Furthermore, the content of sulfur also plays an important role
in the catalytic activities of Rh/X%S-g-C3N4 catalysts. The TOF increases with the sulfur content from
1 to 3 wt.% and then decreases from 3 to 6 wt.%, indicating that the optimum sulfur content should
be 3 wt.%, with the highest TOF = 9000 h−1 (Entry 4). Rh/3%S-g-C3N4 represents one of the best
heterogeneous catalysts for alkene hydroformylation in comparison with the reported Rh/MOF-5 [19],
for which the conversion of alkene is 89.6% under the same reaction condition. The excellent catalytic
performances of Rh/3%S-g-C3N4 could be due to the synergetic effects between S-g-C3N4 and RhNPs.
The defected surface of S-g-C3N4 with a high specific surface area can also efficiently disperse RhNPs
to form more small RhNPs and increase the number of active sites for the hydroformylation of alkenes.
It can be obviously seen that 3%S-g-C3N4 has the highest SSA, and thus Rh/3%S-g-C3N4 has the best
catalytic activity for styrene hydroformylation.

Table 2. Hydroformylation of styrene over Rh/g-C3N4 and Rh/S-g-C3N4
a.

Entry Catalyst Conversion (%) TOF (h−1) b
Selectivity (%)

Aldehydes B:L c

1 Rh/g-C3N4 64.8 5800 100 54:46
2 Rh/1%S-g-C3N4 87.4 7900 100 54:46
3 Rh/2%S-g-C3N4 96.5 8700 100 50:50
4 Rh/3%S-g-C3N4 99.9 9000 100 52:48
5 Rh/4%S-g-C3N4 93.5 8400 100 54:46
6 Rh/5%S-g-C3N4 82.0 7300 100 46:54
7 Rh/6%S-g-C3N4 77.7 7000 100 54:46

a Reaction conditions: Catalyst: 0.02 g; toluene: 20 mL; styrene: 1.5 mL; reaction time: 3 h; temp.: 100 ◦C;
and syngas (CO/H2 =1): 6.0 MPa. b TOF = number of moles of product formed/(number of moles of Rh × h). c B:L =
2-phenylpropanal: 3-phenylpropanal.

To study the optimized reaction conditions for styrene hydroformylation, the reaction temperature
and syngas pressure were evaluated in detail. The results are shown in Table 3. In all cases,
only 2-phenylpropanal and 3-phenylpropanal products can be observed, without any by-products,
such as alcohols, which are derived by the hydrogenation of aldehyde products. It is well known that
the conversion and aldehyde selectivity of styrene hydroformylation are strongly related to the reaction
temperature. Therefore, the effect of the reaction temperature was firstly explored in the range of
80–100 ◦C, and a good conversion of 99.9% styrene, with an excellent TOF of 9000 h−1, was achieved at
100 ◦C. Therefore, the optimum reaction temperature is near 100 ◦C. Although the conversion of styrene
increases with a rising reaction temperature, the selectivity to 2-phenylpropanal decreases obviously
from 73% to 53%, indicating that a high temperature is beneficial for the formation of 3-phenylpropanal.
The total pressure of syngas (CO/H2 = 1) is also a key factor in styrene hydroformylation. As shown
in Table 3 (entries 3–5), the pressure of syngas has less impact on the selectivity of products, but an
enhanced pressure from 4.0 to 6.0 MPa drastically increases the conversion of styrene from 64.9%
to 99.9% at the same reaction temperature. Therefore, the optimum reaction conditions (100 ◦C and
6.0 MPa CO/H2) were chosen through systematic investigations for the following studies.
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Table 3. Optimization of hydroformylation of styrene over Rh/3%S-g-C3N4
a.

Entry Temperature
(◦C)

Pressure
(MPa)

Conversion
(%) TOF (h−1) b

Selectivity (%)

Aldehydes B:L c

1 80 6.0 18.4 1700 100 73:27
2 90 6.0 56.1 5100 100 65:35
3 100 6.0 99.9 9000 100 53:47
4 100 5.0 91.8 8300 100 51:49
5 100 4.0 64.9 5900 100 48:52

a Reaction conditions: Rh/3%S-g-C3N4: 0.02 g; toluene: 20 mL; styrene: 1.5 mL; reaction time: 3 h; and CO:H2 = 1.
b TOF = number of moles of product formed/(number of moles of Rh×h). c B:L = 2-phenylpropanal: 3-phenylpropanal.

Figure 6 reveals the conversion and selectivity for branched aldehyde change with the reaction
time. It is obvious that the styrene conversion increases with increases in the reaction time and
reaches the maximum conversion at 3 h. Therefore, the optimum conditions, corresponding to the
maximum styrene conversion (99.9%), were found to be 100 ◦C catalyzed by Rh/3%S-g-C3N4 under
6.0 MPa syngas (CO/H2 = 1) for 3 h. In the primary stage of the reaction, the selectivity of branched
aldehyde (2-phenylpropanal) is 67.0%, indicating that the formation of 2-phenylpropanal is the main
reaction process of styrene hydroformylation. This can be attributed to the α-carbon of styrene,
which favors the attraction of Rh metal to form a stable rhodium α-arylalkyl intermediate, resulting in
a high selectivity for branched aldehyde [40]. However, as the reaction proceeds, hydroformylation
generating 3-phenylpropanal dominates the reaction process, which therefore decreases the selectivity
of 2-phenylpropanal in theproducts.
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To investigate the scope of alkene hydroformylation, the Rh/3%S-g-C3N4 catalyst was further
applied in the hydroformylation of various alkenes under the optimum reaction conditions, as shown
in Table 4. It is obvious that the various alkenes are all hydroformylated, with outstanding catalytic
performances. In the hydroformylation of linear alkenes (entries 2 and 3), the conversion decreases
with the increased chain length of alkenes, demonstrating that the coordination of alkenes to Rh in the
catalytic process becomes more difficult with the increase in the chain length of alkenes. It is worth
noting that Rh/3%S-g-C3N4 is not effective and highly regioselective, producing linear aldehydes from
these alkenes (entries 1–3). The α-carbon of styrene prefers to attack the electropositive Rh metal to
form a stable rhodium α-arylalkyl intermediate, resulting in a higher selectivity for branched aldehyde.
For linear alkenes such as 1-hexene and 1-octene, the high selectivity of branched aldehyde may be
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due to the isomerization of terminal alkene to isomerized alkene, which can also be hydroformylated
into branched aldehydes.

Table 4. Hydroformylation of various alkenes over Rh/3%S-g-C3N4
a.

Entry Substrates Conversion (%) TOF (h−1) b
Selectivity (%)

Aldehydes B:L c

1 styrene 99.9 9000 100 53:47
2 1-hexene 97.1 8000 99.7 56:44
3 1-octene 94.9 6300 97.9 57:43
4 cyclohexene 62.9 6400 100 -

a Reaction conditions: Rh/3%S-g-C3N4: 0.02 g; toluene: 20 mL; substrates: 1.5 mL; reaction time: 3 h; temp.: 100 ◦C;
and syngas (CO/H2 = 1): 6.0 MPa. b TOF = number of moles of product formed/(number of moles of Rh × h). c B:L
= branched aldehyde: linear aldehyde.

The cyclic stability is an important factor in the use of heterogeneous catalysts, so the cyclic
experiments of Rh/3%S-g-C3N4 were evaluated for five recycling processes, as shown in Figure 7.
After the reaction, Rh/3%S-g-C3N4 was easily separated through filtering and directly reused in the
next cyclic experiment. As shown in Figure 7, Rh/3%S-g-C3N4 can be reused after being recycled
five times, without a decrease in catalytic activity and selectivity, demonstrating that Rh/3%S-g-C3N4

is a stable catalyst for alkene hydroformylation. The stability of Rh/3%S-g-C3N4 may be due to the
defected surface of S-g-C3N4, which can be beneficial for the adsorption and dispersion of RhNPs onto
the surface of S-g-C3N4.
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3. Materials and Methods

All of the chemical reagents were purchased with an analytical grade and used without further
purification. Urea and toluene were purchased from the Sinopharm Chemical Reagent Co., Ltd.,
Shanghai, China. Various alkenes were purchased from the Energy Chemical Company. RhCl3 was
purchased from Shaanxi Kaida Chemical Engineering Co. Ltd., Baoji, China.

3.1. Preparation of Neat g-C3N4

G-C3N4 was prepared from urea via the facile template-free method, as reported in our previous
work [41].
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3.2. Preparation of Sulfated g-C3N4

The as-prepared 0.5 g g-C3N4 was dispersed in 20 mL distilled water. After low-energy sonication
for 0.5 h, a calculated amount of H2SO4 (6 M) was added and vigorously stirred for another 6 h at 60 ◦C
to form slurry, which was then dried in an oven at 80 ◦C. The obtained solid was calcined at 400 ◦C for
2 h in a muffle furnace to remove any impurities. By adding different calculated amounts of H2SO4

(6 M), 1, 2, 3, 4, 5, and 6 wt.% sulfated g-C3N4 samples were prepared and marked as X%S-g-C3N4,
where X was the calculated weight percent of S in the samples.

3.3. Preparation of the Sulfated g-C3N4 Supported Rh Particle Catalyst

The S-g-C3N4 supported Rh particle catalyst (Rh/X%S-g-C3N4) was prepared via an
impregnation-chemical reducing process. The preparation process of the Rh/S-g-C3N4 catalysts
is shown in Scheme 2.
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(Rh/S-g-C3N4) catalysts.

Typically, 0.3 g X%S-g-C3N4 was dispersed into 6 mL RhCl3 (2.47 M) aqueous solution and stirred
for 24 h. After 2 h low-energy sonication, the mixture was centrifuged and transferred into a 100 mL
flask. Next, 10 mL fresh NaBH4 aqueous solution (17.76 M) was added dropwise with stirring into the
mixture in an ice-water bath. After the addition of NaBH4, the mixture was continually stirred for
another 1 h at 0 ◦C and room temperature, respectively. The solid was repeatedly centrifuged and
washed to neutral with distilled water, and finally washed three times with ethanol. The product was
dried at 40 ◦C for 12 h in vacuum. For a comparative study, Rh/g-C3N4 was prepared using a similar
method, without sulphate treatment. The Rh loading of all the catalysts used in the present study was
measured by ICP-AES; the content of Rh was 0.25 wt.%.

3.4. Sample Characterization

The morphologies and microstructures of the synthesized samples were examined by TEM
(JEM-2100F, Jeol, Akishima, Japan) and SEM (SS-550, Shimadzu, Shimadzu, Japan).The chemical states
of Rh in catalysts were analyzed by XPS (Escalab 250Xi, Thermo Fisher Scientific, Waltham, MA, USA),
and the binding energies of all the elements were calibrated using C 1s (Eb = 284.6 eV) as the reference.
The phase structures of samples were determined by XRD (D8 advance, Bruker, Germany) with
Cu Ka radiation (λ = 1.54 Å). The 2θ scanning range was recorded from 5◦ to 80◦ with a scanning
rate of 2◦min−1. The Rh contents of samples were measured by ICP-AES (ICAP-Qc, Thermo Fisher
Scientific, Waltham, MA, USA). Textural characterization of samples was checked by N2 adsorption
(ASIQM0000-4, Quantachrome, Boynton Beach, FL, USA) from 1.0 × 10−5 to 0.995 P/P0. Before the
measurement, the samples were degassed at 150 ◦C for 12 h.
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3.5. Catalytic Activity Test

Alkene hydroformylation was carried out in a 60 mL stainless steel autoclave reactor with a
magnetic stirrer. Typically, the required amounts of catalyst, solvent, and alkene were placed in the
autoclave reactor. The reactor was sealed and purged three times with syngas, and subsequently
pressurized to the required pressure, before being heated to the reaction temperature and maintained
for the time under stirring. After the desired reaction time, the reaction was stopped and the sample
was cooled to room temperature and depressurized. The reaction mixtures were withdrawn for GC
analysis (GC-7900 A, Lianzhong Analytical Instrument Co., Ltd., Zaozhuang, China) equipped with
a flame ionization detector and a 30 m × 0.32 mm × 0.33 µm SE-54 column. The temperature of the
injection point and FID detector was 240 and 250 ◦C, respectively.

4. Conclusions

In this study, sulphated g-C3N4 supported rhodium particle catalysts were synthesized via an
impregnation-borohydride reduction method and exhibited outstanding catalytic performances for
styrene hydroformylation (TOF = 9000 h−1), due to the delocalized conjugated π structure of g-C3N4,
which can form electron-deficient aromatic intermediates with alkenes. Compared with Rh/g-C3N4,
the outstanding catalytic performances of Rh/S-g-C3N4 can be ascribed to the defected surface of
S-g-C3N4, which can be beneficial for the adsorption and dispersion of RhNPs onto the surface of
g-C3N4. Moreover, Rh/S-g-C3N4 exhibits outstanding catalytic performances for different alkene
hydroformylation with a good selectivity to formed aldehydes. What is more important is that
Rh/S-g-C3N4 can be easily separated and directly reused in the next cyclic experiment, without an
obvious loss in catalytic activity and selectivity after five recycling processes. In summary, a sulphated
g-C3N4 supported rhodium particle seems to be a promising catalyst for styrene hydroformylation.
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