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Abstract: A series of materials based on activated carbon (AC) with copper deposited in various
amounts were prepared using an incipient wetness impregnation method and tested as catalysts for
selective catalytic reduction of nitrogen oxides with ammonia. The samples were poisoned with SO2

and regenerated in order to analyze their susceptibility to deactivation by the harmful component of
exhaust gas. NO conversion over the fresh catalyst doped with 10 wt.% of Cu reached 81% of NO
conversion at 140 ◦C and about 90% in the temperature range of 260–300 ◦C. The rate of poisoning
with SO2 was dependent on Cu loading, but in general, it lowered NO conversion due to the formation
of (NH4)2SO4 deposits that blocked the active sites of the catalysts. After regeneration, the catalytic
activity of the materials was restored and NO conversion exceeded 70% for all of the samples.

Keywords: SCR; activated carbon; copper; DeNOx; SO2 poisoning

1. Introduction

Selective catalytic reduction (SCR) of nitrogen oxides with ammonia (NH3-SCR) is one of the most
efficient methods of the abatement of NOx emitted by stationary sources. Since the 1970s, the most
common commercial catalyst for the technology has been V2O5-TiO2 promoted by MoO3 or WO3 [1,2].
Despite high catalytic activity above 350 ◦C, the material has some considerable limitations, such as
very narrow temperature window, toxicity of vanadium and high catalytic activity in oxidation of SO2

to SO3, causing the emission of a secondary contamination [3–6]. Additionally, the catalyst can oxidize
NH3 to N2O which is one of the greenhouse gases [7]. Therefore, there is an urgent need for the novel
catalyst to be made of environmentally friendly components and exhibit sufficient activity in the low
temperature range (around 250 ◦C or lower) to place it downstream of the desulphurization unit and
electrostatic precipitator [8,9].

Another harmful pollutant emitted to the atmosphere as the result of fuel burning is sulphur
dioxide (SO2) [2,10,11]. This gas has a detrimental effect on human health and quality of the environment.
What is important is that its presence in the exhausts can cause corrosion as well [12,13]. In the industrial
applications of NH3-SCR, the catalyst can be easily deactivated by sulphur compounds formed in
the combustion chamber due to their presence in fuel [14]. Thus, it lowers the activity of DeNOx

catalysts [3,5,11,15]. In the scientific literature, several poisoning mechanisms by SO2 have been
reported [16]. Du et al. [3] postulated that the main reason for the deactivation was the formation of
ammonium sulphates that plug pores of the catalyst in the temperature range of 200–300 ◦C. On the
other hand, Xu et al. [11] suggested that SO2 adsorbs on the active sites of SCR catalysts and forms
metal sulphates that interrupt the redox cycle of NO reduction. The poisoning effect occurs mainly
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in the low temperature range (below 300 ◦C) of SCR. It is particularly important for the industrial
installations, due to the fact that SO2 oxidation over V2O5-TiO2 increases linearly with the amount
of NOx in the combustion zone. As a result, the sulphur trioxide produced can react with the steam
and form corrosive sulphuric acid at an increased temperature [5]. Due to the presented interaction
of SO2 with the surface of the commercial SCR catalyst and the formation of by-products during the
process below 300 ◦C, there is a high demand for the novel catalyst that would be active and resistant
to poisoning in the low temperature range of the reaction.

Many catalysts including modified layered clays [6,17,18], hydrotalcites [10,19] or zeolite-
supported metal oxides [20,21] exhibited high catalytic activity in the abatement of NO emission
using the SCR method. The special attention of many researchers has been recently directed to the
application of modified activated carbon (AC) as NH3-SCR catalysts [22–25]. This is mainly due to
its high specific surface area, well-developed system of pores, and hydrothermal durability [26,27].
The positive influence of activated carbon used as a catalyst support for the simultaneous removal of
both NOx and SO2 was confirmed by many researchers [28,29]. Liu et al. [29] tested the catalytic activity
of activated carbon modified with aluminum, copper, iron, zinc or manganese in NOx and SOx removal.
Among the analyzed materials, Cu supported on microwave-activated coconut shell AC occurred to
be the most efficient in simultaneous removal of the considered contaminations. The catalytic tests
indicated that at 175 ◦C (low-temperature SCR) NO and SO2 conversion reached 52.5% and 68.3%,
respectively. Additionally, many researchers reported that the amount of SO2 adsorbed on the surface
of activated carbon is related to the initial modification of the surface of the support and its pore
structure [30–33]. It was proved that after some specific treatment the materials are resistant to SO2 in
the gas stream. Samojeden and Grzybek [13] deposited nitrogen groups on the surface of activated
carbon and analyzed SO2 sorption capacity of the resulting materials. The modification of the activated
carbon facilitated adsorption of sulphur oxide without the degradation of the structural features of
the samples.

According to the above considerations and based on recent knowledge, we have decided to
prepare a series of activated carbon-based catalysts loaded with various contents of copper and test the
fresh materials in low-temperature NH3-SCR reaction. Additionally, keeping in mind that the industrial
exhausts always contain some amounts of other contaminations, such as SO2, the samples obtained
were poisoned with sulphur oxide and subjected to the catalytic tests under the same conditions.
Furthermore, after exposure to SO2, the catalysts were regenerated using thermal treatment and the
NH3-SCR reaction over these materials was repeated.

2. Results and Discussion

2.1. X-ray Diffraction Analysis

X-ray diffraction (XRD) patterns of the fresh, poisoned and regenerated samples are presented in
Figure 1. It can be noticed that for the samples 5U and 5U1Cu, there are diffraction maxima described
by Miller’s indices (002), and (100) and located at 2θ ~25◦ and 43◦, respectively. The maxima reflect the
graphite crystallite structure [01-075-1621] and confirm the disordered nature of activated carbon [30].
Additionally, there are no reflections related to copper or copper oxide on the surface of the sample.
Thus, it can be concluded that 1 wt.% of Cu loading is not sufficient to form crystallites of metal
oxides. Similar results was obtained by Tseng and Wey [34] who did not observe any XRD reflections
for copper content lower than 3% as such very small crystals could not be detected by XRD. On the
other hand, after introduction of 5 wt.% of copper, the characteristic maxima of CuO [00-045-0937] at
2θ ~35.2◦ and 38.5◦ appear in the pattern. These maxima arise from (111) and (022) planes, respectively.
It suggests the formation of copper oxide particles due to a higher amount of Cu on the catalyst
surface [35–37]. Therefore, increasing Cu concentration to 5 wt.% results in the formation of a bulk
copper oxide phase. Additionally, for the samples poisoned with SO2, intensity of reflections ascribed
to copper species significantly decreased. After thermal regeneration, some of them were recovered
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which suggests that SO2 could cause reversed reconstruction of the active phase. While the copper
loading was increased to 10 wt.%, new reflections assigned to highly crystalline copper oxide phase
appeared. The additional diffraction maxima at 2θ ca. 48.7◦ and 67.9 ◦ attributed to CuO and 29.5◦,
36.5◦, 43.5◦, 62.0◦, 65.7◦ and 74.5◦ assigned to Cu2O [01-077-0199] confirm the formation of higher
amount of crystalline copper oxide [35,38]. The maxima are described by Miller’s indices (202), (113),
(110), (111), (200), (220), (310) and (311), respectively. Also, new reflections assignable to face centre
cubic crystal structure of copper [01-070-3039] which were observed at 2θ ca. 43.7◦ and 50.4◦ are
described by Miller’s indices (111) and (200), respectively. After poisoning with SO2, the shape of
XRD patterns of 5U10Cu did not change noticeably. Nonetheless, the intensity of diffraction lines
of CuO and Cu2O significantly decreased. However, no reflections assigned to the surface metal
sulphates were detected. This suggests that their amount could be below the detection limit of the
apparatus. Additionally, the sizes of the copper oxide crystals decreased upon poisoning. Similar results
were obtained by Liu et al. [38] who observed that the intensity of the copper crystals decreased after
poisoning, and according to Ma et al. [39], after poisoning more copper sulphates and a side product
such as copper sulphide (CuS) were formed in place of copper oxide which was a poorly ordered
material and had a lower crystallinity than CuO [40]. The average crystal sizes for the crystallites of
CuO and Cu2O deposited on the selected samples, estimated using Scherrer’s equation, are presented
in Table 1.
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Figure 1. X-ray diffraction patterns of fresh, poisoned and regenerated: (A) 5U; (B) 5U1Cu; (C) 5U5Cu;
(D) 5U10Cu.

Table 1. Sizes of CuO and Cu2O crystals present on activated carbon (AC) surface, calculated by
Scherrer’s equation.

Sample Type of
the Sample

Form of Copper Oxide

CuO Cu2O

Miller’s
Indices

Crystalite Size
(nm)

Miller’s
Indices

Crystalite Size
(nm)

5U5Cu
fresh

(111)
21

(200)
23

poisoned 17 19
regenerated 19 20

5U10Cu
fresh

(111)
30

(200)
30

poisoned 24 27
regenerated 26 28
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The lateral size (La) and stacking height (Lc) parameters were calculated using the Scherrer
equations and are listed in Table 2 [41]:

Lc =
Kcλ

B(002) cosθ
(1)

La =
Kaλ

B(100) cosθ
(2)

Table 2. The lateral size (La) and stacking height (Lc) parameters for selected samples.

Sample Lc(nm) La(nm)

5U fresh 4.51 11.81
5U poisoned 4.51 11.80

5U regenerated 4.50 11.80

For calculation of La and Lc, we applied the Scherrer constant Kc equal to 0.9 for the (002) diffraction
line and Ka equal to 1.77 for the (100) diffraction line, where λ (0.15 nm) is the wavelength of the X-ray
used; β002 and β100 are full widths at half maximum of the diffraction lines (002) and (100). The changes
in La and Lc are very small and not meaningful. The positions of the XRD reflections of the support
shift with poisoning, which, according to Jenkins and Snyder [42], may be the result of microstrain.
The effect will generally be a distribution of reflections around the unstressed peak location, and a
crude broadening of the peak in the resultant pattern.

2.2. Fourier Transform Infrared Spectroscopy

Fourier transform infrared (FT-IR) spectra of the fresh, poisoned, and regenerated catalysts are
presented in Figure 2. In the spectra of non-poisoned samples, the characteristic peaks at 1120, 1560,
1715 and 3430 cm−1 can be distinguished [43,44]. The peak at 1120 cm−1 corresponds to C–N or N–H
bonds in aliphatic groups, while the peaks at 1560 cm−1 and 1715 cm−1 can be assigned to the stretching
vibration of carboxylic anions [45]. The peak at at 3430 cm−1 confirms the complexation of –OH groups
on the AC surface [46–48]. Therefore, the samples doped with copper exhibit hydrophilic properties.
FT-IR did not detect any peaks related to copper. However, literature suggests that the absorption peaks
in the infrared spectrum of Cu(OH)2 at low frequencies below 700 cm−1 are due to Cu–O vibrations,
a i.e., peaks at 505 cm−1, 592 cm−1 associated with the Cu–O vibrations of monoclinic CuO [49],
while bands centered at 3572 cm−1, 3315 cm−1 correspond to the hydroxyl ions [50], and 1121 cm−1,
1360 cm−1 related to Cu–OH vibration of the orthorhombic phase of Cu(OH)2 [49]. In this work, it is
difficult to identify bands derived from copper oxides/hydroxides, due to much strongest signals
arising from the support i.e., C–N or N–H bonds at 1120 cm−1 in all tested samples (even in unpromoted
sample). Another possibility is the vibration of Cu–O was not registered due to its low intensity [51].

Poisoning with SO2 resulted in the appearance of new peaks at 1040, 1165, 1300 and 1400cm−1.
The band at 1040 cm−1 can be assigned to the presence of SO4

2− ions, while the one at 1165 or 1300 cm−1

are attributed to the vibrations of S–O and S=O bonds, respectively [42,43,52,53]. The peak at 1400 cm−1

can be assigned to SO3
2− species present on the poisoned samples [44,54]. It indicates that recovery of

the poisoned catalyst at elevated temperature can partly restore the groups initially present on the
surface of activated carbon. Moreover, regeneration of the materials resulted in the disappearance
of most of the peaks assigned to sulphur species, suggesting that the applied route of recovery was
appropriately chosen.
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2.3. Thermogravimetric Analysis

Thermogravimetric analysis over modified activated carbon was carried out in order to examine
thermal behavior of the catalysts in the temperature range of 20–800 ◦C (cf. Table 3). The results
obtained are presented in Figure 3. Weight loss of each material during every stage of the analysis is
listed in Table 3. In case of all of the samples, three main stages of decomposition can be distinguished.
For 5U, the temperature ranges of decomposition are as it follows: 20–80 ◦C, 80–460 ◦C, and 460–800 ◦C.
During the first stage total moisture was evaporated from the surface of AC and during the second
stage, the weight loss of the materials increased only slightly. However, above 460 ◦C the materials
lost significant amount of their initial weight during combustion of activated carbon [43]. At the
end of the experiment, the weight loss of the fresh, poisoned and regenerated sample was 33.35%,
57.60%, and 51.44%, respectively. Hence, it can be noticed that poisoning of activated carbon with
SO2 decreased its thermal stability. Additionally, regeneration procedure did not restore it to the
initial level.
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Figure 2. Fourier transform infrared spectra of fresh, poisoned and regenerated: (A) 5U; (B) 5U1Cu;
(C) 5U5Cu; (D) 5U10Cu.

Table 3. Weight loss of the samples during thermogravimetric analysis (TGA) in the particular
temperature range.

Sample Weight Loss in the Particular Temperature Range (%)

Samples without Cu 20–80 ◦C 80–460 ◦C 460–800 ◦C Total weight loss (%)
5U fresh 12.77 4.51 18.07 35.35

5U poisoned 22.47 6.32 28.81 57.60
5U regenerated 18.08 6.82 26.54 51.44

Samples with Cu 20–80 ◦C 80–380 ◦C 380–800 ◦C Total weight loss (%)
5U1Cu fresh 16.73 6.08 36.35 59.16

5U1Cu poisoned 26.16 8.90 58.30 93.36
5U1Cu regenerated 20.15 9.21 36.59 65.95

5U5Cu fresh 21.50 5.99 32.19 59.68
5U5Cu poisoned 29.64 9.25 57.58 96.47

5U5Cu regenerated 23.39 6.46 34.11 63.96
5U10Cu fresh 23.09 6.19 34.28 63.56

5U10Cu poisoned 27.69 9.43 56.77 93.89
5U10Cu regenerated 25.27 7.07 33.31 65.65
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Figure 3. Results of thermogravimetric analysis obtained for fresh, poisoned, and regenerated: (A) 5U;
(B) 5U1Cu; (C) 5U5Cu; (D) 5U10Cu.

Similar to 5U, thermal stability results obtained for the samples modified with copper can also be
divided into three stages. In the temperature range of 20–80 ◦C total moisture was evaporated from the
surface of the samples. It can be observed that the addition of copper shifted the temperature range
of the second stage to lower values, from 460 ◦C (for 5U) to 380 ◦C. Nevertheless, during that stage
only negligible weight loss was detected. Above 380 ◦C, a third stage of decomposition was initiated
due to rapid combustion of activated carbon and desorption of carbonic complexes from its surface.
Additionally, the mass loss of the samples was higher in comparison to 5U and it gradually increased
with the increasing amount of the Cu introduced in the case of fresh, poisoned and regenerated samples.

It can be observed that the Cu-doped samples poisoned with SO2 exhibited considerably higher
and more rapid decomposition during thermogravimetric analysis (TGA) in comparison to the fresh
materials. Additionally, for the poisoned Cu-containing materials, the decomposition is finished at
approximately 570 ◦C. The extensive weight loss is the result of carbon burning and vaporization
of the adsorbed sulphur oxide from the support and thermal decomposition of copper sulphates.
The mechanism observed during TGA is in agreement with the generally accepted sequence of CuSO4

decomposition, described by Equation (3) [55]:

CuO ·CuSO4 → 2CuO + SO3 (3)

There is another possible decomposition reaction according to Van and Habashi [56]. CuO·CuSO4

can decompose in an inert atmosphere to CuO, SO2 and O2. Due to the presence of O2, SO2 could be
oxidised. C is a reducer and thus could reduce SO3 back to SO2, accelerating the carbon loss over
380 ◦C. From the point of view of the catalysts tested in the SCR reaction, in the temperature range
where the reaction is carried out and where activated carbon could be possibly applied, the modified
ACs shows no significant weight loss.

Regeneration of the samples modified with copper resulted in the partial recovery of thermal
stability. However, the thermal stability is still lower than that of the fresh materials. Nevertheless,
the applied regeneration method successively removed sulphate species from the catalyst’s surface and
the susceptibility to thermal decomposition might be attributed to the presence of traces of sulphur
confirmed by the energy-dispersive X-ray spectroscopy (EDX) analysis presented in Table 4.
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Table 4. Results of energy-dispersive X-ray spectroscopy (EDX) elemental analysis of the fresh,
poisoned, and regenerated catalysts.

Sample Approximate Weight (%)

Cu S Si

5U
fresh 0 0 2.55

poisoned 0 2.04 1.80
regenerated 0 2.04 1.80

5U1Cu
fresh 2.02 0 0

poisoned 2.44 1.53 0
regenerated 2.13 0.50 0

5U5Cu
fresh 5.54 0 0

poisoned 6.70 0.99 0
regenerated 6.15 0.23 0

5U10Cu
fresh 7.49 0 0

poisoned 8.56 0.56 0
regenerated 7.56 0.13 0

2.4. Scanning Electron Microscopy (SEM) and EDX Analysis

2.4.1. SEM Analysis

Scanning electron microscopy (SEM) and EDX analysis were performed in order to observe the
changes of the surface morphology and amounts of surface elements of the samples before and after
poisoning with SO2. As illustrated in Figure 4a, the surface of the support (5U) before modification
with Cu is smooth and uniform. Relating to Figures 4 and 5, it can be noticed that introduction of
copper resulted in visible changes in the surface morphology, such as the formation of more porous
texture of the catalysts Larger aggregates appeared on the surface of carbon with higher loading of
copper 5U10Cu at a magnification of 20,000 times, as shown in Figure 5.
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Figure 5. SEM pictures of fresh 5U10Cu at 20,000 times magnification.

The porosity of the materials might be the result of decomposition of metal nitrates and emission
of NOx, N2 and O2 upon the calcination procedure performed during active phase deposition.

2.4.2. Energy-Dispersive X-ray Spectroscopy (EDX) Analysis

The approximate elemental analysis of the fresh, poisoned and regenerated catalysts is listed in
Table 4. All of the obtained outcomes of the analysis are in agreement with findings reported in the
literature, for example by Khan et al. [57] or Kooti and Matouri [58]. In EDX spectra (not included
in the paper), the presence of carbon, nitrogen and oxygen were confirmed by the presence of peaks
around 0.27 keV, 0.4 keV, 0.5 keV, respectively. Additionally, a peak characteristic of silicon can be
observed in the spectra at 1.5 keV. Doping with copper resulted in the appearance of new peaks located
at binding energies of 0.85, 0.94, 8.04 and 8.94 keV which correspond to CuL1, CuLa, CuKa and CuKb,
respectively. The lower amount of Si impurities (ash) were detected.

After poisoning with SO2, new peaks of sulphur SKa and SKb appeared at the binding energies
of 2.37 and 2.57 keV, respectively. Additionally, according to the EDX results presented in Table 4.,
deposition of sulphur on the catalyst surface was observed to be inversely proportional to the content
of copper.

The increase of the copper loading resulted in lower S deposition on the catalyst surface. Thus,
the results confirmed that modification with copper provided a noticeable enhancement in SO2

tolerance of the catalysts.
Regeneration resulted in the release of a small amount of sulphur. Nevertheless, some sulphate

aggregates did not decompose, even at the applied regeneration temperature of 300 ◦C.

2.5. Catalytic Tests

The catalytic activity of the fresh, poisoned and regenerated catalysts was studied applying the
temperature range of 140–300 ◦C, which stands for the low temperature range of NH3-SCR. The results
of NH3-SCR catalytic tests are presented in Figures 6–10.
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conversion; (B) N2O concentration.
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Figure 8. Results of catalytic tests carried out over fresh, poisoned, and regenerated 5U5Cu: (A) NO
conversion; (B) N2O concentration.
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Figure 10. Comparison of the catalytic activity of 5U, 5U1Cu, 5U5Cu, 5U10Cu at 220 ◦C.

It can be noted that in the case of all of the tested materials, increasing the reaction temperature
accelerates NO conversion. Even for AC not modified with copper, the catalytic activity was very
high, since the material exhibited 50% of NO conversion at about 140 ◦C. Thus, the sample can be a
promising catalyst for a low-temperature SCR process. All of the copper-doped samples exhibited
satisfactory NO conversion and the sequence of catalytic activity for the considered fresh materials
at 220 ◦C was as follows: 5U10Cu > 5U5Cu > 5U1Cu > 5U. Hence, it increased with the content of
Cu introduced. Therefore, the results indicate that copper loading plays an important role in the
improvement of NO conversion during SCR. Since concentration of N2O was below 100 ppm for fresh
5U, it appears that non-doped support is the most selective among all of the considered materials.
Therefore, the major product of the SCR process over 5U is predicted to be N2 produced according to
the reaction described by Equation (4):

4NO + 4NH3 + O2 → 4N2 + 6H2O (4)

On the other hand, the increased concentration of N2O in the exhausts for copper-doped samples
might be the result of non-selective reactions of SCR, such as ammonia oxidation in the temperature
range of 260–300 ◦C [6,59].

After poisoning with SO2, the catalytic activity decreased considerably in the case of all of the
catalysts in comparison to the fresh samples. It can be noted, that for 5U about 50% of the initial
activity was lost upon poisoning. As shown in Figure 9, NO conversion for that sample displayed a
continuous decline to 21% at 140 ◦C and 31% at 300 ◦C. This is probably related to the formation of
sulphate species on the external surface of the catalyst [11,13]. According to the studies carried out by
Yu et al. [60], sulphate species improve ammonia adsorption due to their acidic nature. Furthermore,
when sulphates react with ammonia on the catalyst surface, ammonium sulphate salts, such as
NH4HSO4 or (NH4)2S2O7 are formed under the conditions of the SCR process. The salts are believed to
have a significant influence on the lower catalytic activity in NO conversion, since they plug the pores
of the catalyst [16]. All of the materials doped with copper exhibited higher resistance to poisoning
with SO2. For 5U1Cu the conversion of NO declined from 89% to 45% at 220 ◦C, while for 5U10Cu at
the same temperature it dropped from 100% to 97%. Thus, it should be emphasized that the addition
of copper not only activates the catalyst in NO conversion, but it also enhances the resistance to
SO2 poisoning.

As already mentioned, the main two reasons of deactivation of Cu-doped catalysts used for
SCR is the formation of copper and ammonium sulphates [10,14]. The effect of the formation of
those compounds can be explained by the difference of desorption temperature between ammonia
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(150–400 ◦C) and sulphur oxide (>400 ◦C). Due to the fact that (NH4)2SO4 decomposes at 150–400 ◦C,
SO4

2− moieties can easily interact with metallic sites freed after NH3 desorption and form metal
sulphates and sulphites [5]. Jangjou et al. [61] postulated that ammonium and copper sulphates are
interchangeable, depending on the availability of ammonia in the gas phase. Similar indications were
found in the experiments in the following work due to the change of copper sulphates formed during
poisoning into ammonium sulphates upon NH3 exposure during SCR tests according to Equation (5):

CuSO4 + 3NH3(g) → (NH4)2SO4 +
1
2

N2 +
1
2

H2 + Cu (5)

Furthermore, after poisoning N2O concentration in the exhausts increased. It indicates that some
amounts of NH3 preferentially reacted with NO or O2 to form N2O in the presence of sulphur species
(according to Equations (6) and (7)):

2NH3 + 2O2 → N2O + 3H2O (6)

4NO + 4NH3 + 3O2 → 4N2O + 6H2O (7)

Regeneration resulted in the recovery of the catalytic activity of all of the materials to some extent.
The regenerating effect is especially visible in the temperature range of 280–300 ◦C for the samples
doped with copper. This points to the fact that the presence of copper not only prevents excessive
deactivation by SO2, but also has an impact on the restitution of the satisfactory catalytic performance.

In order to clearly display the dependency of catalytic activity and ability to regeneration,
the comparison of the catalytic activity obtained at 220 ◦C for the fresh, poisoned and regenerated
materials is presented in Figure 10.

3. Materials and Methods

3.1. Catalyst Preparation

The commercial AC was provided by Gryfskand (Hajnówka, Poland). The initial material was
oxidized using 5.0 M solution of nitric acid (HNO3) (Avantor Performace Materials Poland S.A., Gliwice,
Poland) at 90 ◦C for 2 h. Afterwards, the material was filtered, washed with distilled water to pH ~ 7.0
and dried at 110 ◦C overnight. Acid treatment was followed by the introduction of nitrogen groups
(N-groups) by the incipient wetness impregnation with urea solution (5 wt.%). Then the material was
dried at 110 ◦C for 24 h and thermally treated in the flow of 2.25 vol.% of O2 in He (gas flow 100 cm3

min−1) at 350 ◦C for 2 h. The synthesized samples of modified activated carbon were ground and
sieved to obtain the fraction of 0.25–1.0 mm. The active metal was deposited on the surface of AC by
incipient wetness impregnation using aqueous solutions of Cu(NO3)2 (Avantor Performace Materials
Poland S.A., Gliwice, Poland). Appropriate concentrations of Cu2+ cations were used in order to
introduce 1 wt.%, 5 wt.%, and 10 wt.% of the metallic phase on each sample. Finally, Cu-doped AC
was dried and calcined in the stream of 2.25 vol.% of O2 in He at 250 ◦C for 1 h. The analyzed fresh
materials are listed in Table 5.

Table 5. List of the analyzed fresh samples and their codes.

No. Sample Code Cu-Loading

1 5U 0 wt.%
2 5U1Cu 1 wt.%
3 5U5Cu 5 wt.%
4 5U10Cu 10 wt.%
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In order to compare the catalytic performance of the fresh and contaminated modified AC doped
with Cu, a set of the resulting materials was poisoned with SO2 by the exposition on the gas mixture of
1000 ppm of SO2 in helium at 180 ◦C for 30 min. Subsequently, the catalytic activity of the poisoned
samples was tested in NH3-SCR. Afterwards, another set of the samples was poisoned by SO2, but in
that case, the flow of sulphur oxide was stopped after 30 min and the materials were straightforwardly
regenerated in He atmosphere by increasing the temperature in the reactor from 200 to 300 ◦C and
keeping each catalyst in the final temperature for 1 h. The procedure of the activity tests is presented in
Figure 11.
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3.2. Catalysts Characterization

The structure of the catalysts was analyzed using X-ray diffraction technique. The X-ray
diffraction patterns were obtained using Empyrean (Panalytical) diffractometer (Panalytical, Almelo,
UK). The instrument was equipped with copper-based anode (Cu-Kα LFF HR, λ = 0.154059 nm).
The diffractograms were collected in the 2θ range of 2.0–80.0◦ (2θ step scans of 0.02◦ and a counting
time of 1 s per step). The average size of copper oxide crystals was calculated using Scherrer’s formula
(Equation (8)) [41]:

Dhkl =
Kλ

βhklcosθ
(8)

Recorded XRD data were analysed using X’pert Highscore plus (with database) (Malvern
Panalytical, Malvern, UK). References codes are given in square brackets.

FT-IR was performed to examine the characteristic chemical groups present in the analyzed materials.
The spectra were recorded on Perkin Elmer Frontier spectrometer in the region of 4000–400 cm−1 with a
resolution of 4 cm−1. Before each measurement, the analyzed sample was mixed with KBr at the ratio
of 1:100 and pressed into a disk.

The changes in weight of the catalysts in the temperature range of 20–800 ◦C and in the atmosphere
of nitrogen (100 cm3 min−1) were analyzed using TGA. The experiment was performed using SDT
Q600 V20.9 Build 20 instrument.

The morphology and chemical composition of the synthesized catalysts were examined by
SEM that was carried using JEOL JSM 6360LA microscope at a magnification of 5000 and 20,000.
EDS was carried out using Shimadzu 7000 diffractometer with an energy dispersive X-ray analyzer.
The elemental analysis was performed by selecting random points (micro-area) of the sample at a
working distance of 10mm at 15–20 kV (beam voltage) in a vacuum chamber at spot size of 4.7 to
5.3 nm (INCA conventional units). The acquisition time of the spectrums was 300 s, the beam current
was 86 uA and the detector dead time was of about 30%. The elemental composition of the examined
catalysts was analyzed using the ZAF method [62].

3.3. Catalytic Tests

NH3-SCR catalytic tests over all samples were performed in a fixed-bed flow microreactor under
atmospheric pressure in the setup shown in Figure 12.
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Figure 12. Catalytic setup.

The reaction mixture (800 ppm of NO, 800 ppm of NH3, 3.5 vol.% of O2) was introduced to the
microreactor through mass flow controllers and helium was added as a balance to maintain the total
flow rate of 100 cm3 min−1. The catalytic unit downstream of the reactor was used to decompose
possibly formed NO2 to NO. The concentrations of residual NO and N2O (the by-product of the
reaction) were analysed downstream of the reactor by the FT-IR detector (ABB 2000 AO series).
The experimental NH3-SCR process was conducted in the temperature range of 140–300 ◦C and NO
conversion was calculated according to the formula presented on Equation (9):

NOconversion =
NOin − NOout

NOin
(9)

where NOin–inlet concentration of NO, NOout–outlet concentration of NO.

4. Conclusions

In the study presented, the influence of SO2 on Cu-doped activated-carbon catalysts for NH3-SCR
process was investigated. The experiments performed showed that even the samples poisoned
with sulphur oxide exhibit satisfactory catalytic performance in low-temperature selective catalytic
reduction of NO. The results of XRD indicated that poisoning with SO2 did not influence significantly
the structural properties of the support. However, after contamination the crystallinity of the active
phase deposited on AC considerably decreased. FT-IR spectra generated for the samples confirmed the
presence of characteristic groups in activated carbon and the groups attributed to the modification of
the support. Poisoning resulted in the appearance of the peaks of sulphur species. After regeneration,
the peaks disappeared, suggesting that thermal treatment was an appropriate method to restore
structural properties of the materials. Based on TGA results, it can be concluded that the presence
of Cu decreased thermal stability of the catalysts. Additionally, the formation and decomposition
of copper sulphates could be the reason for rapid weight loss of the samples doped with Cu in the
temperature range of about 380–570 ◦C. Moreover, the decay of activity of the samples may have
partially resulted from the burn of carbon during the treatment or tests. The lower catalytic activity
of the samples could have also resulted from blocking the pores of AC and inhibiting free diffusion
of the gas phase through the catalyst’s channels. The increased formation of N2O after poisoning
of SO2 was probably caused by the formation of bulk copper oxide species and their aggregation
that is confirmed to favour NH3 oxidation to nitrous oxide. Thus, interaction with SO2 not only
decreases the catalytic activity, but also increases the tendency to form by-products. In fact, sulphate
species are highly acidic and could promote the adsorption of ammonia resulting in increased NO
conversion. Nevertheless, the experiments confirmed that, probably, in the low temperature NH3-SCR
the formation of ammonium or metal sulphates has lower activation energy than the reaction between
NH3 adsorbed on sulphate species and gas-phase NO. Regeneration by thermal treatment allowed the
initial catalytic activity of the analyzed materials to be recovered to satisfactory level and its efficiency
increased linearly with the increasing loading of copper.
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