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Abstract: The use of metal-organic frameworks (MOFs) to solve problems, like environmental
pollution, disease, and toxicity, has received more attention and led to the rapid development of
nanotechnology. In this review, we discuss the basis of the metal-organic framework as well as its
application by suggesting an alternative of the present problem as catalysts. In the case of filtration, we
have developed a method for preparing the membrane by electrospinning while using an eco-friendly
polymer. The MOFs were usable in the environmental part of catalytic activity and may provide a
great material as a catalyst to other areas in the near future.

Keywords: metal organic framework; environmental pollution; filter; gas sorption; sensor; hydrogen
storage; electrospinning

1. Introduction

Recently, environmental pollution is increasing due to toxic waste and hazardous organic
compounds [1]. The amount of poisonous compounds that are released into the environment is a
serious problem for human life. In the pragmatic situation, air and organic pollutants are highly
involved they can be commonly expressed as particulates, acidic substances, gases, or mixtures [2,3].

Nitroaromatic compounds are found in soil, air, and water samples due to wastewater sources
from the plastic, pesticide, pharmaceutical, and dye industry [4]. In addition, the development of
hydrogen and methane storage systems is necessary for the widespread use of green energy. Moreover,
the separation and selective gas adsorption of poisonous gases, such as nitrogen dioxide and ammonia
gas, are significant in the field of air pollution [5–9].

It is essential that sensors should be developed as the way to prevent toxic materials, one of the
leading causes of environment pollution, from being released into the environment. Sulfur dioxide and
nitroaromatic compounds are considered to be poisonous and harmful to human life [10]. Our previous
work has reported a PdAg nanoparticle infused metal-organic framework (MOF) used for the detection
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of 4-nitrophenol while using an electrochemical sensor [11]. In addition, Salama et al., reported an SO2

gas sensor while using an MOF [12].
Metal-organic frameworks (MOFs) have a wide range of interesting properties such as high

specific surface area and facile modification [13–26]. MOFs are microporous materials that form
three-dimensional (3D) crystalline networks, which are prepared by combining various metal ions
with organic linkers in an appropriate solvent [27–32]. Over the past years, MOFs have been used
as catalysts, absorbents, and filters. MOFs have many advantages due to their modifiable properties,
such as high specific surface area and porosity [30,33–36]. The exceptional characteristics of MOFs
have led to their possible application in a wide range of technological areas, including gas sorption,
separation, storage [5–9], sensing [10–12,37], and heterogeneous catalysis [38–53].

In this review, we focus on various MOFs and their applications in different fields, such as:
(1) controlled gas uptake of toxic gases, including ammonia, nitrogen dioxide, and sulfur dioxide [6,7,12];
(2) sensors using PdAg nanoparticle infused MOFs and Cd-MOFs [11,54]; (3) Hydrogen gas storage [55–57];
and, (4) filtration for air and water pollution control while using nanofibrous MOFs [58,59] (Scheme 1).
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2. Basic of Stable MOFs

2.1. Characterization of MOFs

MOFs are an arising group of porous materials that were synthesized from metal ions and organic
linkers [60,61]. The ever-expanding improvement in the performance of MOFs and facile control over
their properties, MOFs have attracted the interest of engineers and scientists [62–67]. Earlier MOFs
were synthesized from divalent metals, which showed superior properties and a diverse range of
applications [60], such as gas sorption, separation, storage [5–9], sensing [10–12,37], and heterogeneous
catalysis [38–53]. In particular, stable MOFs can be predicted by the strength of the metal-organic
linker bond that formed in their framework. We have summarized some of the typical stable MOFs
prepared from divalent, trivalent, and tetravalent metal ions in Table 1 [68].
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Table 1. Abridgment of some stable MOFs [68].

MOFs a) Clusters/Cores Linkers b) BET Surface Area (m2 g−1) Ref.

MIL-53 (Al) [Al(OH)(COO)2]n BDC 1181 [69]
Al-FUM [Al(OH)(COO)2]n FUM 1080 [70,71]
MIL-69 [Al(OH)(COO)2]n 2,6-NDC NA [72]

MIL-96 (Al) [Al3(µ3-O)(COO)6]
[Al(OH)(COO)2]n

BTC NA [73]

MIL-100 (Al) [Al3(µ3-O)(COO)6] BTC 2152 [74]
MIL-101 (Al) [Al3(µ3-O)(COO)6] BDC-NH2 2100 [75]

MIL-110 [Al8(OH)15(COO)9] BTC 1400 [76]
MIL-118 [Al(OH)(COO)2(COOH)2]n BTEC NA [77]
MIL-120 [Al(OH)(COO)2]n BTEC 308 [78]
MIL-121 [Al(OH)(COO)2]n BTEC 162 [79]
MIL-122 [Al(OH)(COO)2]n NTC NA [80]
DUT-5 [Al(OH)(COO)2]n BPDC 1613 [81]

NOTT-300 [Al(OH)(COO)2]n BPTA 1370 [82]
CAU-1 [Al8(OH)4(OCH3)8(COO)12] BDC-NH2 1700 c) [83]

CAU-3-BDC [Al12(OCH3)24(COO)12] BDC 1550 [84]
CAU-3-BDC-NH2 [Al12(OCH3)24(COO)12] BDC-NH2 1250 [84]

CAU-3-NDC [Al12(OCH3)24(COO)12] 2,6-NDC 2320 [84]
CAU-4 [Al(OH)(COO)2]n BTB 1520 [85]
CAU-8 [Al(OH)(COO)2]n BeDC 600 [86]
CAU-10 [Al(OH)(COO)2]n 1,3-BDC 635 [87]

467-MOF [Al(OH)(COO)2]n BTTB 725 [88]
Al-PMOF [Al(OH)(COO)2]n TCPP 1400 [89]

PCN-333 (Al) [Al3(µ3-O)(COO)6] TATB 4000 [90]
PCN-888 (Al) [Al3(µ3-O)(COO)6] HTB 3700 [91]
Al-soc-MOF-1 [Al3(µ3-O)(COO)6] TCPT 5585 [92]

MIL-53 (Cr) [Cr(OH)(COO)2]n BDC NA [93]
MIL-88A (Cr) [Cr3(µ3-O)(COO)6] FUM NA [94]
MIL-88B (Cr) [Cr3(µ3-O)(COO)6] BDC NA [94]
MIL-88C (Cr) [Cr3(µ3-O)(COO)6] 2,6-NDC NA [94]
MIL-88D (Cr) [Cr3(µ3-O)(COO)6] BPDC NA [94]

MIL-96 (Cr) [Cr3(µ3-O)(COO)6]
[Cr(OH)(COO)2]n

BTC NA [95]

MIL-100 (Cr) [Cr3(µ3-O)(COO)6] BTC 3100 c) [96]
MIL-101 (Cr) [Cr3(µ3-O)(COO)6] BDC 4100 [63]

MIL-101-NDC (Cr) [Cr3(µ3-O)(COO)6] 2,6-NDC 2100 [97]
PCN-333 (Cr) [Cr3(µ3-O)(COO)6] TATB 2548 [98]
PCN-426 (Cr) [Cr3(µ3-O)(COO)6] TMQPTC 3155 [99]
MIL-53 (Fe) [Fe(OH)(COO)2]n BDC NA [100]
MIL-68 (Fe) [Fe(OH)(COO)2]n BDC 665 [101]

MIL-141 (Fe) [Fe(OH)(COO)2]n TCPP 420 [102]

FepzTCPP (FeOH)2 [Fe(OH)(COO)2]n
Pyrazine,

TCPP 760 [102]

MIL-88A (Fe) [Fe3(µ3-O)(COO)6] FUM NA [94]
MIL-88B (Fe) [Fe3(µ3-O)(COO)6] BDC NA [94]
MIL-88C (Fe) [Fe3(µ3-O)(COO)6] 2,6-NDC NA [94]
MIL-88D (Fe) [Fe3(µ3-O)(COO)6] BPDC NA [94]
MIL-100 (Fe) [Fe3(µ3-O)(COO)6] BTC 2800 c) [103]
MIL-101 (Fe) [Fe3(µ3-O)(COO)6] BDC 2823 [104]
PCN-250 (Fe) [Fe3(µ3-O)(COO)6] ABDC 1486 [105]

PCN-250 (Fe2Co) [Fe2Co(µ3-O)(COO)6] ABDC 1400 [105]
PCN-333 (Fe) [Fe3(µ3-O)(COO)6] TATB 2427 [90]
PCN-600 (Fe) [Fe3(µ3-O)(COO)6] TCPP 2270 [106]

Tb2(BDC)3 [Tb(H2O)2(COO)3]n BDC NA [107]
MIL-63 [Eu2(µ3-OH)7(COO)]n BTC 15 [108]
MIL-83 [Eu(µ3-O)3(COO)3(COOH)3]n 1,3-ADC NA [109]

MIL-103 [Tb(H2O)(COO)4]n BTB 930 [110]
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Table 1. Cont.

MOFs a) Clusters/Cores Linkers b) BET Surface Area (m2 g−1) Ref.

Y-BTC [Y(H2O)(COO)3]n BTC 1080 [111]
Tb-BTC [Tb(H2O)(COO)3]n BTC 786 [111]
Y-FTZB [Y6(µ3-OH)8(COO)6(CN4)6] FTZB 1310 [112]

Tb-FTZB [Tb6(µ3-OH)8(COO)6(CN4)6] FTZB 1220 [112]
Y-FUM [Y6(µ3-OH)8(COO)12] FUM 691 [113]

Tb-FUM [Tb6(µ3-OH)8(COO)12] FUM 503 [113]
Ce-UiO-66 [Ce6(µ3-O)4(µ3-OH)4(COO)12] BDC 1282 [114]

Ce-UiO-66-(CH3)2 [Ce6(µ3-O)4(µ3-OH)4(COO)12] BDC-(CH3)2 845 [115]
MIL-125 [Ti8O8(OH)4(COO)12] BDC 1550 [116]
PCN-22 [Ti7O6(COO)12] TCPP 1284 [117]
COK-69 [Ti3O3(COO)6] CDC NA [118]

MOF-901 [Ti6O6(OMe)6(COO)6] AB, BDA 550 [119]
MOF-902 [Ti6O6(OMe)6(COO)6] AB, BPDA 400 [120]
UiO-66 [Zr6(µ3-O)4(µ3-OH)4(COO)12] BDC 1187 [121]
UiO-67 [Zr6(µ3-O)4(µ3-OH)4(COO)12] BPDC 3000 [121]
UiO-68 [Zr6(µ3-O)4(µ3-OH)4(COO)12] TPDC 4170 [121]
PCN-94 [Zr6(µ3-O)4(µ3-OH)4(COO)12] ETTC 3377 [122]

PCN-222 [Zr6(µ3-O)4(µ3-OH)4(OH)4(H2O)4(COO)8] TCPP 2223 [123]
PCN-223 [Zr6(µ3-O)4(µ3-OH)4(COO)12] TCPP 1600 [124]
PCN-224 [Zr6(µ3-O)4(µ3-OH)4(OH)6(H2O)6(COO)6] TCPP 2600 [125]
PCN-225 [Zr6(µ3-O)4(µ3-OH)4(OH)4(H2O)4(COO)8] TCPP 1902 [126]
PCN-228 [Zr6(µ3-O)4(µ3-OH)4(COO)12] TCP-1 4510 [127]
PCN-229 [Zr6(µ3-O)4(µ3-OH)4(COO)12] TCP-2 4619 [127]
PCN-230 [Zr6(µ3-O)4(µ3-OH)4(COO)12] TCP-3 4455 [127]
PCN-521 [Zr6(µ3-O)4(µ3-OH)4(OH)4(H2O)4(COO)8] MTBC 3411 [128]
PCN-700 [Zr6(µ3-O)4(µ3-OH)4(OH)4(H2O)4(COO)8] Me2BPDC 1807 [129]
PCN-777 [Zr6(µ3-O)4(µ3-OH)4(OH)6(H2O)6(COO)6] TATB 2008 [130]
PCN-133 [Zr6(µ3-O)4(µ3-OH)4(COO)12] BTB, DCDPS 1462 [131]
PCN-134 [Zr6(µ3-O)4(µ3-OH)4(OH)2(H2O)2(COO)10] BTB, TCPP 1946 [131]
MOF-801 [Zr6(µ3-O)4(µ3-OH)4(COO)12] FUM 990 [132]
MOF-802 [Zr6(µ3-O)4(µ3-OH)4(OH)2(H2O)2(COO)10] PZDC NA [132]
MOF-808 [Zr6(µ3-O)4(µ3-OH)4(OH)6(H2O)6(COO)6] BTC 2060 [132]
MOF-812 [Zr6(µ3-O)4(µ3-OH)4(COO)12] MTB 2335 [132]
MOF-841 [Zr6(µ3-O)4(µ3-OH)4(OH)4(H2O)4(COO)8] MTB 1390 [132]
MOF-525 [Zr6(µ3-O)4(µ3-OH)4(COO)12] TCPP 2620 [133]
MOF-535 [Zr6(µ3-O)4(µ3-OH)4(COO)12] XF 1120 [133]
MOF-545 [Zr6(µ3-O)4(µ3-OH)4(OH)4(H2O)4(COO)8] TCPP 2260 [133]
DUT-51 [Zr6(µ3-O)4(µ3-OH)4(OH)4(H2O)4(COO)8] DTTDC 2335 [134]
DUT-52 [Zr6(µ3-O)4(µ3-OH)4(COO)12] 2,6-NDC 1399 [135]
DUT-84 [Zr6(µ3-O)4(µ3-OH)4(OH)6(H2O)6(COO)6] 2,6-NDC 637 [135]
DUT-67 [Zr6(µ3-O)4(µ3-OH)4(OH)4(H2O)4(COO)8] TDC 1064 [136]
DUT-68 [Zr6(µ3-O)4(µ3-OH)4(OH)4(H2O)4(COO)8] TDC 891 [136]
DUT-69 [Zr6(µ3-O)4(µ3-OH)4(OH)2(H2O)2(COO)10] TDC 560 [136]
NU-1000 [Zr6(µ3-O)4(µ3-OH)4(OH)4(H2O)4(COO)8] TBAPy 2320 [137]
NU-1100 [Zr6(µ3-O)4(µ3-OH)4(COO)12] PTBA 4020 [138]
NU-1101 [Zr6(µ3-O)4(µ3-OH)4(COO)12] Py-XP 4422 [139]
NU-1102 [Zr6(µ3-O)4(µ3-OH)4(COO)12] Por-PP 4712 [139]
NU-1103 [Zr6(µ3-O)4(µ3-OH)4(COO)12] Py-PTP 5646 [139]
NU-1104 [Zr6(µ3-O)4(µ3-OH)4(COO)12] Por-PTP 5290 [139]

MIL-140A [ZrO(COO)2]n BDC 415 [140]
MIL-140B [ZrO(COO)2]n 2,6-NDC 460 [140]
MIL-140C [ZrO(COO)2]n BPDC 670 [140]
MIL-140D [ZrO(COO)2]n Cl2ABDC 701 [140]

BUT-12 [Zr6(µ3-O)4(µ3-OH)4(OH)4(H2O)4(COO)8] CTTA 3387 [141]
BUT-13 [Zr6(µ3-O)4(µ3-OH)4(OH)4(H2O)4(COO)8] TTNA 3948 [141]

Zr-ABDC [Zr6(µ3-O)4(µ3-OH)4(COO)12] ABDC 3000 [142]
BUT-30 [Zr6(µ3-O)4(µ3-OH)4(COO)12] EDDB 3940 [143]
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Table 1. Cont.

MOFs a) Clusters/Cores Linkers b) BET Surface Area (m2 g−1) Ref.

PIZOF [Zr6(µ3-O)4(µ3-OH)4(COO)12] PEDC 2080 [144]
Zr-BTDC [Zr6(µ3-O)4(µ3-OH)4(COO)12] BTDC 2207 [145]
Zr-BTBA [Zr6(µ3-O)4(µ3-OH)4(COO)12] BTBA 4342 [146]
Zr-PTBA [Zr6(µ3-O)4(µ3-OH)4(COO)12] PTBA 4116 [146]
Zr-BTB [Zr6(µ3-O)4(µ3-OH)4(OH)6(H2O)6(COO)6] BTB 613 [147]

hcp UiO-67 [Hf12(µ3-O)8(µ3-OH)8(µ2-OH)6(COO)18] BPDC 1424 [148]
Zr12-TPDC [Zr12(µ3-O)8(µ3-OH)8(µ2-OH)6(COO)18] TPDC 1967 [149]
Hf12-BTE [Hf12(µ3-O)8(µ3-OH)8(µ2-OH)6(COO)18] BTE NA [150]
Cu-BTPP [Cu3(µ3-OH)(PZ)3] BTPP 660 [151]
Ni3(BTP)2 [Ni4(PZ)8] BTP 1650 [152]

Zn (1,4-BDP) [Zn(PZ)2]n 1,4-BDP 1710 [153]
Zn (1,3-BDP) [Zn(PZ)2]n 1,3-BDP 820 [153]

PCN-601 [Ni8(OH)4(H2O)2(PZ)12] TPP 1309 [154]
ZIF-8 [ZnN4] mIM 1947 [155]

ZIF-11 [ZnN4] bIM 1676 [155]
ZIF-67 [CoN4] mIM 1587 [156]
ZIF-90 [ZnN4] ICA 1270 [157]
ZIF-68 [ZnN4] nIM, bIM 1220 [64]
ZIF-69 [ZnN4] nIM, 5cbIM 1070 [64]
ZIF-70 [ZnN4] IM, nIM 1970 [64]

a) These MOFs can be modified by functional organic compounds such as amino, nitro, methyl, halogen, or hydroxyl
groups. These MOFs are not explained in this paper; b) All linkers name are abbreviations [68]; c) Langmuir
surface area.

2.2. Tetravalent Metal-Carboxylate Based MOFs

Tetravalent metals, such as Ce4+, Zr4+, and Ti4+, and carboxylate linker based MOFs are a
comparatively new field of study. Lillerud et al. and Férey et al. have reported on Zr-MOFs and
Ti-MOFs, respectively [116,121]. Both Zr- and Ti-MOFs have been applied in various fields because
of their high stability [68]. On the other hand, Ce-MOFs are fascinating materials due to their redox
properties and possible catalytic activity. For example, a Ce-MOF, which is composed of Ce3+ and
Ce4+, exhibits unique oxidase-like catalytic performance [158].

2.3. Trivalent Metal-Carboxylate Based MOFs

MOFs that are composed of trivalent metal cations and carboxylate linkers have two main
secondary building units (SBUs): (1) The [M3(µ3-O)(COO)6] cluster, which includes a µ3-oxo-centered
trimer of MO6 octahedra and (2) the [M(OH)(COO)2]n chain, which has a µ2-hydroxo corner sharing
MO6 octahedral unit [68].

2.4. Divalent Metal-Azolate Based MOFs

Another type of stable MOFs is composed of soft M2+ ions and azolate-based ligands while using
hard soft acid base (HSAB) theory. Some of the organic reagents are in the form of azolate-based linkers
(Table 2) [159]. Azoles generally release a proton to coordinate with the M ions, similar to carboxylic
acids [68]. In addition, azoles display well-known coordination properties and the sp2 nitrogen donors
in pyridines and azoles are essentially alike, but different to carboxylic acids [68].
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Table 2. Structure and typical coordination modes of azolates.

Linker Structure Typical Coordination Modes

Imidazole (HIM)
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3. Toxic Gas Sensors

The detection of toxic gases is important in environmental remediation and human health
problems. Accordingly, many groups have studied new sensing materials for latent modification.
Schröder et al. have reported several MOFs that are used for the reversible adsorption of nitrogen
dioxide [6]. The Dincă group have reported the use of microporous triazolate-based MOFs for the
detection of ammonia gas [7]. Salma et al. have studied the synthesis of a foremost chemical sensor for
the identification of sulfur dioxide at room temperature (RT) [12].

3.1. Robust Porous MOF for Reversible Adsorption of NO2

As one of the major air pollutants, nitrogen dioxide is fatal to the environment and it causes
serious health problems [75–78]. Decreasing NOx contamination is a difficult issue due to the
highly active atomic bond with oxygen and corrosive nature [79]. Therefore, various materials,
including metal oxides, mesoporous silica, zeolites, and activated carbons, have been studied as
NO2 adsorbents. However, these materials show low adsorption capacities and irreversible uptake
due to the disproportionation of NO+ and NO3−. MOFs have been used as solid adsorbents, but an
isothermal adsorption study on NO2 has not been conducted to date. Therefore, Han et al. studied the
isothermal adsorption of MOFs and confirmed that MFM-300 (Al) can interact with highly reactive
NO2. Consequently, MFM-300 (Al) has great potential as a practical solid absorbent.

Figure 1 shows the adsorption isotherms that were obtained for MFM-300 (Al) in various
gases, including NO2, CO2, SO2, CO, CH4, N2, H2, O2, and Ar at room temperature and pressure.
The maximum NO2 isotherm uptake was ~4.1 mmol g–1 at room temperature and pressure. This value
was much higher than modified Y zeolites [160], mixed oxides, such as Ce1–xZrxO2 [161], NH3

functionalized SBA-15 [162], urea-modified mesoporous carbons [163], and activated carbons [164].
Furthermore, the crystallinity and sorption capacity were not changed after the cycling of the sorption
and desorption steps.
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heterogeneous pore size in carbon-based materials has caused a fundamental problem in studies on 
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Dynamic breakthrough measurements using 0.1% NH3 showed that Co2Cl2BBTA and 
Co2Cl2BTDD have a NH3 breakthrough capacity of 8.56 and 4.78 mmol g–1, respectively (Table 3). 
This is equal to 1.48 and 1.08 molecules of NH3 per Co atom, respectively. The NH3 breakthrough 
capacity value is reduced in 80% relative humidity (RH), regardless of the pore size due to the 
adsorption of water. The saturation value was 4.36 mol kg–1 for Co2Cl2BBTA and 3.38 mol kg–1 for 
Co2Cl2BTDD. These results indicate 0.76 and 0.77 NH3 molecules are absorbed per open metal site in 
Co2Cl2BBTA and Co2Cl2BTDD, respectively. 
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adapted from Ref. [6]; Copyright (2018), Springer Nature.

3.2. Ammonia Sorption in MOFs

Ammonia (NH3) is present in the atmosphere due to global agriculture and industry. The current
industrial standard sorbents show a low affinity and limited capacity for NH3. The heterogeneous pore
size in carbon-based materials has caused a fundamental problem in studies on ammonia sorption.
Recent studies have focused on sorbents containing Lewis or Brønsted acid sites that show a higher
affinity toward NH3 molecules to solve this problem. In this study, Dinca et al. showed the static and
dynamic ammonia capacities of various microporous triazolate-based MOFs.

Dynamic breakthrough measurements using 0.1% NH3 showed that Co2Cl2BBTA and
Co2Cl2BTDD have a NH3 breakthrough capacity of 8.56 and 4.78 mmol g–1, respectively (Table 3).
This is equal to 1.48 and 1.08 molecules of NH3 per Co atom, respectively. The NH3 breakthrough
capacity value is reduced in 80% relative humidity (RH), regardless of the pore size due to the
adsorption of water. The saturation value was 4.36 mol kg–1 for Co2Cl2BBTA and 3.38 mol kg–1 for
Co2Cl2BTDD. These results indicate 0.76 and 0.77 NH3 molecules are absorbed per open metal site in
Co2Cl2BBTA and Co2Cl2BTDD, respectively.

Table 3. Saturation NH3 breakthrough capacities value at 0.1% of MOFs.

Dry (0% RH) Wet (80% RH)

Co2Cl2BTDD 4.78 3.38
Co2Cl2BBTA 8.56 4.36
Cu2Cl2BBTA 7.52 5.73

3.3. Highly Performance of SO2 MOF Sensor

Although sulfur dioxide is one of the most toxic and serious air pollutants, consumption for fossil
fuel is increasing [10]. The main adverse health issues occur upon continuous exposure to SO2, with a
primary 1-h acceptable limit of 75 ppb. Thus, a sensitive sensor, which can detect even a small amount
of SO2 gas, is necessary. However, the detection of SO2 gas by chemical reaction from CaO to CaSO3

has low efficiency and irreversibility [165,166]. Therefore, it is necessary to achieve the reversible
physisorption and selective interaction with SO2. Thus far, there are many studies that have been
conducted based on the metal oxide (SnO2, WO3, and TiO2) that show high- sensitivity, recover time,
and selectivity. However, a sensor based on metal oxide requires the high temperature (200–600 ◦C),
which means that it requires high energy and power.
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Recently, MOFs are attractive because of satisfying these requirements mentioned above. However,
one of the issues using MOFs in sensing devices is directly related to the fabrication as thin films form.
In this study, Salama et al. showed the fabrication of a MOF thin film on various supports and its
gas-sensing properties.

Among the various MOFs, such as MFM-300 (Al), MFM-202-a, Zn3[Co(CN)6]2, Co3[Co(CN)6]2,
Mg-MOF-74, and Ni(bdc)(ted)0.5, they have chosen the MFM-300 (In) MOF because of its high sorption
capacity. To confirm the sensing properties of MFM-300 (In) and measured the changing the capacitance.
In particular, MFM-30 (In) MOF was grown on a prefunctionallized IDE with an OH-terminated
self-assembled monolayer (SAM) under optimized conditions [167]. X-ray diffraction (XRD) and
scanning electron microscopy (SEM) confirmed the structural properties of the film.

The MFM-300 (In) MOF sensor showed exceptional performance. In addition, it can detect SO2 in
the ppb range down to 75 ppb (Figure 2). The remarkable detection properties are related to the change in
the permittivity of the thin film, depending on the adsorption of SO2 molecules. There are two types
of interaction in the adsorption process: (1) Analyte-framework interactions and (2) analyte-analyte
interactions. Changing these two interactions induce a change in the capacitance of the thin film. The MOF
sensor exhibited good stability over three weeks of operation.
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MFM-300 (In) MOF-sensor upon exposure to SO2 for a 24-day (c) reproducibility cycles for the detection.
Reproduced and adapted from Ref. [12]; Copyright (2018), RSC Journal of Materials Chemistry A.

They also measured the sensing performance with relative humidity (RH) at 350 and 1000 ppb
of SO2 gas. However, it does not show distinctive signals as compared to the “dry” condition
(Figure 3a). Therefore, it confirmed that the practical applicability of MFM-300 (in) MOF as SO2 sensor
in humidity condition. The temperature dependent sensing properties from 22 ◦C to 80 ◦C showed
that the performance decrease up to 35% with increasing temperature (Figure 3b). Finally, selectivity
performance was conducted in various gases of MFM-300 (In) MOF. As a result, it showed good
selectivity for SO2 gas when compared to others (Figure 3c).
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4. Detection and Reduction of Toxic Water via MOFs

4.1. Detection of Toxic 4-Nitrophenol via AgPd Nanoparticles on Functionalized MOFs

Nitroaromatic compounds are continuous organic contaminants that originate from industrial
waste. 4-Nitrophenol (4-NP) is one of the harmful phenolic pollutants found in chemical waste [54],
which is due to its high polarity and subsequent high solubility in water.

4.1.1. Synthesis of UiO-66-L and AgPd Nanoparticles Embedded on UiO-66-L (L=NH2 and NO2)

The synthesis of UiO-66-L was previously reported in the literature [168]. ZrCl4 was dispersed in
DMF and the resulting mixture activated with acetic acid at 55 ◦C. 2-NH2-H2BDC and 2-NO2-H2BDC
were used to functionalize UiO-66, respectively.

AgPd@UiO-66-L MOF was prepared via a reduction method while using sodium borohydride.
UiO-66-L MOFs were homogeneously dispersed in water, and AgNO3 and PdCl2 were dispersed in the
resulting MOFs dispersion, respectively. An aqueous solution of NaBH4 was added to the Ag+, Pd2+,
and MOFs mixture to reduce the Ag and Pd. The product was isolated via centrifugation, washing,
and drying (Scheme 2).
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4.1.2. Characterization of UiO-66-L and AgPd@UiO-66-L

In this review, the characterization of UiO-66-L and AgPd@UiO-66-L while using SEM, TEM,
and XRD is described. The FE-SEM and TEM images show the good dispersion of metal NPs on the
AgPd@UiO-66-NH2 MOF and its octahedral morphology (Figure 4a,b). The elemental distribution
of UiO-66-NH2 was investigated while using HAADF and elemental mapping (Figure 4c–j), which
confirmed the bimetallic AgPd nanoparticles were loaded into both the bulk MOF and on its surface.
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Figure 4. Scanning electron microscopy (SEM) image (a), TEM image (b), HAADF image (c), total
element (d), and elemental mapping (e–j) of AgPd@UiO-66-NH2. The bar indicate 100 nm (a), 50 nm (b),
and 40 nm (c–j). Reproduced and adapted from Ref. [11]; Copyright (2018), Elsevier Sensors and
Actuators B: Chemical.

The XRD spectra showed the crystallinity and structural aspects of the as-synthesized materials
(Figure 5). The XRD spectra that were recorded for UiO-66-NH2 and UiO-66-NO2 were similar and in
good agreement with AgPd and bare UiO-66 (Figure 5a–c). This shows that the materials crystallinity
was not changed after functionalization of the -NH2 and -NO2 groups (Figure 5d,e). The characteristic
peaks for Ag and Pd were observed at 2θ = 38.03◦ and 40.01◦, respectively. Moreover, the existence of
both Ag and Pd peaks in Figure 5f,g, respectively, show the obvious crystallinity of the AgPd alloy.

4.1.3. A Comparison of the Catalytic Performance by the Detection and Reduction of 4-Nitrophenol

In this paper, 0.5 mM of 4-nitrophenol was detected while using AgPd@UiO-66-L by cyclic
voltammetry. The sharp reduction peak at –0.7 V vs. Ag/AgCl shows the reduction of 4-nitrophenol
to 4-hydroxyaminophenol by AgPd@UiO-66-NH2/GCE (Figure 6a). In addition, a quasi-reversible
anodic peak was observed at ~0.1 V vs. Ag/AgCl, due to the oxidation of 4-hydroxyaminophenol to
4-nitrosophenol. In this result, AgPd@UiO-66-NH2 showed improved performance when compared to
the other materials studied. Figure 6b shows the cyclic voltammograms for the sensing of various
concentrations of 4-nitrophenol (0.25–400 µm) by the AgPd@UiO-66-NH2/GCE electrode in 0.1 M
phosphate buffered saline (PBS) at pH 7. Increasing the concentration of 4-nitrophenol from 0.25 µM to
400 µM exhibited a linear increase in the cathodic reduction peak due to the beneficial electrocatalytic
reduction of 4-nitrophenol to 4-hydroxyaminophenol.
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Figure 6. (a) CVs of the identical electrodes in 0.1 M PBS solution including 0.5 mM of 4-nitrophenol,
(b) CVs of AgPd@UiO-66-NH2/GCE in 0.1 M PBS at various concentration 4-nitrophenol (0.25µM–400µM),
(c) UV-VIS absorption spectra of 4-nitrophenol before addition of NaBH4 solution as compared to after, and
(d) Intensity of absorbance peak change detection via UV-VIS spectra for the reduction of 4-nitrophenol
within NaBH4 in AgPd@UiO-66-NH2 during the time-dependent. Reproduced and adapted from Ref. [11];
Copyright (2018), Elsevier Sensors and Actuators B: Chemical.
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The catalytic activities of the as-synthesized products were also studied while using this catalytic
reduction reaction using UV-Vis spectroscopy. 4-Nitrophenol shows an absorption peak at ~317 nm in
an aqueous medium. Upon the addition of NaBH4 powder to the solution, a new peak was detected at
400 nm (Figure 6c). The resulting thick yellow mixture and shift in the absorption peak was due to the
generation of p-nitrophenolate [169]. Figure 6d showed catalytic activity by AgPd@UiO-66-NH2 in the
mixed solution of sodium borohydride and 4-nitrophenol. The color of mixed solution altered from
yellow to colourless because of the activation of 4-nitrophenolate ion to 4-aminophenol.

4.2. Detection of Antibiotics in Water Using Cd-MOF as a Fluorescent Probe

Antibiotics are used to treat bacterial infections in animals and humans, but they are an important
organic pollutant [170,171]. The abuse of antibiotics has led to extreme residues in subsoil water
and surface water [172–177]. Therefore, luminescent MOFs have been synthesized and applied in
the detection of antibiotics in water as an alternative to liquid chromatography (LC) combined with
UV-Vis spectroscopy, capillary electrophoresis, Raman spectroscopy, mass spectroscopy, and ion
mobility spectroscopy [141,178–193]. In this paper, the reported Cd-MOF material was used toward
the detection of the antibiotic, ceftriaxone sodium (CRO).

4.2.1. Synthesis and Detection of Cd-MOF

The synthesis of Cd-MOF while using 1,4-bis(2-methyl-imidazole-1-yl)butane (bbi) was carried out
while using a literature process [194]. The detection of antibiotics was achieved using UV spectroscopy
in the wavelength range of 270–350 nm.

4.2.2. Characterization of Cd-MOF

The Cd-MOF was analyzed in terms of its thermal and chemical stability under harsh conditions.
Figure 7a exhibited no weight loss in the temperature range of 35–300 ◦C due to the absence of water in
the Cd-MOF. The framework started to decompose at temperatures >300 ◦C. Meanwhile, the Cd-MOF
was stored in aqueous solutions of the antibiotic and distilled water under various pH conditions
for 24 h (Figure 7b). The PXRD spectra of the treated samples are in good agreement with the base
simulated data. In these results, the Cd-MOF exhibited high physical and chemical stability in alkaline,
acidic, and antibiotic solutions, respectively.Catalysts 2020, 10, 195 13 of 31 
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in various pH aqueous solution and water for 24 h. Reproduced and adapted from Ref. [54]; Copyright
(2019), RSC Analyst.

The MOF candidates used as luminescent materials are often constructed from conjugated organic
ligand linkers and d10 metal ions [195–200]. Therefore, the Cd-MOF shows enhanced fluorescence
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intensity when compared to those that are constructed from organic ligands, such as bbi and H2L
(Figure 8).
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4.2.3. Chemical Sensors for Antibiotic Detection

The application of Cd-MOF as a fluorescent sensor for detecting antibiotics in water was
investigated because of its robust luminescence properties in water. Cd-MOF was dispersed in
antibiotic solutions containing LIN, AZL, PEN, AMK, ERY, AMX, AZM, GEN, ATM, FOX, CSU, CEC,
CED, CFM, MTR, SXT, and CRO (LIN: Lincomycin hydrochoride, AZL: Azithromycin latobionate,
PEN: Penicillin, AMK: Amikacin, ERY: Erythromycin ethylsuccinate, AMX: Amoxicillin, AZM:
Azithromycin, GEN: Gentamicin, ATM: Aztreonam, FOX: Cefoxitin, CSU: Cefathiamidine, CEC:
Cefaclor, CED: Cefradine, CFM: Cefixime, MTR: metronidazole, SXT: Sulfamethoxazole, and CRO:
Ceftriaxone sodium, respectively). As a result, the effective fluorescence quenching of Cd-MOF by
these antibiotics follows the order of AZL < GRN < LIN < AMK < ERY < PEN < AZM < AMX < FOX
< CEC < CSU < MTR < CFM < ATM < SXT < CRO (Figure 9a). In particular, the efficient detection
of CRO via fluorescence quenching was ~90% in this study. Figure 9b shows the distinction of the
Cd-MOF sensor for quantitative analysis while using a fluorescence titration experiment. This graph
shows the straightforward and dramatic trend in the fluorescence intensity of Cd-MOF that was
detected from 0 to 70 µL. Cd-MOF is an effective probe used to detect CRO. The Cd-MOF sensor in an
aqueous solution of CRO exhibits highly sensitive fluorescence intensity under various pH conditions
(Figure 9c, pH = 4–11). From this graph, Cd-MOF can be used under various pH conditions with no
effect on the experimental results. In particular, Cd-MOF shows high performance and stability at pH
= 6–7. Figure 9d shows that the rapid detection of various concentrations of CRO can be achieved
when an aqueous solution of CRO was added to the Cd-MOF suspension.
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Figure 9. (a) Comparison of various antibiotics quenching efficiency using Cd-MOF at room temperature.
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RSC Analyst.

5. Filtration of Water and Air Pollutants Using Nanofibrous MOFs Prepared via
Electrospinning Methods

5.1. Nanofiber MOF Filter for Particulate Matter

Serious threats to human health have been arisen due to the rapid development of the economy
and industry, with the most dangerous of them being air pollution [201,202]. In practice, air pollutants
are very diverse and are typically composed of particulate matter (PM) and toxic gases. PM is harmful
to the environment affecting human health, air quality and the climate. Particulate matter whose
aerodynamic diameters are <2.5 µm (PM2.5) and <10 µm (PM10) can penetrate the respiratory system
and cause health problems upon prolonged exposure [203,204]. A lot of attention has been focused on
researching PM filters to solve these problems. Among them, research on filters made using MOFs via
electrospinning methods is a major factor.

5.1.1. Basic Theory of Electrospinning

Electrospinning is the most facile way to make nanofiber membranes containing organic and
inorganic components while using polymer melts and solutions [205]. The basic principle of
electrospinning is to apply a strong electric field using a high voltage power supply and drawing the
fabricated fiber as they solidify (Scheme 3) [206]. It is easy to install and produce, so this method
enables mass production at a low cost. Although the basic principle of electrospinning is simple, its
mechanism is very complicated, because there are many factors that affect the process. Among them,
the process parameters include the nozzle diameter, applied voltage, and tip-to-collector distance
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(TCD) [207]. In addition, it is also influenced by the solution characteristics and physical properties,
such as the concentration, viscosity, surface tension, and vapor pressure. In particular, there are many
advantages that affect performance of filter, such as specific surface area, alterable fiber diameter, and
pore size.
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5.1.2. Detail Mechanism of Electrospinning

Electrospinning is the simplest way for producing micro or nanoscale fibers [208–210]. Although
the basic theory of this process is uncomplicated, its detail mechanism is so complicated. Many
conditions, such as solution terms and experimental environment, affect the electrospinning process.

In the case of solution term, viscosity, surface tension, vapor pressure and solution conductivity
have a major influence on electrospinning. The most important of these is viscosity, which can vary
greatly with electrospinning. If all conditions are the same, except for the viscosity, it will affect the
thickness and formation of the fibers. If the viscosity of the solution is too high, since the drop for
electrospinning is not formed, electrospinning itself might be disrupted. On the other hand, if it is
considerably low, the fibers are not able to withstand the tension caused by stretching in the process of
drawing fibers, so that the fiber are broken. At the optimum viscosity for electrospinning, generally, if
the viscosity increases, the stretching proceeds relatively slowly, and the fibers may become thick and
vice versa. Similarly, vapor pressure also affects the thickness of the fiber. The vapor pressure of the
solution has an intuitive effect on the evaporation rate of the interpolation solvent, so that adjusting
the vapor pressure can control the thickness of the fiber.

Surface tension is thought to influence jet formation after drop formation. If the surface tension is
too high, drops are formed, but it is difficult to form a jet. This is because the surface tension of the
solution is higher than the high voltage applied and, thus, the jet is not formed. In general, it is a good
idea to consider the surface tension of the solution if a drop is formed but no jet is formed.

Electrospinning is basically a process for very low conductivity solutions. Electrospinning on
conductive solutions is a very difficult process. The reason is that when the conductivity of the
solution is high, the drop itself is not formed, and charge is directly discharged from the solution
to the collector, which makes it difficult to form electrospinning. It might be possible to spinning a
conductive solution by applying a very high voltage, so that the amount of charge applied is greater
than that discharged, in order to spinning a conductive solution. The experimental environmental
factors affecting electrospinning include TCD, voltage, nozzle size, and temperature and humidity.
In the case of temperature and humidity, it is difficult to control these, which is one of the main reasons
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why the reproducibility of electrospinning result is different every day. Conditions that are related to
electrospinning settings, such as TCD voltage and nozzle size, have a relatively small impact. During
the electrospinning experiment, the TCD and voltage can be changed in real time, so it is relatively easy
to know the optimal conditions for spinning. In this context, the detailed mechanisms and conditions
of electrospinning are very diverse and complex, but, if the optimum conditions are found, then a fiber
that has high propulsion can be obtained.

5.1.3. Characterization of MOF@PAN, PS (Polystyrene)

A high ratio of MOFs can be loaded into polymer composites without agglomeration by adjusting
the morphology and particle size of dissimilar MOF crystals. Figure 10 shows the SEM images of
polymer and various MOF non-woven fabrics. By controlling the electrospinning conditions, such as
voltage, flow rate of the solution, and TCD, four MOFs can be formed into fiber materials. Figure 10
shows that the MOF nanoparticles are well dispersed in the polymer fibers without any apparent
agglomeration, despite a high loading of 60 wt%.
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5.1.4. Filtration of Particle Matter Using ZIF-8@PAN

Generally, MOF filters can capture pollutants, including particulate matter via three mechanisms:
(1) Pollutants can be bound to the OMSs, (2) interaction with the functional groups in the MOF filters,
and (3) electrostatic interactions with the MOF filter. Figure 11 shows the particulate matter removal
efficiency that was observed for MOFs@PAN filters. Figure 11a shows that the ZIF-8@PAN filter has the
highest removal efficiency for PM2.5 and PM10 among the various MOFs studied. Particulate matter is
very polar because of the presence of water vapor and various ions. MOFs, which have unbalanced
defects and metal ions on the surface, offer positive charge. This is why the surface of PM can be
polarized enhancing the electrostatic interactions. The zeta potential represents these electrostatic
interactions. Among the MOFs studied, ZIF-8 exhibited the highest zeta potential of 47.5 mV. In this
context, the ZIF-8@PAN filter displayed higher removal efficiency than the other filters studied and its
efficiency was maintained after 48 h of exposure to polluted air (Figure 11b).
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5.2. Nanofiber MOF Filter for Water Pollutants

Water contamination has become an important issue in environmental remediation due to the
increase of urban areas and industrialization. Domestic wastewater is continuously discharged into the
environment. Generally, the major pollutants in food wastewater are soluble organic food additives and
insoluble organic compounds. Many methods have been used to treat these types of pollutants, such
as advanced oxidation, adsorption, and photocatalytic membrane technology [211–215]. Among these
methods, membrane technology is preferred due to its facile operation. However, research studies mainly
concentrate on the removal of one type of pollutant, either soluble or insoluble pollutants. Recently, porous
materials, such as MOFs, have been applied to water filtration to treat these contaminants [211–219]. It is
necessary to use an electrospinning process to obtain superhydrophilic-underwater superoleophobic
properties. In this context, an electrospun polyacrylonitrile (PAN) and MIL-100 (Fe) composite filter
(PAN@ MIL-100(Fe)) have been fabricated to treat domestic wastewater.

5.2.1. Schematic of the PAN@MIL-100 (Fe) Filter

Scheme 4 shows the process that is used to prepare the PAN@MIL-100 (Fe) filter. In view of the
facile electrospinning process, a H3BTC/PAN electrospun fiber filter was prepared as the precursor to
load MIL-100 (FE), where the PAN fiber is used as a polymer frame and trimesic acid used as the initial
reaction site for MIL-100 (FE) growth. As the hydrothermal reaction proceeds, trimesic acid acts as a
nucleation site for the growth of MIL-100 (Fe) on the PAN fibers.

Catalysts 2020, 10, 195 17 of 31 

 

 

Figure 11. (a) Particulate matter removal efficiencies of polyacrylonitrile (PAN) filter, Al2O3@PAN 
filter and MOF@PAN filter (b) Long term PM2.5 removal efficiencies of PAN filter and ZIF-8@PAN 
filter. Reproduced and adapted from Ref. [58]; Copyright (2016), ACS Journal of American Society. 

5.2. Nanofiber MOF Filter for Water Pollutants 

Water contamination has become an important issue in environmental remediation due to the 
increase of urban areas and industrialization. Domestic wastewater is continuously discharged into 
the environment. Generally, the major pollutants in food wastewater are soluble organic food 
additives and insoluble organic compounds. Many methods have been used to treat these types of 
pollutants, such as advanced oxidation, adsorption, and photocatalytic membrane technology [211–
215]. Among these methods, membrane technology is preferred due to its facile operation. However, 
research studies mainly concentrate on the removal of one type of pollutant, either soluble or 
insoluble pollutants. Recently, porous materials, such as MOFs, have been applied to water filtration 
to treat these contaminants [211–219]. It is necessary to use an electrospinning process to obtain 
superhydrophilic-underwater superoleophobic properties. In this context, an electrospun 
polyacrylonitrile (PAN) and MIL-100 (Fe) composite filter (PAN@ MIL-100(Fe)) have been fabricated 
to treat domestic wastewater. 

5.2.1. Schematic of the PAN@MIL-100 (Fe) Filter 

Scheme 4 shows the process that is used to prepare the PAN@MIL-100 (Fe) filter. In view of the 
facile electrospinning process, a H3BTC/PAN electrospun fiber filter was prepared as the precursor 
to load MIL-100 (FE), where the PAN fiber is used as a polymer frame and trimesic acid used as the 
initial reaction site for MIL-100 (FE) growth. As the hydrothermal reaction proceeds, trimesic acid 
acts as a nucleation site for the growth of MIL-100 (Fe) on the PAN fibers. 

 

Scheme 4. (a) Schematic illustration of fabricating the PAN@MIL-100 (Fe) filter. Reproduced and 
adapted from Ref. [59]; Copyright (2019), RSC Journal of Materials Chemistry A. 
Scheme 4. (a) Schematic illustration of fabricating the PAN@MIL-100 (Fe) filter. Reproduced and adapted
from Ref. [59]; Copyright (2019), RSC Journal of Materials Chemistry A.



Catalysts 2020, 10, 195 18 of 32

5.2.2. Characterization of the PAN@MIL-100 (Fe) Filter

Figure 12a and b show that the H3BTC/PAN fiber filter has a smooth surface without any beads.
The average diameter is 110 nm. After the growth process, the PAN@MIL-100 (Fe) filter has a rough
fiber surface with lots of particles. Many particles are covered on the PAN fibers with an average
diameter of 211 nm, which is increased during the coating process. This indicates that the MOFs are
successfully coated onto the PAN fibers without any aggregation.
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5.2.3. Filtration of the Wastewater with Soluble Pollutants Using PAN@MIL-100 (Fe) Filter

The electrospun fiber filter that was prepared without MOFs has macro-size pores, so it is difficult
to effectively separate the pollutants. The adsorption interactions between the fibers and pollutants is
major factor in the filtration performance of the filter. In this context, Figure 13 shows the results of
filtering amaranth red (AR) and vanillin (VA) as soluble pollutants. AR and VA are approximately 99%
removed and the removal efficiencies were both >95% after 10 adsorption-desorption cycles.
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Figure 13. (a) Removal efficiency and (b) adsorption kinetic curves toward AR and VA by PAN@MIL-100
(Fe)filter. (c) Adsorption-desorption cycles. Reproduced and adapted from Ref. [59]; Copyright (2019),
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5.2.4. Filtration of Wastewater Containing Insoluble Pollutants Using the PAN@MIL-100 (Fe) Filter

In the removal of oil, an important parameter is the surface wettability. To treat insoluble (oil)
pollutants, it is essential that the filter has the property of selective wettability (superhydrophilicity and
underwater superoleophobicity), which allows for water to pass through filter, but not oil. The selective
wettability is that the filter can wet both water and oil in air, but in water has only hydrophilicity. Its
basic mechanism is that water around the filter acts as a barrier to prevent oil from passing through.
Figure 14a,b show that the PAN@MIL-100 (Fe) filter has selective wettability and the underwater
oil pollutants contact angles are 151◦ and 154◦. After five cycles, the oil removal efficiency is only
slightly changed.
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6. Conclusions

The application of various MOFs materials was reviewed with a focus on toxic sensor, reduction
catalyst, hydrogen storage, and filter, which act as successful functional materials. We reviewed
all of the materials while using MOFs that exhibited good performance and various application.
The application of MOF material for toxic sensor, such as NO2, SO2, and ammonia gas, showed high
performance via MFM-300 (Al), Co based MOFs (Co2Cl2BTDD and Co2Cl2BBTA), and MFM-300
(In). Our previous catalyst e.g., PdAg@UiO-66-L for the detection and reduction of 4-nitrophenol
also showed good catalytic activity. Moreover, a new Cd-MOF as a fluorescent detect exhibited
high sensitivity and selectivity in CRO. Various MOFs for hydrogen adsorption, such as MOF-177,
SNU-6, and MOF-74 composited by Co/Ni mixed-material, exhibited good performance while using
physisorption analysis method. Filtration for particle matters and wastewater using organic fiber
modified as MOF-based material showed good adsorption in polluted condition. In summary, MOFs
can be expected one of the best candidate to solve environmental pollution and energy storage in the
near future.
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Abbreviations

BDC terephthalate
FUM fumarate
2,6-NDC naphthalene-2,6-dicarboxylate
BTC benzene-1,3,5-tricarboxylate
BDC-NH2 2-aminoterephthalate
BTEC 1,2,4,5-benzenetetracarboxylate
NTC 1,4,5,8-naphthalenetetracarboxylate
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BPDC biphenyl-4,4′-dicarboxylate
BPTA biphenyl-3,3′,5,5′-tetracarboxylate
BTB 1,3,5-benzenetrisbenzoate
BeDC 4,4′-benzophenonedicarboxylate
1,3-BDC isophthalate
BTTB 4,4′,4′′-[benzene-1,3,5-triyl-tris(oxy)]tribenzoate
TCPP meso-tetrakis(4-carboxylatephenyl)porphyrin
TATB 4,4′,4”-s-triazine-2,4,6-triyl-tribenzoate
TCPT 3,3”,5,5”-tetrakis(4-carboxyphenyl)-p-terphenyl
TMQPTC 2′,3′′,5′′,6′-tetramethyl-[1,1′:4′,1′′:4′′,1′′′-quaterphenyl]-3,3′′′,5,5′′′-tetracarboxylate
ABDC 4,4-azobenzenedicarboxylate
1,3-ADC 1,3-adamantanedicarboxylate
FTZB 2-fluoro-4-(tetrazol-5-yl)benzoate
CDC trans-1,4-cyclohexanedicarboxylate
AB 4-aminobenzoate
BDA benzene-1,4-dialdehyde
BPDA 4,4′-biphenyldicarboxaldehyde
TPDC [1,1′:4′,1”-terphenyl]-4,4”-dicarboxylate
ETTC 4′,4”,4′”,4””-(ethene-1,1,2,2-tetrayl)tetrabiphenyl-4-carboxylate
MTBC 4′,4”,4′”,4””-methanetetrayltetrabiphenyl-4-carboxylate
PZDC 1H-pyrazole-3,5-dicarboxylate
MTB 4,4′,4”,4′”-methanetetrayltetrabenzoate

XF
4,4′-((1E,1′E)-(2,5-bis((4-carboxylatephenyl)ethynyl)-1,4-phenylene)bis(ethene-2,1-
diyl))dibenzoate

DTTDC dithieno[3, 2-b;2′,3′-d]-thiophene-2,6- dicarboxylate
TDC 2,5-thiophenedicarboxylate
TBAPy 1,3,6,8-tetrakis(p-benzoate)pyrene
PTBA 4-[2-[3,6,8-tris[2-(4-carboxylatephenyl)-ethynyl]-pyren-1-yl]ethynyl]-benzoate

Py-XP
4′,4′”,4′””,4′”””-(pyrene-1,3,6,8-tetrayl)
tetrakis(2′,5′-dimethyl-[1,1′-biphenyl]-4-carboxylate

Por-PP meso-tetrakis-(4-carboxylatebiphenyl)- porphyrin
Py-PTP 4,4′,4”,4′”-((pyrene-1,3,6,8-tetrayltetrakis(benzene-4,1-diyl))tetrakis(ethyne-2,1-diyl))tetrabenzoate
Por-PTP meso-tetrakis-(4-((phenyl)ethynyl)benzoate)porphyrin
EDDB 4,4′-(ethyne-1,2-diyl)dibenzoate
CTTA 5′-(4-carboxyphenyl)-2′,4′,6′-trimethyl-[1,1′:3′,1”-terphenyl]-4,4”-dicarboxylate
TTNA 6,6′,6”- (2,4,6-trimethylbenzene-1,3,5-triyl)tris(2-naphthoate))
PEDC 4,4′-(1,4-phenylenebis- (ethyne-2,1-diyl))dibenzoate
BTDC 2,2′-bithiophene-5,5′-dicarboxylate
BTBA 4,4′,4”,4′”-(biphenyl-3,3′,5,5′-tetrayltetrakis(ethyne-2,1-diyl))tetrabenzoate
PTBA 4-[2-[3,6,8-tris[2-(4-carboxylatephenyl)-ethynyl]-pyren-1-yl]ethynyl]-benzoate
BTE 4,4′,4”-(benzene-1,3,5-triyl-tris(ethyne-2,1-diyl))tribenzoate
BTPP 1,3,5-Tris((1H-pyrazol-4-yl)phenyl)benzene
BTP 1,3,5-tris(1H-pyrazol-4-yl)benzene
1,4-BDP 1,4-benzenedi(4′-pyrazolyl)
1,3-BDP 1,3-benzenedi(4′-pyrazolyl)
TPP 10,15,20-tetra(1H-pyrazol-4-yl)-porphyrin
mIM 2-methylimidazolate
bIM benzimidazolate
nIM 2-nitroimidazolate
5cbIM 5-chlorobenzimidazolate
ICA imidazolate-2-carboxyaldehyde
5-mTz 5-methyltetrazolate
2-mbIM 2-methylbenzimidazolate
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