SUPPORTING INFORMATION

An Efficient Electrocatalyst for Oxygen Evolution Reaction in Alkaline Solutions Derived from a Copper Chelate Polymer via

in-situ Electrochemical Transformation

Ridwan P. Putra¹, Hideyuki Horino², Izabela I. Rzeznicka^{1,*}

¹Graduate School of Engineering and Science, Shibaura Institute of Technology, Fukasaku 307, 337-8570 Saitama, Japan

²Department of Chemistry for Materials, Graduate School of Engineering, Mie University,

1577 Kurimamachiya-cho, Mie, 514-8507 Tsu, Japan

Number of pages: 3

Number of Figures: 2

Number of Tables: 1

Table of Contents

Cover Page

Supporting Information

Fig. S1 Cyclic voltammograms of the Cu electrode and Cu(dto)/C electrode at a scan rate of 5 mV/s, in N₂-saturated 1M KOH.

Table S1 Assignment of the redox reactions in the cyclic voltammograms of the Cuelectrode at a scan rate of 5 mV/s, in N2-saturated 1M KOH.

Peak	<i>E</i> vs. RHE (V)	Assignment*
1	0.613	$2Cu + 2OH^{-} \rightarrow Cu_2O + H_2O + 2e$
2	0.823	$\begin{array}{c} Cu_2O+6OH^{\scriptscriptstyle -}+H_2O\to2Cu(OH)_4{}^{2\text{-}}+2e\\ Cu+4OH^{\scriptscriptstyle -}\toCu(OH)_4{}^{2\text{-}}+2e \end{array}$
3	0.928	CuOH + OH ⁻ → Cu(OH) ₂ + e Cu + 2OH ⁻ → Cu(OH) ₂ + 2e Cu + 2OH ⁻ → CuO + H ₂ O + 2e
4	1.374	Cu(OH) ₂ + 2OH ⁻ → Cu(OH) ₄ ⁻ + e CuO + H ₂ O + 2OH ⁻ → Cu(OH) ₄ ⁻ + e
5	1.468	$Cu(OH)_4^- + e \rightarrow Cu(OH)_2 + 2OH^-$ $Cu(OH)_4^- + e \rightarrow CuO + H_2O + 2OH^-$
6	0.643	$2Cu(OH)_2 + 2e \rightarrow Cu_2O + 2OH^- + H_2O$
7	0.538	$Cu_2O + H_2O + 2e \rightarrow 2Cu + 2OH^-$

¹⁾ Ambrose, J.; Barradas, R.G.; Shoesmith, D.W. Investigations of Copper in Aqueous Alkaline Solutions by Cyclic Voltammetry. *J. Electroanal. Chem. Interfacial Electrochem.* 1973, 47, 47-64, doi:https://doi.org/10.1016/S0022-0728(73)80344-4.

²⁾ Deng, Y.; Handoko, A.D.; Du, Y.; Xi, S.; Yeo, B.S. In Situ Raman Spectroscopy of Copper and Copper Oxide Surfaces during Electrochemical Oxygen Evolution Reaction: Identification of CuIII Oxides as Catalytically Active Species. *ACS Catal.* 2016, 6, 2473-2481, doi:10.1021/acscatal.6b00205.

Fig. S2 TEM image of Cu(dto)-DO/C powder after cycling in the potential window of 0.42
- 1.57 V vs. RHE with a scan rate of 5 mV/s. TEM image was taken on JEOL 2100
microscope at 200 keV. The powder was deposited from ethanolic solution on a Cu grid (300 mesh) coated with the Lacey Carbon.