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Abstract: Inspired by the structures of the active site of lactate racemase and H2 activation mechanism
of mono-iron hydrogenase, we proposed a series of sulphur–carbon–sulphur (SCS) nickel complexes
and computationally predicted their potentials for catalytic hydrogenation of CO2. Density functional
theory calculations reveal a metal–ligand cooperated mechanism with the participation of a sulfur
atom in the SCS pincer ligand as a proton receiver for the heterolytic cleavage of H2. For all newly
proposed complexes containing functional groups with different electron-donating and withdrawing
abilities in the SCS ligand, the predicted free energy barriers for the hydrogenation of CO2 to formic
acid are in a range of 22.2–25.5 kcal/mol in water. Such a small difference in energy barriers indicates
limited contributions of those functional groups to the charge density of the metal center. We further
explored the catalytic mechanism of the simplest model complex for hydrogenation of formic acid to
formaldehyde and obtained a total free energy barrier of 34.6 kcal/mol for the hydrogenation of CO2

to methanol.
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1. Introduction

Increasingly severe climate change is driving people to look for effective ways to reduce the
concentration of greenhouse gases, especially carbon dioxide, in the atmosphere [1–3]. Transition
metal-catalyzed CO2 reduction has attracted increasing attention because it provides a promising way
to use CO2 as an abundant and non-toxic carbon source for the synthesis of valuable chemicals and
fuels [4–6]. With the proposal of the “methanol economy” by Olah and co-workers [7–9], catalytic
hydrogenation of CO2 to methanol (CO2 + 3H2 → CH3OH + H2O) has become one of the most
attractive strategies for the utilization of CO2 as C1 building block and potential hydrogen storage
material [10–14]. The above reaction usually contains three cascade catalytic cycles, CO2 + H2 →

HCOOH, HCOOH + H2→ CH2O + H2O, and CH2O + H2→ CH3OH.
Although people have achieved some progresses in homogeneous catalytic hydrogenation of

CO2 with the development of base metal iron [15–17], cobalt [18], and manganese [19] catalysts in
recent years, most of the experimentally reported efficient CO2 hydrogenation catalysts contain noble
metals and air- and moisture-sensitive phosphine ligands [6,20–32]. For the catalytic hydrogenation of
CO2 to methanol reaction, only a few base metal catalysts are reported so far. For example, Beller and
co-workers [18] recently reported a homogeneous cobalt/triphos-based catalyst for the reduction of CO2

at 70 bar of H2 and 10 bar of CO2 under 100 ◦C and production of methanol with turnover numbers
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(TONs) up to 78. Pombeiro and co-workers [16] reported direct synthesis of methanol from CO2 and H2

catalyzed by an Fe(II) scorpionate complex achieved 44% yield of methanol with TONs and turnover
frequencies (TOFs) up to 2387 and 167 h−1, respectively, at 80 ◦C and 75 pressure. Bernskoetter and
co-workers [17] reported an Fe(II) pincer complex for homogeneously catalytic conversion of H2 and
CO2 to methanol with 250 psi of CO2 and 1150 psi of H2 at 100 ◦C with a TON of 590. Prakash and
co-workers [19] investigated phosphorus–nitrogen–phosphorus (PNP) manganese pincer complexes for
homogeneous hydrogenation of CO2 to methanol at 80 bar and 150 ◦C with TONs up to 36. We can see
those experimentally reported base metal catalysts relied on rigid reaction conditions and have rather
low activities or methanol selectivity. The rational design of cost-effective non-noble metal catalysts
for efficient conversion of H2 and CO2 to methanol under mild conditions (<100 ◦C) is still highly
desirable and challenging. In addition to the above experimental studies, Yang and co-workers [33–37]
computationally designed several Mn, Fe, and Co complexes as potential catalysts for the production
of methanol from H2 and CO2. Those bio-inspired design and computational predictions indicate
that metal–ligand cooperation (MLC) is essential for the formation of metal hydride complexes by
heterolytic cleavage of H2 for the reductions of CO2 and formic acid. However, the application of
nickel complexes for catalytic hydrogenation of CO2 to methanol is still insufficiently investigated.

In our recent study, we computationally predicted a series of scorpion-like sulphur–carbon–sulphur
(SCS) nickel complexes as a mimic of the active site of lactate racemase [38] for lactate racemization [39]
and dehydrocoupling of ammonia–borane for transfer hydrogenation of ketones and imines [40].
However, those scorpion-like (SCS)Ni complexes are not good candidates for hydrogenation reactions
because of their high barriers for H2 activation. In Yang and Hall’s computational study of monoiron
hydrogenase catalysis [41], they found the heterolytic cleavage of H2 by Fe and sulfide ligand has a
rather low free energy barrier of 6.6 kcal/mol. Such results indicate that the metal center and sulfide
ligand may cooperate as an intramolecular frustrated Lewis pair (FLP) for H2 activation. Inspired by
the above findings, we would like to explore the potentials of SCS nickel pincer structures for catalytic
H2 activation and (de)hydrogenation reactions.

As shown in Figure 1, we proposed an SCS nickel hydride complex (1) by removing the imidazole
tail, replacing the substituent group coordinated to Ni with a hydride, and adding a proton to the
sulfur atom (S1) in the amine side arm of the SCS ligand. 1′ is an isomer of 1 with the proton on the
other sulfur atom (S2) in the SCS ligand. A is an anionic complex with deprotonated sulfur. Our
density functional theory (DFT) calculations indicate that A and 1′ are 10.3 and 13.2 kcal/mol less stable
than 1, respectively, in water.
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Figure 1. Proposed Ni pincer complex in this work (1) and its isomer with the proton on the other sulfur
atom (1′), deprotonated structure of 1 (A), Ni hydride complex with Hu and co-workers’ symmetric
SCS pincer ligand (B), and B with a proton on sulfur (C).
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Hu and co-workers [42] recently reported three SCS nickel pincer complexes with symmetric
C=O group in the arms of the pincer ligand as functional models of lactate racemase and studied their
catalytic properties. Their DFT calculations suggest that the pyridinium carbon atom coordinated to Ni
act as a hydride acceptor for lactate racemization, and the β-hydrogen elimination for the formation of
Ni–H structure is energetically prohibitive. Figure 1 also lists a Ni hydride complex B with symmetric
SCS pincer ligand and its protonated structure C, which is 7.3 kcal/mol less stable than B in water. Such
results indicate that the C(H)(NH2) group in the SCS ligand significantly increased the nucleophilicity
of its connecting sulfur atom and is likely to facility H2 activation. We also calculated the transition
state for C to CO2 hydride transfer and obtained a free energy barrier of 36.3 kcal/mol. Therefore,
the symmetric Ni complexes with two C=O groups in the SCS ligand are unlikely to catalyze the
hydrogenation of CO2.

With the above initial analysis, we believe 1 is a relatively stable nickel hydride complex and could
potentially be a catalyst or intermediate for H2 activation and (de)hydrogenation reactions. We further
investigated the detailed reaction mechanism of 1 catalyzed hydrogenation of CO2 to formic acid,
analyzed the influence of various substitutes in the SCS pincer ligand to energy barriers, and examined
the catalytic activity of 1 for hydrogenation of formic acid to methanol.

2. Results and Discussion

2.1. Predicted Catalytic Cycles for the Hydrogenation of CO2 to Formic Acid

Using 1 as the starting point of the reaction, we proposed a plausible catalytic cycle (Cycle 1,
Scheme 1) for the hydrogenation of CO2 to formic acid based on DFT calculations. The corresponding
relative free energies in the reaction pathway and optimized key structures in Cycle 1 are displayed in
Figures 2 and 3, respectively.
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formation of a much more stable intermediates 4, which was 12.9 kcal/mol more stable than 1 because 
of the formation of a strong Ni−O bond (1.917Å) in it. Then the proton on S1 transferred to the O atom 
bonding to Ni through TS4,5 and formed a formic acid molecule with a free energy barrier of 20.5 
kcal/mol. The Ni···O distance in 5 was slightly elongated to 2.04 Å, which indicates a weaker 
interaction between Ni and O after the formation of the O−H bond. The HCOOH/H2 exchange in 5 
happened quickly and formed a 2.1 kcal/mol more stable dihydrogen complex 7. The intramolecular 
H2 cleavage in 7 for the regeneration of 1 with the assistance of a S1 atom in the SCS ligand had a free 
energy barrier of 20.8 kcal/mol (7 → TS7,1). We also examined the stability of an isomer of 4 with a 
proton on S2, which could be formed by transferring the hydroxyl proton nearby the Ni in 5 to S2 
through TS5,6 with a free energy barrier of 29.3 kcal/mol, and found 6 was 9.1 less stable than 4. The 
relative energies in Figure 2 show 4 and TS1,2 were the rate-determining states in Cycle 1 with a total 
free energy barrier of 23.2 kcal/mol (4 → TS1,2), which indicates the reaction could easily happen at 
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At the beginning of the reaction, a formate anion was formed with a CO2 molecule attacking 1
and taking the hydride on Ni through TS1,2 (Figure 3). The free energy barrier for hydride transfer
from Ni to C was 10.2 kcal/mol. The formate anion in 2 could easily dissociate and come back for the
formation of a much more stable intermediates 4, which was 12.9 kcal/mol more stable than 1 because
of the formation of a strong Ni−O bond (1.917Å) in it. Then the proton on S1 transferred to the O
atom bonding to Ni through TS4,5 and formed a formic acid molecule with a free energy barrier of
20.5 kcal/mol. The Ni· · ·O distance in 5 was slightly elongated to 2.04 Å, which indicates a weaker
interaction between Ni and O after the formation of the O−H bond. The HCOOH/H2 exchange in 5
happened quickly and formed a 2.1 kcal/mol more stable dihydrogen complex 7. The intramolecular
H2 cleavage in 7 for the regeneration of 1 with the assistance of a S1 atom in the SCS ligand had a free
energy barrier of 20.8 kcal/mol (7→ TS7,1). We also examined the stability of an isomer of 4 with a
proton on S2, which could be formed by transferring the hydroxyl proton nearby the Ni in 5 to S2
through TS5,6 with a free energy barrier of 29.3 kcal/mol, and found 6 was 9.1 less stable than 4. The
relative energies in Figure 2 show 4 and TS1,2 were the rate-determining states in Cycle 1 with a total
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free energy barrier of 23.2 kcal/mol (4→ TS1,2), which indicates the reaction could easily happen at
room temperature for a quick formation of formic acid.

2.2. Influence of Substituents in the SCS Ligand

To understand the influence of various functional groups in the SCS pincer ligand to the catalytic
activity and find out potential nickel complexes with better catalytic performance, we built ten SCS
nickel complexes (1a–1j, Figure 4) by replacing the amino hydrogens (R) and the methyl group in
the pyridinium ring (R′) in 1 with various substituents. Considering the difficulties in synthesizing
asymmetric SCS pincer ligand, we also proposed five complexes with symmetrical amine groups in
the SCS pincer ligand (1′k–1′o, Figure 4). Similar nickel complexes with symmetrical amine groups in
SCS ligand were recently reported by Hu and co-workers [43]. Since the free energy profile in Figure 2
indicates that 4 and TS1,2 were the rate-determining states in Cycle 1, and TS7,1 was very close to TS1,2

in relative energy, we calculated the relative free energies of 4→ TS1,2 and 4→ TS7,1 with different
functional groups (Table 1).
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Table 1. Relative free energies of 4→ TS1,2 and 4→ TS7,1 with different functional groups at R and R′

in the SCS nickel pincer complexes.

R R′ 4→ TS1,2 4→ TS7,1
(kcal/mol)

1 H CH3 23.2 23.0
1a F CH3 23.9 23.7
1b Cl CH3 22.9 22.5
1c Br CH3 22.2 21.3
1d CH3 CH3 22.6 23.0
1e H H 23.6 23.5
1f H COOH 23.4 21.0
1g H NH2 22.9 23.3
1h H F 23.3 22.5
1i H Cl 23.3 20.9
1j H CN 23.2 22.0

1′k H CH3 24.6 25.2
1′l F CH3 25.3 24.5

1′m Cl CH3 22.9 22.2
1′n Br CH3 22.5 20.8
1′o CH3 CH3 24.4 25.5

Comparing the calculated relative free energies listed in Table 1, we can see complex 1c with R = Br
and R′ = CH3 had the lowest total free energy barrier of 22.2 kcal/mol, while 1′o had the highest barrier
of 25.5 kcal/mol. Such a 3.3 kcal/mol difference in free energy barriers indicates that the substituents at
R and R′ in the SCS ligand have moderate influences on catalytic activity because those functional
groups are far away from the reaction center and have limited contributions to the electron density
on nickel.



Catalysts 2020, 10, 319 6 of 13

2.3. Hydrogenation of Formic Acid to Formaldehyde and Water

The relative free energies listed in Table 1 indicate 1 and its derivatives were promising candidates
for catalytic hydrogenation of CO2 to formic acid under mild conditions. We further investigated
the catalytic activity of 1 for hydrogenation of formic acid. Scheme 2 and Figure 5 are a predicted
mechanism for the hydrogenation of HCOOH to CH2O and H2O catalyzed by 1 (Cycle 2), and the
corresponding reaction coordinate with relative free energies. The optimized structures of stable
intermediates, 8′ and 12, and transition states for hydride transfer (TS1,8), proton transfers (TS9,10 and
TS11,12), and C−O bond cleavages (TS10,11 and TS13,14) are displayed in Figure 6.
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Scheme 2. Predicted mechanism for the hydrogenation of formic acid to formaldehyde and water
catalyzed by 1 (Cycle 2). The deprotonation pathway is shown with red arrows.

When a formic acid molecule approaches 1, it can take the hydride on Ni and forms an anionic
group HOCH2O− through an 18.5 kcal/mol barrier transition state TS1,8. HOCH2O− in 8 could easily
reorient and form an 18.4 kcal/mol more stable isomer 8′ with a strong Ni−O bond (1.893 Å). Then
the proton on S1 transferred to the oxygen atom bonding to Ni and formed a methanediol molecule
through TS8′,9. After the formation of methanediol in 9, there are two possible ways for the formation
of formaldehyde, intramolecular proton transfer, and deprotonation to solvent. In the intramolecular
proton transfer pathway, the hydroxyl proton far away from Ni transfers to S1 and forms intermediate
10. Then a CH2O molecule can easily be released with C−O bond cleavage through TS10,11, which
was only 0.8 kcal/mol higher than 10. The hydroxyl group left on Ni then takes the proton on S1 and
forms a water molecule in intermediate 12. Instead of intramolecular proton transfer, the hydroxyl
proton far away from Ni could be deprotonated in the solvent and form an anionic intermediate 13
with a free energy barrier of 31.5 kcal/mol. The following transition state (TS13,14) for the release of
formaldehyde with a C−O bond cleavage was only 1.7 kcal/mol higher than 13. The hydroxyl anion in
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14 can easily recapture a proton in the solvent and form a water molecule. The H2O/H2 exchange in 12
for the formation of 7 was an only 2.9 kcal/mol uphill step.
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It is worth noting that the relative free energies of 13 and TS13,14 were calculated based on an
experimental value of −262.5 kcal/mol for the solvent-free energy of the proton in water [44]. The
solvent environment will strongly influence the free energy barriers of this reaction pathway and may
lead to a lower total free energy barrier or even a different mechanism for hydrogenation of CO2 and
formic acid [45].

2.4. Hydrogenation of Formaldehyde to Methanol

Scheme 3 is the mechanism for the hydrogenation of formaldehyde to methanol (Cycle 3). The
corresponding free energy profile and optimized key structures in Cycle 3 are displayed in Figures 7
and 8, respectively. When a formaldehyde molecule approaches 1, the hydride on Ni can easily be
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transferred to its carbon atom for the formation of a methoxy anion through transition state TS1,15

(Figure 8), which was only 7.3 kcal/mol higher than 1 in free energy. The rotation of methoxy anion in
15 formed a 22.5 kcal/mol more stable isomer 15′ with a strong Ni-O bond (1.881 Å). Then a methanol
molecule was formed with the transfer of the proton on S1 to the oxygen in methoxy through TS15′,16.
The CH3OH/H2 exchange in 16 for the regeneration of 7 was a 6.0 kcal/mol uphill step. The total free
energy barrier of Cycle 3 was 25.8 kcal/mol (16→ TS7,1).
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3. Computational Details

Gaussian 09 suite of programs (Revision E.01, Gaussion, Inc., Wallingford, CT, USA, 2009) [46]
were used for all DFT calculations with the M06 functional [47]. The all-electron 6-31++G(d,p) basis
set [48–50] was used for H, C, N, O, and S atoms, while the Stuttgart relativistic effective core potential
basis set (ECP10MDF) was used for Ni [51]. Numerical integrations were at the ultrafine grid level
(99, 590). The reliability of M06 functional for this Ni catalytic system was evaluated by comparing the
relative free energies between rate-determining states 4 and TS1, 2 using different density functionals,
which are listed in Table S1. The ground states of key intermediates were confirmed as singlets through
comparison with their optimized high-spin analogs (Table S2). All structures were fully optimized
with the solvent effect corrections using the integral equation formalism polarizable continuum model
(IEFPCM) [52] and the solvation model based on density (SMD) radii [53] for water, which could be an
environmentally benign, low-cost, and universal solvent for future experimental study. For thermal
corrections on optimized structures, 298.15 K temperature, 1 atm pressure, and harmonic potential
approximation were used. The experimental value of −262.5 kcal/mol for the free energy of the proton
in water [44] was used to calculate deprotonation free energies. Intermediates and transition states
were validated through the number of imaginary vibrational modes shown in frequency calculation
results. Intrinsic reaction coordinate (IRC) calculations confirmed all transition states were connecting
proper reactants and products. The JIMP2 molecular visualizing and manipulating program (version
0.091, Texas A&M University, College Station, TX, USA, 2006) [54] was used to draw 3D molecular
structure figures displayed in the text.

4. Conclusions

In summary, our computational study predicted a series of (SCS)Ni(II) pincer complexes as
promising candidates for catalytic hydrogenation of CO2 to formic acid with free energy barriers in
a range of 22.2–25.5 kcal/mol in an aqueous solvent. Our DFT calculations reveal a metal–ligand
cooperative mechanism with the participation of a sulfur atom in the SCS pincer ligand for the
heterolytic cleavage of H2. In general, the complexes with electron-donating groups have lower
barriers for CO2 reduction. The free energy barrier differences for the formation of formic acid
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catalyzed by proposed nickel complexes with various functional groups at R and R′ positions were less
than 3.3 kcal/mol, which indicates a moderate substituent effect for the catalytic activities. The above
findings not only provide well-defined prototypical base metal complexes as promising candidates for
catalytic hydrogenation of CO2 to formic acid but also point to a way to design efficient catalysts for
hydrogenation and dehydrogenation reaction, in which the ligand sulfide group may play an essential
role for H2 activation or formation through MLC.

Our further investigation of the catalytic activities of model complex 1 for hydrogenation of formic
acid obtained a free energy barrier of 32.5 kcal/mol (12→ 8) for the formation of formaldehyde. The
free energy barrier for hydrogenation of formaldehyde to methanol catalyzed by 1 was 25.8 kcal/mol
(16→ TS7,1). It is worth noting that although 1 was described as the starting point of the catalytic
cycle, it was actually an unstable intermediate in the reaction. The dihydrogen complex 7, which
was a 10.9 kcal/mol more stable isomer of 1, should be considered as the real catalyst. By comparing
all relative free energies in the above three catalytic cycles, we can conclude that the formation of
HOCH2O− anion groups via hydride transfer from Ni to formic acid is the rate-determining step in
the whole catalytic hydrogenation of CO2 to methanol reaction with a total free energy barrier of
34.6 kcal/mol (16→ 8). Although such a barrier is slightly too high for a reaction under mild conditions,
it is a good starting point for further design of SCS nickel pincer complexes with improved catalytic
activities for CO2 reduction and various (de)hydrogenation reactions.

Moreover, it is worth noting that the pH value of the solvent could impact the catalytic activities
and the stability of proposed SCS nickel pincer complexes. Some CO2 will form hydrogen carbonate in
water and make the solvent slightly acidic with the equilibria among dissolved CO2 gas, carbonic acid,
and hydrogen carbonate. In a weak acidic environment, the solvent free energy of proton is slightly
higher, which will lead to higher barriers for the deprotonation pathways in Cycle 1 and 2, and make
the proposed Ni complexes less likely to be deprotonated, but will not strongly impact the overall
barriers of the catalytic cycles.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/3/319/s1,
Table S1: Absolute and relative free energies of rate-determining states 4 and TS1,2 calculated by using different
density functionals, Table S2: Absolute and relative electronic energies of singlet and triplet states.
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