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Abstract: Pt electrocatalysts supported on pristine graphene nanosheets (GNS) and nitrogen-doped
graphene nanoplatelets (N-GNP) were prepared through the ethylene glycol process, and a comparison of
their CO tolerance and stability as anode materials in polymer electrolyte membrane fuel cells (PEMFCs)
with those of the conventional carbon (C)-supported Pt was made. Repetitive potential cycling in a half
cell showed that Pt/GNS catalysts have the highest stability, in terms of the highest sintering resistance
(lowest particle growth) and the lowest electrochemically active surface area loss. By tests in PEMFCs,
the Pt/N-GNP catalyst showed the highest CO tolerance, while the poisoning resistance of Pt/GNS was
lower than that of Pt/C. The higher CO tolerance of Pt/N-GNP than that of Pt/GNS was ascribed to the
presence of a defect in graphene, generated by N-doping, decreasing CO adsorption energy.
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1. Introduction

Pt/C is widely used as an anode material in H2-fueled polymer electrolyte membrane fuel cells
(PEMFCs). Since H2 is commonly obtained by hydrocarbon reforming, it follows that CO is present as
a contaminant, which is adsorbed on Pt active sites, reducing fuel cell performance [1]. To increase CO
tolerance, Pt-based electrocatalysts, especially Pt-Ru and Pt-Mo, are a hopeful solution [1–5].

A major hindrance regarding the utilization of carbon-supported platinum is the poor resistance of
carbon surface to be oxidized, resulting in Pt surface area loss, owing to both Pt coalescence and Pt way
out from the carbon support [6–8]. Moreover, carbon black has no effect on CO tolerance of Pt. Thus,
materials other than carbon black that improve CO tolerance of Pt and with higher structural stability
and higher resistance to carbon surface oxidation were investigated as Pt supports [9–12]. Tests in fuel
cells indicated that graphene nanosheets (GNS) are a suitable PEMFC catalyst support [12]. Especially,
nitrogen-doped graphene proved promising for their use in PEMFCs [13,14].

The stability of Pt supported on N-functionalized-graphene was assessed by different theoretical
works [15–19]. By density functional theory (DFT) analysis it was found that graphene N-doping improves
the binding energy of platinum to the substrate: the binding energy increased by two-fold, resulting in an
enhancement of platinum stability [15]. N-doping gives rise to the formation of localized defects near to the
Fermi level of graphene, stabilizing Pt atoms. Nitrogen atoms presence into carbon lattice gives rise to three
main kinds of nitrogen functional groups, namely, pyridinic N, pyrrolic N, and graphitic N species [16].
Among these N species, the more effective at binding Pt are pyridinic N and pyrrolic N species [17,18].
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DFT analysis showed that ripening of Pt particle supported on highly oriented pyrolytic graphite (HOPG)
with agglomerated vacancies is highly energetically favorable, while ripening Pt particles on HOPG with
pyridinic N and pyrrolic N is hindered [18]. The theoretical higher stability of N-doped graphene than
pristine graphene was confirmed by experimental results [20]: the retention of the electrochemically active
surface area (ECSA) following repetitive potential cycling of N-doped reduced graphene oxide was higher
than that of undoped reduced graphene oxide.

Moreover, theoretical works showed that nitrogen doping in graphene enhances CO tolerance
of Pt nanoparticles [21–24]. First, by DFT calculations Tang et al. [21] compared the CO oxidation
on Pt single atoms on pristine and defective graphene: unlike CO oxidation on Pt/pristine-graphene,
the Pt/defective-graphene showed high activity for CO oxidation. Defects can be introduced in graphene
by N-doping. Kim et al. [22] observed that the binding energy of Pt nanoparticles on N defects is about
three times larger than on pristine graphene. They found that the adsorption energy εad of H2 and CO
on Pt nanoparticles are not correlated, but the difference in εad between H2 and CO, ∆εad = (εCO − εH2),
is relatively well correlated to the average energy of d electrons (d-band center) of surface Pt atoms (εdc) of
Pt clusters. As low is ∆εad between CO and H2, as high is CO tolerance. Because CO has stronger electron
affinity than H2, which indicates a larger amount of electron back donation from Pt, CO adsorption is
more sensitive to the Pt d-band profile than H2 adsorption. The strong binding of Pt to N-doped graphene
lowers εdc and thus reduces ∆Ead. Regarding the role of N configurations, it was found that the activation
barrier for the O2 adsorption is much higher on both the pyridinic nitrogen site and the nearest carbon
atom than on graphitic nitrogen sites, while pyridinic nitrogen weakens the O–O bond [23]. Both the
reaction thermodynamics and kinetics suggest that CO oxidation over PtN3 would proceed through the
Langmuir–Hinshelwood mechanism [19].

Various experimental works were addressed to the evaluation of CO tolerance of graphene or
N-doped graphene-supported catalysts either directly during H2 oxidation in the presence of CO [25–27],
or indirectly during methanol oxidation (CO as an intermediate species formed during the methanol
oxidation reaction) [28–32]. Hydrogen oxidation in the presence of CO was carried out only on one type of
graphene as the catalyst support, either pristine [25,26] or N-doped [27], and the positive effect of graphene
on CO tolerance was ascribed to the formation of sub-nano Pt particles in pristine graphene-supported Pt or
to the presence of N groups in N-doped graphene-supported Pt. Conversely, the poisoning tolerance during
the methanol oxidation of Pt supported on pristine and N-doped graphene was compared in different
works [28–32]: the ratio of the forward anodic peak current (If) to the reverse anodic peak current (Ib) is
commonly used to evaluate the catalyst tolerance toward the intermediate poisoning carbonaceous species
(particularly CO but also other oxygenated species). A higher ratio of If/Ib indicates the less accumulation
of poisoning species on the Pt nanoparticles, suggesting better CO tolerance. A higher poisoning tolerance
during methanol oxidation of Pt-supported N-doped graphene than that of Pt-supported pristine graphene
was observed by Cogenly and Yurtcan [28], Liu et al. [29], and Tao et al. [30], whereas circa the same
and a lower poisoning tolerance of Pt/N-GNS than that of Pt/GNS was observed by Ma et al. [31] and
Xin et al. [32], respectively.

The majority of previous works dealing on the problem of the poisoning of the Pt/C anode catalyst in
PEMFCs by the CO presence in the fuel were addressed to the effect of the addition of a second metal to Pt
on CO tolerance [1,4]. CO desorption is facilitated by the second metal, either through the electronic effect
or the bifunctional mechanism. A modification of the electronic structure of Pt by alloying with a transition
metal reduces the CO adsorption energy and favors the H2 adsorption on Pt active sites. According to the
bifunctional mechanism, the second metal is able to activate H2O at low potentials than Pt, facilitating the
oxidation of adsorbed CO by supplying oxygen atoms at an adjacent site. In this work, instead, we evaluated
the effect of the support on CO tolerance of pure Pt. For the first time an experimental comparison of the
CO tolerance of pristine and N-doped graphene was carried out. Thus, to assess the influence of N-doping
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on the CO tolerance of Pt supported on both on pristine and N-functionalized graphene, we prepared
GNS and nitrogen-doped graphene nanoplatelets (N-GNPs)-supported Pt catalysts, and compared the
performance of PEMFCs with these anode catalysts in the presence and in the absence of CO with each
other and with that of a PEMFC with conventional Pt/C.

2. Results

2.1. Physical Characterization

The EDX composition of the Pt/GNS, Pt/N-GNP, and Pt/C electrocatalysts is shown in Table 1: the metal
content of all the catalysts was in a very good agreement with the nominal composition (20 wt % Pt).
To evaluate the Pt content and the thermal stability, a thermogravimetric analysis (TGA) was carried out on
all the catalysts. TGA curves of Pt/GNS, Pt/N-GNP, and Pt/C catalysts are shown in Figure 1. As reported
by Avcioglu et al. [33] for Pt/C, these curves can be separated into three regions with increasing temperature.
The first region is related to the removal of water and volatile species. The second region, where a
remarkable weigh loss takes place, is related to Pt catalyzed carbon oxidation. The third region, doesn’t
present weight loss, and the constant weight represents the amount of Pt. In the absence of platinum,
carbon black and graphene have similar thermal stability [34]. In Pt presence the carbon oxidation occurs
at lower temperatures.

Table 1. Pt mass by Dispersive Energy (EDX) and thermogravimetric analysis (TGA) measurements,
Pt lattice parameter and crystallite size by XRD analysis, and Pt particle size by Transmission Electronic
Microscopy (TEM) micrographs of Pt/C, Pt/GNS, and Pt/N-GNP(dn: number averaged particle size and dG:
average Gaussian Pt particle size).

Catalyst Pt Mass
(EDX)/%

Pt Mass
(TGA)/%

Lattice
Parameter/nm

Crystallite Size
(XRD)/nm

Particle Size (TEM)/nm
As-Prepared Cycled

dn dG dn dG

Pt/C 20.0 17.5 0.3888 2.2 1.9 ± 0.2 1.9 3.6 ± 1.2 2.8
Pt/GNS 18.6 19.4 0.3913 1.9 2.3 ± 0.4 2.0 3.4 ± 1.7 3.3
Pt/N-GNP 21.6 23.1 0.3916 3.1 2.3 ± 0.2 2.3 4.0 ± 1.1 3.9
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Figure 1. Thermogravimetric analyses of Pt/C, Pt/GNS and Pt/N-GNP catalysts. The measurements were
performed in air atmosphere up to 1000 ◦C with a heating ramp of 10 ◦C min−1. Abbreviations: GNS,
graphene nanosheets; GNP, graphene nanoplatelets.
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For Pt/GNs, the carbon oxidation occurred between 555 and 840 ◦C, at higher temperatures than
Pt/C (between 370 and 485 ◦C), in agreement with the results of Chiang et al. [34]: the deposition of Pt
nanoparticles on GNS slightly decreased its resistance to oxidation, but the deposition of Pt nanoparticles
on the Vulcan carbon significantly decreased its resistance to oxidation. The functionalization of graphene
decreases its thermal stability, thus the carbon oxidation in the presence of Pt lies between that of carbon
black and that of pristine graphene. As can be seen in Table 1, the Pt content in the catalysts by TGA
measurements was in an acceptable agreement with that obtained by EDX analysis.

The XRD patterns of the the Pt/GNS, Pt/N-GNP, and Pt/C electrocatalysts are shown in Figure 2.
All the patterns show the characteristic peaks of the face centered cubic (fcc) crystalline Pt. In addition,
the large sharp peak at 26◦ and the smaller peaks at 2θ values around. 44.5◦, 54.5◦, 77◦, and 83.5◦ in
Pt/GNS and Pt/N-GNP are related to the (002), (10), (004), (11), and (006) reflexions of nanographene [35,36].
The first broad peak of catalysts at a 2θ value of around 25◦ is ascribed to carbon support. The values of the
lattice parameter (a) are reported in Table 1. The lattice parameter of Pt/C was lower than that of Pt/GNS,
Pt/N-GNP as it decreases nonlinearly with decreasing the particle size [37]. The average crystallite sizes of
the Pt/GNS, Pt/N-GNP, and Pt/C electrocatalysts were evaluated using Scherrer’s equation (see Table 1).
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Figure 2. The X-ray diffraction technique (XRD) patterns of Pt/C, Pt/GNS, and Pt/N-GNP catalysts.

To determine the oxidation states of Pt, XPS (X-ray Photon Spectroscopy) analysis was carried out
on the Pt/GNS, Pt/N-GNP, and Pt/C electrocatalysts. The XPS patterns of the Pt 4f region are shown in
Figure 3a. The Pt 4f XPS signals have two peaks corresponding to the 4f 5/2 and 4f 7/2 states, which have been
deconvoluted into three different Pt oxidation states (Pt0, Pt2+, and Pt4+ oxidation states), the percentage
of Pt oxidation states in the different catalysts is shown in Table 2. The amount of platinum metal (Pt0)
in graphene and N-doped graphene-supported Pt was higher than that in carbon black-supported Pt.
Moreover, XPS measurements were carried out to analyze the N configurations in nitrogen-doped graphene.
The XPS pattern of the N 1s region of the Pt/N-GNP electrocatalyst is shown in Figure 3b.

The presence of nitrogen atoms into carbon lattice gives rise to three main kinds of nitrogen
functional groups, that are pyridinic N, pyrrolic N, and graphitic (quaternary) N species [16]. The N1s
spectrum can be de-convoluted to three individual peaks, which represent three nitrogen configurations
within carbon structures, Figure 3. The binding energy centered at ca. 398.3 eV, 399.8 eV, and 401.8 eV can
be assigned to the pyridinic N, pyrrolic N, and graphitic N, respectively. The relative amount of the N
configurations is reported in Table 2. The N/C value by XPS measurements was 0.007.
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Figure 3. XPS (X-ray Photon Spectroscopy) spectra of (a) Pt 4f of Pt/C, Pt/GNS, and Pt/N-GNP catalysts and
(b) Pt/N-GNP N 1s.

Table 2. Amount of Pt 4f and N 1s oxidation states (at %) in Pt/C, Pt/GNS, and Pt/N-GNP by XPS analysis.

Catalyst
Pt 4f7/2 N 1s

Pt0 Pt2+ Pt4+ Pyridinic Pyrrolic Graphitic

Pt/C 49.21 34.80 15.99 - - -
Pt/GNS 63.96 26.14 9.89 - - -
Pt/N-GNP 60.79 30.78 8.43 31.0 35.5 33.5

Figure 4a–c reports TEM images and the histograms of the particle size distribution of the as-prepared
Pt/C, Pt/GNS, and Pt/N-GNP electrocatalysts. As shown in Figure 4, Pt particles are homogeneously placed
on the support, with small agglomeration on Pt/GNS and Pt/N-GN. The histograms of Pt/C and Pt/N-GN
particle size are well represented by Gaussian fitting. Conversely, the particle size histogram of the Pt/GNS
catalyst showed a slightly asymmetrical distribution, with a tail in the larger particle size region. As shown
in Figure 4d–f, following RPC (Repetitive potential cycling) an increase in the particle size and a wider
particle size distribution can be observed for all the catalysts. After cycling, the particle size histograms of
Pt/GNS and Pt/N-GN are well represented by a Gaussian fitting, while the particle size histogram of the
Pt/C goes from a symmetrical to an asymmetrical distribution, with a tail in the larger particle size region.
The values of the average Gaussian Pt particle size (dG) of Pt/GNS, Pt/N-GNP, and Pt/C are reported in
Table 1. The number averaged particle size (dn) have been calculated using Equation (1):
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dn = Σknkdk/Σknk (1)

where nk is the frequency of occurrence of particles with size dk. The values of dn are reported in Table 1.
The Pt/GNS and Pt/N-GNP present the same value of dn. The (dn

RPC
− dn

0)/dn
0 ratio, where dn

RPC

and dn
0 are the particle size after and before cycling, respectively, indicates the sintering resistance of

Pt particles, being the sintering resistance as higher as the lower value of the (dn
RPC
− dn

0)/dn
0 ratio.

For Pt/GNS, the value of the (dn
RPC
− dn

0)/dn
0 ratio (0.48) was the lowest, followed by that of Pt/N-GNP

(0.74) and that of Pt/C (0.89). This result does not agree with the theoretical calculations previously
reported, reporting higher stability of Pt/N-GNS than Pt/GNS. To support this result there is a work of
Naumov et al. [38], which evaluated the stability of nitrogen-doped graphene flakes with theoretical and
experimental techniques. They supposed that nitrogen dopants in the graphene sheet interact with H+ at
the electrode–electrolyte interface, leading to NH3 scission with the formation of vacancies. N loss and
vacancy formation make Pt particles prone to ripening. This could explain the lower structural stability of
Pt/N-GNP than that of Pt/GNS. Moreover, the low stability of N-GNP could be due to the presence of a too
high nitrogen content [39]. The difference between dG and dn is an index of the distribution asymmetry.
The asymmetry increases with increasing the AG = (dn − dG)/dn value from 0 to 1. The low value of AG

for Pt/C indicates a uniform particle size distribution. After RPC, the Pt/C catalyst showed a AG value
(0.22) remarkably higher than that Pt/GNS (0.029) and Pt/N-GNP (0.025). Summarizing, the Pt/C catalyst
showed a lower structural stability than Pt/GNS and Pt/N-GNP, having a lower sintering resistance and a
higher asymmetry than graphene-supported catalysts.
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2.2. Electrochemical Characterization

CO stripping measurements were carried out to evaluate the catalytic activity for CO oxidation and to
determine the electrochemically active surface area (ECSA). The CO oxidation curves of as-prepared and
cycled Pt/C, Pt/GNS, and Pt/N-GNP are shown in Figure 5a–c, respectively. The shape of the CO stripping
curves before RPC of Pt/GNS and Pt/N-GNP was different than that of Pt/C: the CO stripping curve of Pt/C
presented only one peak with a value of the onset potential of 0.69 V vs. RHE and a maximum at ca. 0.76 V
vs. RHE, whereas those of Pt/GNS and Pt/N-GNP were characterized by the overlapping of two peaks
with the onset potential at 0.58 and 0.35 V vs. RHE, respectively, and two maxima at 0.67 and 0.70 V vs.
RHE for Pt/GNS and 0.65 V and 0.68 V vs. RHE for Pt/N-GNP. The different CO peak potential between
carbon black-supported Pt and graphene-supported Pt/C has to be ascribed to the different CO binding
energy. The change of the electronic structure of some Pt atoms near to N atoms account for multiple CO
oxidation peaks. These results indicate a higher ability for CO oxidation of Pt/N-GNP than that of Pt/C.
After RPC, for Pt/C a minor peak appeared at lower potential while the main peak shifted to slightly higher
potential with reduced intensity, whereas the CO stripping curves of Pt/GNS and Pt/N-GNP didn’t change
the shape, but reduced their intensity. The electrochemically active surface areas (ECSAs) of Pt/C, Pt/GNS,
and Pt/N-GNP were evaluated from the COad oxidation charge (see Table 3).Catalysts 2020, 10, x FOR PEER REVIEW 8 of 14 

 

 
Figure 5. CO oxidation on as-prepared and cycled Pt/C (a), Pt/GNS (b), and Pt/N-GNP (c). 

The lower ECSA of Pt/GNS and Pt/N-GNP than that of Pt/C could be partially ascribed to their 
slightly larger particle size, but perhaps should be attributed to Pt particle agglomeration, in 
agreement with TEM analysis. The same result, that is, a similar particle size but a lower ECSA for 
graphene-based-supported Pt than carbon black-supported Pt, was observed by Arteaga et al. [40], 
and was ascribed to Pt agglomeration. After ageing test, a decrease of the ECSA was observed, owing 
to particle growth and Pt loss. The decrease of the ECSA, however, was lower than that expected on 
the basis of the degree of particle growth, likely due to a counteracting cleaning effect by RPC. The 
ECSA loss of Pt/GNS and Pt/N-GNP following RPC was lower than that of Pt/C (Figure 5 and Table 
3), indicating a higher stability of graphene and N-graphene-supported catalysts. 

Table 3. Electrochemically active surface area (ECSA) values ECSA loss after RPC of Pt/C, Pt/GNS, 
and Pt//N-GNP. 

Catalyst 
ECSA before RPC 

cm2 g−1 
ECSA after RPC 

cm2 g−1 
ECSA Loss 

% 
Pt/C 66.0 61.9 6.2 

Pt/GNS 32.9 32.2 2.2 
Pt//N-GNP 25.4 24.9 1.9 

Polarization measurements of PEMFCs with H2 and H2 containing 100 ppm CO, with Pt/C, 
Pt/GNS and Pt/N-GNP were carried out, as shown in Figure 6a. in the presence of CO the 
performance of all the cells decreased, owing to CO adsorption on Pt sites, hindering H2 adsorption. 
The PEMFC performance, without CO, depends little on the type of support for current densities up 
to 0.5 mA cm−2, in the order Pt/C > Pt/N-GNP > Pt/GNS. At higher current densities a lower 
performance of the cells with graphene and N-graphene-supported catalysts is observed, due to the 
lower ECSA. The higher performance of the cell with Pt/N-GNP than that with Pt/GNS both at low 
and high current densities is due to a positive effect of nitrogen presence on the hydrogen oxidation, 
as reported by Chadran et al. [41]. In the presence of CO, instead, the cell with Pt/N-GNP showed a 
better performance than that of the cells with Pt/C and Pt/GNS, resulting from the superior CO 
tolerance of the N-GNP support. In the absence of graphene functionalization and subnano Pt 
particles, the CO tolerance of graphene-supported Pt was lower than that of Pt/C. The order of the 
performance at 0.5 mA cm-2 was Pt/N-GNP > Pt/C > Pt/GNS (Figure 7). 

Figure 5. CO oxidation on as-prepared and cycled Pt/C (a), Pt/GNS (b), and Pt/N-GNP (c).

Table 3. Electrochemically active surface area (ECSA) values ECSA loss after RPC of Pt/C, Pt/GNS, and
Pt//N-GNP.

Catalyst ECSA before RPC
cm2 g−1

ECSA after RPC
cm2 g−1

ECSA Loss
%

Pt/C 66.0 61.9 6.2

Pt/GNS 32.9 32.2 2.2

Pt//N-GNP 25.4 24.9 1.9

The lower ECSA of Pt/GNS and Pt/N-GNP than that of Pt/C could be partially ascribed to
their slightly larger particle size, but perhaps should be attributed to Pt particle agglomeration,
in agreement with TEM analysis. The same result, that is, a similar particle size but a lower ECSA
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for graphene-based-supported Pt than carbon black-supported Pt, was observed by Arteaga et al. [40],
and was ascribed to Pt agglomeration. After ageing test, a decrease of the ECSA was observed, owing to
particle growth and Pt loss. The decrease of the ECSA, however, was lower than that expected on the basis
of the degree of particle growth, likely due to a counteracting cleaning effect by RPC. The ECSA loss of
Pt/GNS and Pt/N-GNP following RPC was lower than that of Pt/C (Figure 5 and Table 3), indicating a
higher stability of graphene and N-graphene-supported catalysts.

Polarization measurements of PEMFCs with H2 and H2 containing 100 ppm CO, with Pt/C, Pt/GNS
and Pt/N-GNP were carried out, as shown in Figure 6a. in the presence of CO the performance of all the
cells decreased, owing to CO adsorption on Pt sites, hindering H2 adsorption. The PEMFC performance,
without CO, depends little on the type of support for current densities up to 0.5 mA cm−2, in the order
Pt/C > Pt/N-GNP > Pt/GNS. At higher current densities a lower performance of the cells with graphene
and N-graphene-supported catalysts is observed, due to the lower ECSA. The higher performance of the
cell with Pt/N-GNP than that with Pt/GNS both at low and high current densities is due to a positive
effect of nitrogen presence on the hydrogen oxidation, as reported by Chadran et al. [41]. In the presence
of CO, instead, the cell with Pt/N-GNP showed a better performance than that of the cells with Pt/C and
Pt/GNS, resulting from the superior CO tolerance of the N-GNP support. In the absence of graphene
functionalization and subnano Pt particles, the CO tolerance of graphene-supported Pt was lower than
that of Pt/C. The order of the performance at 0.5 mA cm−2 was Pt/N-GNP > Pt/C > Pt/GNS (Figure 7).Catalysts 2020, 10, x FOR PEER REVIEW 9 of 14 
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This experimental result confirms the theoretical studies, indicating that, unlike CO oxidation on
pristine graphene-supported Pt, nitrogen doping in graphene improves CO tolerance of Pt nanoparticles.
The hydrogen reactivity can be evaluated by the relative occupation ratio R, that is the ratio of adsorption
sites occupied by H2 to those occupied by CO [22]:

R = (Σ[e(µH
2
− εH

2
)/kT/(1 + e(µH

2
− εH

2
)/kT + e(µCO − εCO)/kT)])/N (2)

where µH2 and µCO are the chemical potentials and εH2 and εCO are the adsorption energy of hydrogen
and carbon monoxide, and N is the number of available adsorption sites. The CO tolerance of Pt
nanoparticles increases with increasing R. The higher CO tolerance of Pt/N-GNP than that of Pt/GNS can
be explained by the presence of a defect in graphene generated by N-doping.

Defects in N-doped graphene remarkably enhance Pt binding strength (Eb) and lower the average
energy of Pt d electrons (d-band center) (εdc) compared to pristine graphene [22]. As previously reported,
∆εad = (εCO− εH2) decreases with increasing d-band center of surface Pt atoms (εdc). Due to CO adsorption
being more sensitive to the Pt d-band profile than H2 adsorption, a decrease of ∆εad is mainly due to the
decrease of εCO. A decrease of εCO results in an increase of R (see Equation (2)) and, as a consequence an
increase of CO tolerance. Moreover, by EIS measurements it was reported that the incorporated nitrogen
atoms induced changes at the Fermi level by opening the band gap of graphene and enhancing the charge
transfer, and as a consequence lowering the charge-transfer resistance [42]. This could contribute to the
improvement of CO tolerance.

To assess the electrochemical stability polarization measurements of PEMFCs, fed with H2 and
H2/CO, with aged Pt/C, Pt/GNS, and Pt/N-GNP were carried out. In the absence of CO, as for as-prepared
catalysts, the performance of PEMFC with Pt/C was higher than that of Pt/GNS and Pt/N-GNS (Figure 6b).
Unlike what was observed before RPC, up to 0.9 A cm−2 the performance of the cell with Pt/GNS was higher
than that with Pt/N-GNP, likely due to the higher structural stability of pristine graphene. For current
density > 0.9 A cm−2, instead, the positive effect of nitrogen presence on the hydrogen oxidation is
prevailing, and the performance of the cell with Pt/N-GNP was higher than that with Pt/GNS. As for
as-prepared catalysts, for cycled catalysts, in the presence of CO the performance of the cells with aged
catalysts was Pt/N-GNP > Pt/C > Pt/GNS (Figures 6b and 7). In the presence of CO, compared to the
cell with as-prepared catalysts, after ageing a decrease of the performance of the cell with Pt/C as anode
catalyst was observed, due to the ECSA decrease by Pt particle growth, whereas the cell with for Pt/GNS
and Pt/N-GNP as anode catalyst presented a substantial stability, due to a lower ECSA loss, and, in the
case of Pt/N-GNP, to the weaker adsorption of CO on the larger Pt particles [43,44], reducing the poisoning
of the catalyst.

The dependence of the anode overpotential η
(
η = EH2 − EH2/CO

)
on the current density for Pt/C,

Pt/GNS, and Pt/N-GNP electrocatalysts before and after RPC is shown in Figure 8. Both before and after
RPC, for current densities > 0.15 A cm−2, the overpotential was in the order Pt/N-GNP < Pt/C < Pt/GNS.
Following ageing, a decrease of the overpotential for all the catalysts, in particular for Pt/N-GNP, which
presents the largest Pt particle size, can be observed in Figure 8, due to the weaker adsorption of CO on the
larger Pt particles [43,44], reducing the poisoning of the catalyst. At low current density (<0.1 A cm−2)
following ageing a decrease of the overpotential of the PEMFC with Pt/C as the anode catalyst can be
observed in Figure 8, while the effect of RPC on the overpotential of the cells with Pt/GNS and Pt/N-GNP
was negligible. Conversely for current density > 0.15 A cm−2, after RPC a decrease of the overpotential
of the PEMFCs with Pt/GNS and, in particular, Pt/N-GNP as the anode catalysts were found, while the
overpotential of the cell with Pt/C did not change.
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3. Materials and Methods

3.1. Catalyst Preparation

Graphene nanosheet (GNS) and nitrogen-doped graphene nanoplatelet (N-GNP) (both supplied by
Graphene Supermarket©, Calverton, NY, USA)-supported platinum catalysts (20 wt % Pt) were prepared
by the ethylene glycol (EG) method in alkaline medium (NaOH 0.1 mol L−1). A H2PtCl6·H2O at 5%
(Aldrich®, San Luis, MO, USA) solution was added and mixed with the carbon supports (Vulcan, GNS
or N-GNP). Posteriorly this mixture was heated at 150 ◦C, stirred, and was kept in argon atmosphere under
reflux for 6 h. Afterward, the catalyst was neutralized with HCl 1.0 mol L−1, dispersed into mili-Q® water,
and centrifuged at 5000 rpm for 10 min, this process was repeated four times to assure the cleaning of the
supported nanoparticles. Finally, the catalysts were filtered and after was kept for 1 h under hydrogen
atmosphere at 200 ◦C. Commercial carbon-supported platinum (Pt/C, 20 wt %) by Etek was used as anode
catalyst (for comparison with Pt/GNS and Pt/N-GNP) and as cathode catalyst for all experiments.

3.2. Physical Characterization

The technique of X-ray Spectroscopy by Dispersive Energy (EDX) was used to obtain the mass
ratio between carbon and Pt. The equipment used was a spectrometer (Zeiss-Leica® 440 Electron
Microscopy Inc., Thornwood, NY, USA) with a SiLi detector. Thermogravimetric analyzes (TGA) were
performed on the Mettler Toledo apparatus (Mettler Toledo, Columbus, OH, USA). The conditions
used were: temperature range: 30–1000 ◦C, using synthetic air as a gas at a heating rate of 10 ◦C min−1.
The X-ray diffraction technique (XRD) was used to determine the structural characteristics of Pt-supported
catalysts and to estimate the average sizes of the crystallites. The radiation used was CuKα (λ = 0.15406 nm),
generated at 40 kV and 30 mA, in a diffractometer (Rigaku®—ULTIMA IV, Akishima, Tokyo, Japan).
The scans were obtained at 1◦ min−1 for 2θ between 10◦ and 100◦. Using the Transmission Electronic
Microscopy (TEM) technique, the average particle size, and distribution for each synthesized catalyst
was determined, using a JEOL 2010 microscope (Akishima, Tokyo, Japan) with an energy of 200 keV
and a filament of LaB6. X-ray Photon Spectroscopy (XPS, Thermo Scientific K- Alpha spectrometer ®,
Thermo Fischer Scientific, Waltham, MA, USA) using an incident photon energy of 1840 eV (Eph) from
an InSb double crystal monochromator (111). The hemispheric electron analyzer was programmed to
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pass electrons at an energy of 20 eV, with an energy pass of 0.2 eV and an acquisition time of 200 ms.
The spectrum of each catalyst was obtained according to the elements that compose it.

3.3. Electrochemical Measurements

In order to test their electrochemical behavior, Pt/GNS, PT/N-GNS, and Pt/C were used as anode
catalysts and Pt/C (20 wt %) at the cathode, both with 0.4 mg Pt cm−2, in a single PEMFC, as
previously detailed in [27]. To perform the polarization curves, Fuel Cell Technologies work station
equipment was utilized in the unit cell configuration (cell temperature: 85 ◦C) with H2 and H2/CO
in the anode (100 mL min−1, 2 atm and 100 ◦C), and O2 in the cathode (150 mL min−1, 1.70 atm and
90 ◦C). Before polarization measurements, the potential applied for 2 h was 0.7 V and 0.8 V for H2 and
H2/CO respectively. The half-cell configuration was used for the Cyclic voltammetry (CV), CO stripping
(SCO), and repetitive potential cyclic (RPC), and the work electrode was the anode with Ar and/or CO
(for the SCO), in this case 20 min of CO followed by 40 min of Ar, the cathode was provided with
H2 employed as a reference electrode (RHE). The potential range was 0.075 to 0.9 V for CO stripping
measurements. The potential range was 0.075 to 1.20 V at 20 mV s−1 for CV tests and 0.075 to 0.70 V at
50 mV s−1 for RPC used as the ageing test, applying 5000 cycles. The protocols used for CV, SCO, and RPC
were detailed in Supplementary Materials.

4. Conclusions

The structural stability and the activity for hydrogen oxidation in the absence and in the presence of
CO of pristine and nitrogen functionalized graphene-supported Pt electrocatalyst was utilized as anodes
in PEMFCs. In the absence of N-functionalization, pristine graphene-supported Pt presents a higher
structural stability but a lower CO tolerance than that of the carbon black-supported Pt. N-functionalization
of graphene decreases its structural stability but remarkably improves its CO tolerance. The higher CO
tolerance of Pt/N-GNP than that of Pt/GNS was ascribed to the presence of a defect in graphene,
generated by N-doping, decreasing CO adsorption energy. The results of this experimental work, showing
that the CO tolerance of graphene is strictly related to its functionalization, confirm the theoretical studies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/6/597/s1,
The protocols used for CV, SCO, and RPC.
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