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Abstract: The conversion of CH4 and CO2 to syngas using low-cost nickel catalysts has attracted
considerable interest in the clean energy and environment field. Nickel nanoparticles catalysts suffer
from serious deactivation due mainly to carbon deposition. Here, we report a facile synthesis of Ni
single-atom and nanoparticle catalysts dispersed on hydroxyapatite (HAP) support using the strong
electrostatic adsorption (SEA) method. Ni single-atom catalysts exhibit excellent resistance to carbon
deposition and high atom efficiency with the highest reaction rate of 1186.2 and 816.5 mol.gNi

−1.h−1

for CO2 and CH4, respectively. Although Ni single-atom catalysts aggregate quickly to large
particles, the polyvinylpyrrolidone (PVP)-assisted synthesis exhibited a significant improvement of
Ni single-atom stability. Characterizations of spent catalysts revealed that carbon deposition is more
favorable over nickel nanoparticles. Interestingly, it was found that, separately, CH4 decomposition
on nickel nanoparticle catalysts and subsequent gasification of deposit carbon with CO2 resulted in
CO generation, which indicates that carbon is reacting as an intermediate species during reaction.
Accordingly, the approach used in this work for the design and control of Ni single-atom and
nanoparticles-based catalysts, for dry reforming of methane (DRM), paves the way towards the
development of stable noble metals-free catalysts.

Keywords: nickel single atom catalysts; atoms efficiency; nanoparticles; dry reforming;
hydroxyapatite

1. Introduction

Dry reforming of methane (DRM) to generate synthesis gas is gaining more and more
attention as a potential renewable system in the energy sector. The reaction converts the two
main greenhouse gases [1–3] into a mixture of hydrogen and carbon monoxide with a low H2/CO
ratio suitable for methanol and Fischer–Tropsch synthesis [4,5]. The reaction is strongly endothermic
(∆H298K = + 247 kJ/mol) and requires a high reaction temperature (>700 ◦C) in the presence of supported
catalysts to activate CH4 and CO2 [6]. DRM has been reported extensively over numerous catalysts
based on noble metals, such as, Ir, Rh, Ru, Pt, and Pd [7,8], and transition metals, especially Co and
Ni [9–13]. Although noble metal-based catalysts are relatively more resistant to the undesirable coking
compared to non-noble metal catalysts [14], a large-scale commercialization is limited by their high
cost and limited availability. On the contrary, transition metal catalysts are much cheaper and more
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available but tend to deactivate more quickly than noble metals due to carbon deposition (coke).
The two reactions involved in carbon deposition are: CH4 decomposition (CH4 ↔ C + 2H2) and
Boudouard reaction (2 CO↔ CO2 + C) [15,16].

It has been reported that the size of supported nickel particles is a critical parameter for the
DRM performance in terms of intrinsic activity, stability, and resistance to carbon deposition [17–19].
The use of a very small particle size or, more interestingly, atomically dispersed active phase, is highly
desired to maximize the atom efficiency and avoid the accumulation of carbon [20–22]. However, small
nanoparticles tend to agglomerate rapidly to larger particles at high temperature, causing catalyst
deactivation [23]. Hence, efforts were focused on the design of nickel catalysts with high resistance to
sintering phenomena. Recently, the synergy of single-atom sites Ni1 and Ru1 anchored on the CeO2

surface of Ce0.95Ni0.025Ru0.025O2 was evidenced by Tang et al. The authors showed that atoms remain
singly dispersed and in a cationic state during catalysis up to 600 ◦C [24].

Moreover, the preparation of atomically dispersed metals catalysts has recently emerged as a
promising method over various supports [22,25–30]. Thus, the required proprieties of the catalytic
support could be summarized as follows: (i) high affinity of metals with surface groups of the support
materials, (ii) high density and dispersion of metal, and (iii) strong metal support interaction (SMSI).

The promising behavior of hydroxyapatite (Ca10(PO4)6(OH)2: HAP) supported Ni catalysts in the
DRM reaction was first demonstrated by Boukha et al. [31]. Moreover, SMSI between Au nanoparticles
and HAP was evidenced [32]. According to many published papers, varying the Ca/P molar ratio leads
to the formation of additional phases and induces significant changes in the textural and acid-base
properties [33]. The presence of both cations (Ca2+ and Ca1+) and anions (PO4

3− and/or OH−) can also
be considered as important sites for anchoring and stabilizing metals single atoms [34,35].

Herein, we report a comparative study of nickel single-atom and nanoparticles deposited on
hydroxyapatite support (Ni/HAP) for DRM reaction. Two different methods of synthesis were used,
namely a classical one named strong electrostatic adsorption (SEA) and a second one using the
surfactant polyvinyl pyrrolidone (PVP) possessing hydrophilic (pyrrolidone) and hydrophobic groups
(polyvinyl backbone). The catalysts were characterized before and after reaction using numerous
advanced techniques.

2. Experimental Section

2.1. Catalysts Preparation

2.1.1. Synthesis of Hydroxyapatite (HAP) Support

A chemical co-precipitation method using ammonium dihydrogen phosphate ((NH4)2 HPO4)
and calcium nitrates (Ca(NO3)2, 4H2O) was applied to synthesize stoichiometric hydroxyapatite
(Ca/P = 1.67) [32]. Thus, the proper amounts of both salts are dissolved separately in 80 mL of
deionized water and the pH was adjusted to 10.5 by the addition of ammonia 25% solution. Then,
ammonium dihydrogen phosphate solution was added (1 mL.min−1) dropwise to the calcium nitrates.
The resultant milky suspension was stirred at 90 ◦C with a speed of 600 rpm for 2 h, and the precipitate
was rinsed with deionized water several times before being filtered prior to drying at 80 ◦C overnight.
The dried sample was then calcined at 400 ◦C for 4 h in static air and the resulting powder was sized to
50–100 µm.

2.1.2. Deposition of Ni on HAP

Small loading (0.5 wt%) and high loading (5 and 10 wt%) of Ni were deposited on hydroxyapatite
support to obtain single-atom and nanoparticle catalysts, respectively, by a simple method named
strong electrostatic adsorption (SEA) at room temperature [36]. Typically, an adequate amount of nickel
nitrates (Ni(NO3)2, 6H2O) was dissolved in deionized water (100 mL) followed by the adjustment of
pH to 10 using ammonia solution. Afterwards, 1 g of HAP was added to the prepared solution and
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stirred for 24 h at room temperature. For PVP-stabilized nickel single-atoms, an adequate amount of
nickel and PVP (50 mg) were dissolved separately in the deionized water and added together to the
support (HAP), the obtained precipitate was filtered, rinsed carefully with deionized water, and finally
dried at 80 ◦C overnight before being calcined at 500 ◦C for 4 h. The obtained samples were donated as
xNi/HAP where x represents the weight loading of Ni. For instance, the 0.5 wt% Ni single-atom catalyst
is denoted as 0.5Ni1/HAP-SAC while 5 and 10wt% Ni/HAP are named as 5Ni/HAP and 10Ni/HAP,
respectively, and the 0.5Ni1/HAP-SAC catalyst assisted-PVP named as 0.5Ni1/HAP-SAC-PVP.

2.2. Catalysts Characterization

2.2.1. Inductively Coupled Plasma Spectrometry-Atomic Emission Spectrometry (ICP-AES)

Ni content in all prepared samples was determined by inductively coupled plasma
spectrometry-atomic emission spectrometry (ICP-AES) with an IRIS Intrepid II XSP instrument
(Thermo Electron Corporation).

2.2.2. Specific Surface Areas (SSA)

Textural properties were measured by N2 adsorption-desorption isotherms recorded at 77 K using
a Micromeritics ASAP 2460-4 apparatus. Specific surface areas were determined from the adsorption
branch using the Brunauer–Emmett–Teller method, whereas pore diameters determined from the
desorption branch by using the BJH method.

2.2.3. X-ray Diffraction (XRD)

XRD patterns were recorded with a PW3040/60 X’Pert PRO PANalytical diffractometer with Cu
Kα radiation (0.15432 nm) operating at 40 kV and 40 mA. Patterns were recorded in the range of
2θ = 10–80◦.

2.2.4. Temperature-Programmed Reduction (H2-TPR)

Temperature-programmed reduction (H2-TPR) was performed using Micromeritics AutoChem II
2920 instrument. Subsequently, a quantity of 150 mg of each sample was placed in a quartz reactor and
pretreated in flowing Ar (30 mL min−1) at 573 K for 30 min and then decreased to room temperature.
After purge for 30 min, the temperature was increased to 1073 K with a ramp of 10 ◦C min−1 under a
flow of 10% H2/Ar (50 mL min−1) and H2 consumption detected by TCD.

2.2.5. Scanning Transmission Electron Microscopy (STEM)

High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM)
examination was performed on JEOL JEM-2100F instrument while aberration-corrected HAADF-STEM
was performed on a JEOL JEM-ARM200F apparatus equipped with a CEOS probe corrector, which
provides a resolution of 0.08 nm. Before measurement the samples were ultrasonically dispersed in
ethanol and dropped onto carbon films.

2.2.6. X-ray Photoelectron Spectroscopy (XPS)

Chemical state of Ni was examined by XPS which was performed on a Thermo Fisher ESCALAB
250Xi instrument equipped with a monochromated AlKα source (hν = 1486.6 eV, 15 kV and 10.8 mA).

2.2.7. Raman Spectroscopy

Raman spectra were collected with a LabRam HR800 confocal microprobe Raman instrument
(HORIBA Jobin Yvon) with a laser power of ca. 0.1 mW and laser excitation at 532 nm (He–Ne laser).
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2.2.8. X-ray Absorption Fine Structure (XAFS)

The X-ray absorption exanimation was performed in National Synchrotron Radiation Research
Center at the bending magnet beamline BL12B of SPring-8 (8 GeV, 100 mA), where the X-ray
monochromatic beam was focused with the beam size of 0.5 mm in the vertical direction and 2.0 mm
in the horizontal direction around sample position. The crystal structures of Ni foil and NiO are taken
from Materials Project (https://materialsproject.org).

2.3. Catalytic Test

The catalytic performance was evaluated at atmospheric pressure using a fixed bed quartz
reactor with equimolar amounts of CH4 and CO2 (CH4:CO2: He = 1:1:3) with a total flow rate of
50 mL/min at 750 ◦C. The catalyst amounts of 50, 6.16, and 3.65 mg of catalysts for 0.5Ni1/HAP-SAC,
5Ni/HAP-NP, and 10Ni/HAP-NP, respectively, were used to maintain the same metal amount (see
Figure S1), generating a metallic gas hourly space velocity (MGHSV) of 12 × 106 mL gNi

−1 h−1. Before
each catalytic test, the samples were in situ reduced at 500 ◦C for 60 min under 10 vol% H2/He flow,
and then purged for 30 min with pure He. The reactor temperature was recorded with a thermocouple
inserted into the catalytic bed of the reactor. The reactants and products were analyzed by Agilent
6890 gas chromatograph (GC) equipped with a thermal conductivity detector and a TDX-01 column
connected online with the setup.

For the separately decomposition of CH4, the experiments were carried out in the same setup
using the similar amount of catalyst (50 mg) by increasing temperature (10 ◦C.min−1) from room
temperature up to 800 ◦C under pure CH4 flow. After cooling down to room temperature under
helium gas, 10 mL min−1 of pure CO2 was employed to gasify the previously deposited carbon to CO.
The temperature ramped from room temperature to 800 ◦C with a rate of 25 ◦C.min−1. The reactants
and products were analyzed online by using a mass spectrometer. The CO2 and CH4 conversions were
determined according to the following formula:

XCH4 =
FCH4,in − FCH4,out

FCH4,in
× 100

XCO2 =
FCO2,in − FCO2,out

FCO2,in
× 100

where Fi,in and Fi,out are the inlet and outlet gas flow rates of i gas, respectively. Methane and CO2

reaction rate (mol.gNi
−1.h−1) were calculated from:

Rate CH4 =
(Ft ∗

[
CH4] ∗XCH4

)
(Weight of catalyst ×wNi × 22.4× 103)

× 60

Rate CO2 =
(Ft ∗

[
CO2] ∗XCO2

)
(Weight of catalyst ×wNi × 22.4× 103)

× 60

where Ft represents the total flow (mL.min−1) and [CO2], [CH4], XCH4 , and XCO2 denote the
concentrations (vol%) and conversions of CO2 and CH4, respectively, whereas wNi is the nickel
metal loading (wt%). Turnover frequencies (TOF s−1) defined as the number of CH4 or CO2 molecule
converted per catalytic site per second, this parameter is determined based on the following equation:

TOF =
(Ft ∗

[
CH4] ∗XCH4

)
Weight of catalyst × WNi ×

Dispersion
58.7 × 22.4× 103 × 60

https://materialsproject.org
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3. Results and Discussions

3.1. Textural Proprieties

Supplementary Figure S2 shows the N2 physical adsorption–desorption isothermal curve of
hydroxyapatite support (HAP) after 4 h of pretreatment under static air at 400 ◦C. The curve exhibits
the hysteresis loop of type-IV isotherm curves [37]. The average pore diameter was found to be 14.8 nm,
the surface area is 109 m2/g, and the pore volume is 0.46 cm2/g (micropore volume = 0.006 cm2/g).

3.2. Structural Properties

XRD patterns of the as-prepared HAP support and xNi/HAP catalysts with different Ni loading
(x = 0.5, 5 and 10 wt%) are displayed in Figure 1a. The diffraction patterns show a unique crystalline
phase corresponding to stoichiometric hydroxyapatite Ca10(OH)2(PO4)6 (ICDD 00-001-1008). Moreover,
no signals evidencing the existence of NiO or Ni(OH)2 have been detected even at a high loading of
nickel (10 wt%).
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Figure 1. XRD patterns of hydroxyapatite (HAP) and Ni/HAP, before reduction (a), after reduction at
500 ◦C (b).
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Furthermore, since the catalysts were reduced by H2 at 500 ◦C before catalytic tests, XRD
measurements were performed after the reduction step. As shown in Figure 1b, the catalyst with
low-loading of Ni (0.5Ni1/HAP-SAC) exhibits no Ni peaks. On the other hand, a peak corresponding
to metallic Ni was detected at high loading (5 and 10%Ni/HAP-NP). Nickel was not detected at low
loading, which indicates either a high dispersion of Ni on HAP support or the formation of very small
Ni nanoparticles on the external surface of HAP that are below the detection limit of XRD. In order
to examine the possibility of having low nickel loading at the surface of catalysts, we analyzed its
chemical composition using X-ray photoelectron spectroscopy.

3.3. Chemical States of Ni over Various Catalysts

To determine the surface chemical composition of the catalysts surface and the chemical state of
nickel single atoms, X-ray photoelectron spectroscopy (XPS) analysis was performed for the reduced
samples at 500 ◦C. The survey spectra recorded for the reduced catalysts with different nickel loadings
(Figure 2a) exhibited the presence of nickel even at low Ni loading and both Ca and P elements.
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Figure 2. (a) The survey XP spectra of Ni/HAP catalysts; (b) High resolution Ni 2p XP spectra of Ex-situ
reduced (1) 0.5Ni1/HAP-SAC, (2) 5Ni/HAP-NP, and (3) 10Ni/HAP-NP; (c) High resolution P 2p and Ca
2p XP spectra of ex situ reduced samples; (d) NiO and Ni(OH)2 percentage as a function of Ni loading.

The Ni 2p spectrum (Figure 2b) exhibits complex features associated to the multiplet splitting
of the Ni 2p at 852.6, 853.7 and 855.8 eV, assigned respectively to metallic Ni, NiO and Ni(OH)2 [22].
The satellite structure at 861.2 eV characterizes Ni2+ likely stabilized as NiO. However, the weak peak
intensity observed related to Ni0 is probably due to the re-oxidation of nickel after the exposition of
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samples to the atmospheric oxygen. It is interesting to note that a correlation was observed between
nickel loading and the molar ratio NiO/Ni(OH)2 (Figure 2d). An increase of the nickel loading is
accompanied by an increase in NiO/Ni(OH)2 ratio.

H2-TPR profiles (Figure 3) show three reduction peaks centered at about 350, 430, and 500 ◦C.
The intensity of the first peak increases significantly with nickel loading, mostly due to the reduction of
surface NiO species in weak interaction with HAP. The second peak can be attributed to the reduction
of well dispersed NiO particles in strong interaction with HAP and the third one could be attributed to
Ni species incorporated into the HAP structure, as proposed by Boukha et al. [33].
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3.4. Morphology and Microstructure

The STEM images of 5Ni/HAP-NP and 10Ni/HAP-NP show the presence of high density of nickel
nanoclusters with average particle size ≤1 nm (Supplementary Figure S3). After hydrogen reduction
pretreatment at 500 ◦C, a slight increase in the average particle size is observed for 5Ni/HAP-NP
(Figure 4a) and 10Ni/HAP-NP (Figure 4b) with 2.1 nm and 2.6 nm, respectively. More STEM and
HRTEM images for 10Ni/HAP-NP are presented in Supplementary Figure S4 and Figure 4c, respectively.
Additionally, a small fraction (<5%) of large nanoparticles ~10 nm were observed only for 10Ni/HAP-NP
as indicated by STEM image (Supplementary Figure S4b). In addition, elemental mapping of 5Ni/HAP
revealed a uniform distribution of Ni on the surface of HAP with the absence of large nanoparticles, as
shown in Supplementary Figure S5. For low Ni loading, the as-prepared 0.5Ni1/HAP-SAC catalyst,
STEM images show the absence of nanoparticles (Figure 5a). Moreover, the examination with
ac-HAADF-STEM highlighted the presence of individual and uniformly isolated nickel single atoms
(Figure 5b and Supplementary Figure S6). Figure 5c represents the extended X-ray absorption fine
structure spectra (EXAFS) of 0.5Ni1/HAP-SAC after in-situ reduction at 500 ◦C and the reference
spectra of Ni foil and NiO at the Ni L2-edge using a Fourier transform. One prominent peak is at
~1.5 Å from the Ni–O contribution and a relatively weak peak at ~2.3 Å probably stemmed from the
Ni–Ni contribution, confirming the presence of predominant Ni single atoms and the relatively small
percentage of Ni sub-nanoclusters in the 0.5Ni1/HAP catalyst after reduction at 500 ◦C. Corresponding
Ni X-ray absorption near-edge spectra (XANES) collected after in-situ reduction at 500 ◦C showed
that the white-line intensities in the spectra of 0.5Ni1/HAP-SAC is close to that of NiO (Figure 5d),
implying that Ni single atoms in the catalyst remain in a high oxidation state. Finally, we could reason
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out that low-Ni loading allows the design of atomically dispersed Ni catalysts (e.g., 0.5N1/HAP-SAC),
whereas at high-Ni loading, Ni nanoparticles are obtained (e.g., 5Ni/HAP-NP).Catalysts 2020, 10, x FOR PEER REVIEW 8 of 20 
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Figure 5. (a) STEM image of as-prepared 0.5Ni1/HAP-SAC catalyst; (b) Aberration-Corrected scanning
transmission electron microscopy (AC-STEM) for as-prepared 0.5Ni1/HAP-SAC catalyst; (c) Fourier
transform EXAFS spectrum of the in-situ reduced 0.5Ni1/HAP-SAC catalyst at 500 ◦C in comparison
with NiO and Ni foil at the Ni L2-edge; (d) XANES spectra at the Ni L2-edge of NiO, Ni foil and reduced
0.5Ni1/HAP-SAC catalyst at 500 ◦C.

3.5. Catalysts Performance

3.5.1. Influence of Ni Loading

DRM is a highly endothermic reaction that often requires high temperature to activate both CH4

and CO2 molecules [15]. In order to identify the temperature range in which the activation takes place
over nickel single-atom and nanoparticle catalysts, both 0.5Ni1/HAP-SAC as single-atom catalyst and
5Ni/HAP-NP as nanoparticle catalyst were exposed to the mixture of CH4 and CO2 using a continuous
fixed bed flow reactor, under atmospheric pressure, in a stepwise heating mode from room temperature
up to 800 ◦C. Figure 6 shows the mass spectrometer (MS) signals of the reactants CH4 (m/z = 16),
CO2 (m/z = 44) and products (H2: m/z = 2, CO: m/z = 28) over 0.5Ni1/HAP-SAC and 5Ni/HAP-NP
catalysts. It is observed that, at temperatures up to around 450 ◦C, the concentrations of the reactants
and the products remained practically constant. At temperatures higher than 450 ◦C and 400 ◦C for
0.5Ni1/HAP-SAC and 5Ni/HAP-NP, respectively, the concentrations of both CH4 and CO2 started to
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decrease progressively and syngas (CO+H2) appeared in the gas phase, indicating the onset of the
methane dry reforming reaction. A further increase of temperature resulted in an increase of CO and
H2 concentration up to reach the maximum at 800 ◦C.
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Figure 6. Mass spectrometer (MS) signal of CH4, CO2, H2 and CO during dry reforming of methane
over (a) nickel single-atoms catalyst (0.5Ni1/HAP-SAC) and (b) nanoparticles catalyst (5Ni/HAP-NP).

The stability DRM reaction over nickel single-atom and nanoparticle catalysts was studied at
750 ◦C, using 50, 6.16, and 3.65 mg of catalysts for 0.5Ni1/HAP-SAC, 5Ni/HAP-NP and 10Ni/HAP-NP,
respectively, which corresponds to similar metallic gas hourly space velocity. As shown in Figure 7,
initially, CH4 and CO2 conversions are the same whatever the catalyst composition. It can be seen
that CH4 conversion decreased by 25%, 26%, and 36% over 0.5Ni1/HAP-SAC, 5Ni/HAP-NP, and
10Ni/HAP-NP, respectively, after 630 min of reaction. The CO2 conversion followed the same trend
and remained higher than the CH4 conversion because of the occurrence of a reverse water gas shift
reaction (Equation (1)).

CO2 + H2 
 CO + H2O ∆H298K = +41.2 kJ.mol−1 (1)



Catalysts 2020, 10, 630 11 of 20
Catalysts 2020, 10, x FOR PEER REVIEW 11 of 20 

 

 

 

Figure 7. (a) CH4 conversion during DRM over HAP supported Ni single-atom and nanoparticles 

catalysts, (b) CO2 conversion during DRM over HAP supported Ni single-atoms and nanoparticles 

catalysts. (All the experiments have been performed at similar metallic gas hourly space velocity: 

(MGHSV = 12 × 106 mL gNi−1 h−1). 

3.5.2. Influence of the Synthesis Method of 0.5Ni/HAP 

In attempts to reinforce the stability on stream of the prepared single-atom catalysts, the 

polyvinylpyrrolidone (PVP) assisted synthesis of catalysts was carried out. As shown in Figure 8, 

with the addition of a small amount of PVP, the initial CH4 (Figure 8a) and CO2 conversion (Figure 

8b) reaches 78% and 83%, and only decreases to 68% and 78%, respectively, after 960 min of reaction, 

exhibiting significantly better stability than the catalyst prepared without surfactant. This 

enhancement in the catalytic behavior can be attributed to the enrichment of the surface nickel single-

atoms on 0.5Ni1/HAP-SAC-PVP, protecting the nickel active site from sintering phenomena during 

the reaction. In addition, the resulting carbon balance is close to 100% for both catalysts (Figure 8c), 

proving that carbon deposition is very limited. The H2/CO molar ratio was between 0.68 and 0.97 due 

to the occurrence of the reverse water gas shift reaction (RWGS). 

0 200 400 600 800 1000

0

20

40

60

80
 0.5Ni

1
/HAP-SAC

 5Ni/HAP-NP

 10Ni/HAP-NP

C
H

4
 C

o
n
v
e

rs
io

n
 (

%
)

Time on stream (min)

(a)

0 200 400 600 800 1000

0

20

40

60

80
(b)  0.5Ni

1
/HAP-SAC

 5Ni/HAP-NP

 10Ni/HAP-NP

C
O

2
 C

o
n

v
e

rs
io

n
 (

%
)

Time on stream (min)

Figure 7. (a) CH4 conversion during DRM over HAP supported Ni single-atom and nanoparticles
catalysts, (b) CO2 conversion during DRM over HAP supported Ni single-atoms and nanoparticles
catalysts. (All the experiments have been performed at similar metallic gas hourly space velocity:
(MGHSV = 12 × 106 mL gNi

−1 h−1).

3.5.2. Influence of the Synthesis Method of 0.5Ni/HAP

In attempts to reinforce the stability on stream of the prepared single-atom catalysts, the
polyvinylpyrrolidone (PVP) assisted synthesis of catalysts was carried out. As shown in Figure 8, with
the addition of a small amount of PVP, the initial CH4 (Figure 8a) and CO2 conversion (Figure 8b)
reaches 78% and 83%, and only decreases to 68% and 78%, respectively, after 960 min of reaction,
exhibiting significantly better stability than the catalyst prepared without surfactant. This enhancement
in the catalytic behavior can be attributed to the enrichment of the surface nickel single-atoms on
0.5Ni1/HAP-SAC-PVP, protecting the nickel active site from sintering phenomena during the reaction.
In addition, the resulting carbon balance is close to 100% for both catalysts (Figure 8c), proving that
carbon deposition is very limited. The H2/CO molar ratio was between 0.68 and 0.97 due to the
occurrence of the reverse water gas shift reaction (RWGS).
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Figure 8. (a) CH4 Conversion and (b) CO2 conversions over 0.5Ni1/HAP-SAC and 0.5Ni1/HAP-
SAC-PVP stabilized PVP. (c) Carbon Balance and H2/CO ratio over 0.5Ni1/HAP-SAC and
0.5Ni1/HAP-SAC-PVP stabilized PVP.

3.5.3. Intrinsic Activity and Comparison with Published Papers

The intrinsic activity of the catalysts was determined at 750 ◦C and the corresponding TOF
(s−1) was calculated using a very small amount of catalyst (1.5–2.5 mg) to generate high gas hourly
space velocity (GHSV) from 1,056,000 to 1,760,000 mL.gcat

−1.h−1 allowing to maintain CH4 and
CO2 conversions below 30%. The values of the initial specific reaction rate (mol.gNi

−1.h−1) and the
corresponding TOF are listed in Table 1. Nickel single-atom catalyst (0.5Ni1/HAP-SAC) exhibited CH4
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and CO2 specific rates of 816.5 and 1186.2 mol.gNi
−1.h−1, respectively, and it is four and five times

higher than over nickel nanoparticle catalysts (10Ni/HAP-NP). It is important to mention here that
CH4 and CO2 corresponding TOF(s−1) of nickel single-atoms are almost comparable to that of nickel
nanoparticles catalysts.

Table 1. Catalytic reaction rate of DRM reaction over different catalysts.

Catalysts Ni Loading
(wt.%) a

Rate (Mol. gNi−1.h−1) TOF (s−1) T (◦C) References

CH4 CO2 CH4 CO2

0.5Ni1/HAP 0.51 816.5 1186.2 13.3 19.3 750 This work
5Ni/HAP 4.14 339.7 414.4 11.1 14.4 750 This work

10Ni/HAP 6.98 185.2 238.6 12.1 15.5 750 This work
Ni/MgO 7.1 16.6 - 2.4 - 757 Ref [38]
Ni/ZrO2
(3NZH) 3 11.09 - 3.32 - 700 Ref [39]

Ni/HMS 6.21 - - 4.98 700 Ref [40]
Ni/ZeO2 0.32 - - 29.5 37.8 800 Ref [18]
Ni/TiO2 0.21 - - 12.9 18.1 800 Ref [18]

Ni/SBA-15-EG 6.1 0.51 - 0.06 - 450 Ref [41]
LaNiO3 23.7 1.08 - 0.87 - 550 Ref [42]

LaNiO3/Al2O3 6.9 1.9 - 1.55 - 550 Ref [42]
Ni0.4MoCx/SiC 4.9 - - 28.4 - 800 Ref [43]

a The metal loadings of Ni were detected by ICP-AES.

3.5.4. Carbon Deposition and Its Reactivity with CO2 over Nickel Nanoparticle Catalysts

In order to investigate the origin and the reactivity of carbon, two successive experiments were
performed. First, CH4 alone was introduced from room temperature to 800 ◦C after cooling down the
reactor, before CO2 was introduced and the temperature was further increased. Using 5Ni/HAP-NP
catalyst. The reaction can be expressed as follow:

CH4→ 2H2 + C(s) (2)

CO2 + C(s)→ 2CO (3)

Figure 9 shows mass spectrometer (MS) signal of CH4 and H2 on 5Ni/HAP-NP during the
experiment. It appears that methane decomposition starts at 430 ◦C with the simultaneous production
of a small amount of H2. The decomposition of CH4 is accelerated by increasing the temperature with a
maximum activity obtained at 540 ◦C according to MS signal (Figure 9a). The subsequent treatment of
carbon deposited with CO2 results in the formation of CO only from 647 ◦C (Figure 9b). These findings
are in accordance with those reported recently by Gili et al. where carbon generated from the separate
decomposition of both CH4 and CO can be oxidized by CO2 from 600 ◦C on 5%Ni/MnO [44]. From these
experiments, we can conclude that CH4 decomposition on nickel nanoparticles contributes to carbon
deposition which can easily react with CO2 to generate CO, suggesting that deposited carbon can be
an active intermediate in the DRM reaction over the prepared catalysts.
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Figure 9. MS signal during (a) Individual CH4 decomposition; (b) Subsequent gasification of deposited
carbon with CO2. Conditions: 5Ni/HAP-NP catalyst, T = (25–900 ◦C). pure CH4 and CO2 were used
with total flow of 10 mL mL−1.

3.6. Characterization after Reaction

3.6.1. TDA-TGA Analysis

The characterization of spent catalysts revealed that the deactivation phenomena can be ascribed to
different factors depending on the catalyst. Thermal gravimetric analysis (TGA) exhibited the absence
of carbon deposition on nickel single-atoms catalysts (Figure 10). Meanwhile, a high amount of carbon
deposition was observed for 5Ni/HAP-NP (4.17% or 1.09 mg.g−1

cata.h−1) and 10Ni/HAP-NP (18.7%
or 4.01 mg.g−1

cata.h−1), and the DSC curve showed an exothermic peak for the used 10Ni/HAP-NP
catalyst (Figure 10), which fits the temperature zone of coke formation as indicated by TGA.
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Figure 10. TGA profiles and DSC of the spent Ni/HAP nickel catalysts.

3.6.2. X-ray Diffraction (XRD)

Figure 11 shows XRD patterns of spent 0.5Ni1/HAP-SAC, 5Ni/HAP as well as 10Ni/HAP samples,
whereby the dashed line in the figure designates the position of the carbon diffraction peak. This confirms
TGA analysis with the signal of carbon only present for 5Ni/HAP-NP and 10Ni/HAP-NP. The sintering
of nickel single atoms is observed after the reaction for 0.5Ni1/HAP-SAC (Figure 12), which can explain
the high deactivation rate after a few hours of reaction.
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Figure 11. XRD patterns of the Ni/HAP catalyst after reaction at 750 ◦C.
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3.6.3. RAMAN Spectroscopy

The carbon deposit was characterized using Raman spectroscopy. As shown in Figure 13, a strong
peak at 1328 cm−1 (D band) and a peak at 1585 cm−1 (G band) are observed for 5Ni/HAP-NP and
10Ni/HAP-NP. These peaks positions are close to the 1346 and 1578 cm−1 which have been previously
reported in the literature [37]. No peak was observed for 5Ni/HAP-NP, which is in agreement with
TGA and XRD results, confirming the absence of carbon deposition on 0.5Ni1/HAP-SAC single atoms
catalyst. The graphitization degree was determined by calculating the IG/ID value which referred
to the crystallinity degree, this value is often used as parameter to indicate the crystallinity of the
deposited carbon, the higher the ratio (>1) the higher crystallinity [45]. Moreover, 5Ni/HAP-NP
and 10Ni/HAP-NP exhibited high and quite similar IG/ID ratios of 1.22 and 1.19, respectively, which
suggests that carbon deposited during DRM at 750 ◦C is a more ordered graphite structure with a high
graphitization nature.
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4. Conclusions

In summary, Ni single-atom and nanoparticle catalysts were deposited on hydroxyapatite (HAP)
using simple strong electrostatic adsorption (SEA). Ni single-atom catalysts showed the highest reaction
rate and excellent resistance to carbon deposition in DRM at 750 ◦C. The deactivation during time on
stream for Ni single-atom catalysts can be attributed mainly to the sintering and aggregation of nickel
single-atoms rather than carbon deposit. The use of PVP in the preparation of catalysts leads to a
significant improvement in terms of stability. Although Ni nanoparticle catalysts are more resistant
to the sintering than Ni single-atom catalysts, a significant amount of carbon deposition is obtained
after reaction. It is worth mentioning that carbon deposition can react with CO2 at the temperature
of the reaction (750 ◦C). Thus, such stability of Ni/HAP nanoparticle catalysts in the DRM reaction is
more probably related to the different rate of carbon deposition and gasification processes. The present
work shows that the use of noble-free, single-atom catalysts is of particular interest for the DRM
reaction, and future work must be undertaken to study more deeply its resistance to sintering at high
reaction temperature.
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