
catalysts

Editorial

Editorial: Special Issue on “Emerging Trends in TiO2
Photocatalysis and Applications”

Trong-On Do 1,* and Sakar Mohan 1,2

1 Department of Chemical Engineering, Laval University, Quebec G1V 0A6, Canada; sakar.mohan.1@ulaval.ca
2 Centre for Nano and Material Sciences, Jain University, Bangalore 562112, India
* Correspondence: Trong-On.Do@gch.ulaval.ca

Received: 4 June 2020; Accepted: 8 June 2020; Published: 13 June 2020
����������
�������

It is not an exaggerated fact that the semiconductor titanium dioxide (TiO2) has been evolved
as a prototypical material to understand the photocatalytic process and has been demonstrated for
various photocatalytic applications such as pollutants degradation, water splitting, heavy metal
reduction, CO2 conversion, N2 fixation, bacterial disinfection, etc., as depicted in Figure 1. [1,2]
The rigorous photocatalytic studies over TiO2 have paved ways to understand the various chemical
processes involved and physical parameters (optical and electrical) required to design and construct
diverse photocatalytic systems. [3,4] Accordingly, it has been realized that an effective photocatalyst
should have ideal band edge potential, narrow band gap energy, reduced charge recombination,
enhanced charge separation, improved interfacial charge transfer, surface-rich catalytic sites, etc.
These studies further highlighted that single component catalysts may not be good enough to achieve
the required/enhanced photocatalytic process. As a result, many strategies have been developed to
design a variety of photocatalytic systems, which include doping, composite formation, sensitization,
co-catalyst loading, etc. [5] The doping strategy includes cationic and anionic doping, where it is
found that the essential purposeof doping is to tune the band gap energy of the photocatalyst by
introducing the new energy levels of the doped elements underneath the conduction band (CB) and
above the valence band (VB) of the semiconductor photocatalyst, respectively. On the other hand, the
composite formation serves in multiple ways to almost meet all the requirements to achieve a quantum
efficient photocatalytic process. The basis of composite formation is found to redesign the charge
transport kinetics in the bulk and surface/interface of the integrated photocatalyst systems. These
composite systems generally include p-n heterojunction, Z-scheme, etc. Similarly, the mechanism of
sensitizing the photocatalysts includes the integration of plasmonic metal nanoparticles, carbon-based
materials, 2D materials, quantum dots, and metal organic frameworks to enhance their optical
absorption, electrical transportation properties, etc. [6] Interestingly, the co-catalyst loading serves
as an ‘engineered-catalytic-site’ for the specific redox process to achieve the selective photocatalytic
reactions. Furthermore, the unique systems, such as ferroelectric-based photocatalysts, are found
to be more interesting as they are governed by their inherent internal electrical field and surface
polarization properties. For instance, the ferroelectric properties intrinsically facilitate the adsorption
of the surrounding molecules, carrier separation, and interfacial charge transfer via band bending
phenomenon, etc. Similarly, the influence of defects in photocatalysis has been well studied over TiO2,
where the concepts of “self-doping”, “oxygen vacancy”, “colored TiO2”, etc. have been well addressed
in TiO2photocatalysts.
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Figure 1. Overview of TiO2-based various photocatalytic systems and their applications. 

Towards highlighting the above mentioned diversities in TiO2 photocatalysis, there have been 
many interesting research works on TiO2, involving material designs for various photocatalytic 
applications published in this Special Issue. These material systems include TiO2 QDs@g-C3N4 p-n 
junction,[7] oxygen defective TiO2 nanorod array,[8] TiO2/N-doped graphene QDs,[9] TiO2/HKUST-
1,[10] TiO2-Carbon composite,[11] Ru-Ti oxide,[12] TiO2 coated porous glass fiber cloth,[13] 
Ag/Fe3O4/TiO2 nanofibers,[14] Pd-doped TiO2,[15] N-doped TiO2,[16] C/N/S-doped TiO2,[17] Mo/W 
co-doped TiO2,[18] Fe-doped TiO2,[19] N-doped graphene QDs-TiO2,[20] Nd-doped TiO2,[21] Cu-
doped TiO2 thin film,[22] surface engineered TiO2,[23] etc., for various photocatalytic applications, 
such as the degradations of a variety of pollutants,[24–29] biomass reforming,[10] heavy metal 
reduction,[14] and bacterial disinfections,[22] etc. In addition to these original research papers, some 
excellent review papers have also been published in this Special Issue, focusing on the various TiO2-
based photocatalytic systems and their mechanisms and applications.[1–6] To this end, it is 
highlighted that future works in TiO2 should involve developing new material systems based on 
TiO2. For instance, instead of doping N into TiO2, the composition/phase tunable Ti oxy-nitride 
systems should be developed and so should the Ti oxy-phosphates, oxy-sulfurs, oxy-carbons, etc. 
From application perspectives, TiO2 should be investigated for its photocatalytic efficiencies towards 
the production of H2/O2 from atmospheric vapor, dark-photocatalytic activities, hydrogen storage, 
biodiesel productions, etc. However, the research should also be continued on bare TiO2 to achieve 
an in depth understanding of the photocatalytic mechanisms towards finding new photocatalytic 
applications. 
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Figure 1. Overview of TiO2-based various photocatalytic systems and their applications.

Towards highlighting the above mentioned diversities in TiO2 photocatalysis, there have been many
interesting research works on TiO2, involving material designs for various photocatalytic applications
published in this Special Issue. These material systems include TiO2 QDs@g-C3N4 p-n junction,
[7] oxygen defective TiO2 nanorod array, [8] TiO2/N-doped graphene QDs, [9] TiO2/HKUST-1, [10]
TiO2-Carbon composite, [11] Ru-Ti oxide, [12] TiO2 coated porous glass fiber cloth, [13] Ag/Fe3O4/TiO2

nanofibers, [14] Pd-doped TiO2, [15] N-doped TiO2, [16] C/N/S-doped TiO2, [17] Mo/W co-doped
TiO2, [18] Fe-doped TiO2, [19] N-doped graphene QDs-TiO2, [20] Nd-doped TiO2, [21] Cu-doped TiO2

thin film, [22] surface engineered TiO2, [23] etc., for various photocatalytic applications, such as the
degradations of a variety of pollutants, [24–30] biomass reforming, [10] heavy metal reduction, [14] and
bacterial disinfections, [22] etc. In addition to these original research papers, some excellent review
papers have also been published in this Special Issue, focusing on the various TiO2-based photocatalytic
systems and their mechanisms and applications. [1–6] To this end, it is highlighted that future works in
TiO2 should involve developing new material systems based on TiO2. For instance, instead of doping
N into TiO2, the composition/phase tunable Ti oxy-nitride systems should be developed and so should
the Ti oxy-phosphates, oxy-sulfurs, oxy-carbons, etc. From application perspectives, TiO2 should be
investigated for its photocatalytic efficiencies towards the production of H2/O2 from atmospheric vapor,
dark-photocatalytic activities, hydrogen storage, biodiesel productions, etc. However, the research
should also be continued on bare TiO2 to achieve an in depth understanding of the photocatalytic
mechanisms towards finding new photocatalytic applications.
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