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Abstract: A zinc(II) triflate-catalyzed cyclocondensation of ortho-alkynylbenzaldehydes with
arylamines in the presence of base under an oxygen atmosphere affording isoquinolones in good
to high yields has been developed. The advantages of the present catalyst system include the use
of an air-stable and cheap commercially available Lewis acid as the catalyst, high atom utilization
and easily available starting materials.
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1. Introduction

Alkyne annulation is an important and efficient method for the synthesis of various heterocyclic
compounds with high atom utilization [1–10]. Isoquinolones are one of the interesting and important
nitrogen-heterocyclic compounds with versatile biological and physiological activities [11,12],
and over the past decades, transition-metal-catalyzed isoquinolone formation through intermolecular
annulation with the use of alkyne as one of the reaction partners has been well developed [13–26].
Among the different protocols for achieving this goal, the synthetic strategies starting from
2-(1-alkynyl)benzaldehydes are the most interesting due to their high atom utilization [15,21] (Scheme 1).
Although the readily available 2-(1-alkynyl)benzaldehydes have been well-applied in the synthesis
of benzo-fused six-membered heterocycles [27–33] and carbocycles [34–39], their applications
for isoquinolone synthesis are very rare. As shown in Scheme 1, only two procedures have
been reported to approach isoquinolones from the direct intermolecular cyclocondensation of
2-(1-alkynyl)-benzaldehydes with primary amines. One is the aerobic cyclocondensation of
2-(1-alkynyl)benz-aldehydes with benzyl amines and primary aliphatic amines in the presence
of an excess amount of CuBr·SMe2 to afford 4-bromoisoquinolin-1(2H)-ones, and no reaction example
was given with the use of arylamines under the reaction conditions (Scheme 1, eq. 1) [15]. The other
procedure focuses on the Cu(OAc)2-catalyzed construction of isoquinolones by the reaction of
H2O with 2-(1-alkynyl)benzaldimines, giving one example from the direct cyclocondensation of
2-(1-phenylethynyl)benzaldehyde with aniline to produce 2,3-diphenylisoquinolin-1(2H)-one in 63%
yield (Scheme 1, eq. 2) [21].
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Zn(OTf)2, which are not only cheap and easily available, but also air-stable Lewis acids (entries 3–5). 
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4.0 to 3.0 mol%, the yield was not changed at all (entry 6), and the use of 2.0 mol% of the catalyst 
resulted in a considerable decrease in the yield (78%) (entry 7). In addition, when KHCO3 and KOtBu 
were used as the base to replace K2CO3, or when N,N-dimethyllformamide (DMF) and 1,4-dioxane 
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Recently, we have been interested in the applications of 2-(1-alkynyl)benzaldehydes
in the synthesis of benzo-fused cyclic compounds [28,33,39], air-stable Lewis acids as catalysts
in organic transformation [40–44], and the development of synthetic methods for the formation of
nitrogen-heterocyclic compounds via alkyne annulations [45–53]. Therefore, in continuation of our
interests in the application of 2-(1-alkynyl)benzaldehydes, we herein describe a simple and efficient
method for the construction of isoquinolone from the cyclocondensation of 2-(1-alkynyl)benzaldehydes
with arylamines in the presence of a catalytic amount of Zn(OTf)2 (Scheme 1, eq. 3).

2. Results and Discussion

The optimizing reaction conditions were performed by the reaction of 2-(1-phenylethynyl)
benzaldehyde (1a) with 1.2 equivalents of aniline (2a) as the substrates under an oxygen atmosphere
(Table 1). Initially, we performed the reaction without the use of any metal salts, in DMSO (dimethyl
sulfoxide) at 120 ◦C for 24 h, no desired product was formed, but the dehydrated product 3aa’ between
1a and 2a could be obtained in 20% yield (entry 1). With K2CO3 as the additive, however, the reaction
yielded 2,3-diphenylisoquinolin-1(2H)-one (3aa) in 50% yield and 3aa’ in 33% yield, indicating that
the base displays an important role in the intermolecular cyclocondensation of 1a with 2a, due to
the nucleophilic addition of 2a to the carbonyl group of 1a promoted by the base (entry 2). In addition,
it is well-known that Lewis acid can promote the nucleophilic addition of nitrogen to alkyne via
the intermolecular π-coordinating of carbon-carbon triple bonds to Lewis acids, thus repeating the same
reaction in the presence of a catalytic amount of Fe(OTf)2, ZhCl2 and Zn(OTf)2, which are not only
cheap and easily available, but also air-stable Lewis acids (entries 3–5). Although Fe(OTf)2 and ZhCl2
showed no activity, Zn(OTf)2 could greatly promote the formation of the desired product 3aa, and 3aa
could be obtained in 87% yield. Decreasing the catalyst loading from 4.0 to 3.0 mol%, the yield was not
changed at all (entry 6), and the use of 2.0 mol% of the catalyst resulted in a considerable decrease
in the yield (78%) (entry 7). In addition, when KHCO3 and KOtBu were used as the base to replace
K2CO3, or when N,N-dimethyllformamide (DMF) and 1,4-dioxane were employed as solvents instead
of DMSO, all were found to be inferior, and the yields of 3aa were significantly decreased (entries 8–11).
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Table 1. Optimal conditions for the formation of 2,3-diphenylisoquinolin-1(2H)-ones (2a) a.
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Entry Catalyst (mol%) Base (2 equiv) Solvent Yield of 3aa (%)b

1c
− − DMSO trace

2d − K2CO3 DMSO 51
3 Fe(OTf)2 (4.0) K2CO3 DMSO 45
4 ZnCl2 (4.0) K2CO3 DMSO 50
5 Zn(OTf)2 (4.0) K2CO3 DMSO 87
6 Zn(OTf)2 (3.0) K2CO3 DMSO 87
7 Zn(OTf)2 (2.0) K2CO3 DMSO 78
8 Zn(OTf)2 (4.0) KHCO3 DMSO 40
9 Zn(OTf)2 (4.0) KOtBu DMSO 50

10 Zn(OTf)2 (4.0) K2CO3 DMF 60
11 Zn(OTf)2 (4.0) K2CO3 Dioxane 55

a Reactions were carried out using 1.0 mmol of 1a, 1.2 mmol of 2a, and 2.0 mmol of base in 5.0 mL of
solvent under oxygen atmosphere at 120 ◦C for 24 h. b Isolated yields. c 20% of 3aa’. d 33% of 3aa’.

Encouraged by the results obtained above, we studied the substrate scope for the formation
of isoquinolin-1(2H)-ones using various ortho-alkynylbenzaldehydes and amines bearing different
substituents under the conditions of entry 6 in Table 1. As can be seen from Table 2, β-aminonaphthalene
(2b), para-substituted anilines (para-Me, 2c; para-iPr, 2d; para-Br, 2f), 2-methyl-3-methoxyaniline
(3e), and 2,4-difluoroaniline (2g) underwent cyclocondensation with 1a affording the corresponding
isoquinolin-1(2H)-ones (2ab~2ag) in 76%–85% yields, indicating that arylamines with electron-donating
and electron-withdrawing group(s) show similar reactivity under the reaction conditions.
When 5-methoxy-2-(1-phenylethynyl)benzaldehyde (1b), 5-fluoro-2-(1-phenylethynyl)benzaldehyde
(1c), and 5-chloro-2-(1-phenylethynyl)benzaldehyde (1d) were used, reactions with 2a and electron-rich
and/or electron-poor arylamines also showed no significant difference in reactivity and gave the expected
products in 73%–81% yields. In addition, the present catalyst conditions could be applied to primary
alkylamine. For example, the reaction between 1d and n-propylamine (2h) produced 3dh in 62% yield.

Moreover, we also tested the effects of electron-donating and electron-withdrawing groups by using
meta-methylphenylethynyl (1e) and para-cyanophenylethynyl (1f) groups to replace the phenylethynyl
group on 1a. It was found that 1e showed similar reactivity to 1a in the cases of both the electron-rich
and the electron-poor arylamines employed. However, it was apparent that 1f bearing an electron-poor
group of para-cyanophenylethynyl is not beneficial to the reaction with 2a to give the corresponding
product of 3fa in 50% yield.

It should be noted that the present catalyst system is highly tolerant to various C(sp2)-X bonds,
such as the C-O, C-Br, C-F, and CN groups, the products bearing these groups have have important
potential applications for further transformation.

A possible mechanism for the formation of isoquinolin-1(2H)-ones is shown in Scheme 2. It involves
two well-known and normal steps: the nucleophilic addition of arylamines to aldehyde giving
1,2-aminoalcohol intermediate 4aa, and intramolecular hydroamination followed by an oxidation
reaction constructing isoquinolin-1(2H)-one 3aa. Apparently, Zn(OTf)2 plays an important role
in promoting the nucleophilic addition of arylamines and the intramolecular hydroamination of
carbon-carbon triple bonds. The formation of 3aa’ (Table 1, entries 1 and 2) is reasonable from
the dehydration reaction of 4aa.
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Table 2. Substrate scopes for the formation of isoquinolin-1(2H)-ones a.
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3. Materials and Methods

3.1. General Methods

All commercial organic/inorganic reagents and solvents were analytically pure and used without
further purification; 2-(1-alkynyl)benzaldehydes (1a–f) are known compounds and were prepared
by cross-coupling reactions of 2-bromobenzaldehydes with terminal aryl acetylenes [39]. Nuclear
magnetic resonance (NMR) spectra were recorded on a JEOL ECA-400 spectrometer (JEOL, Tokyo,
Japan) using CDCl3 as solvent at 298 K. The 1H NMR (400 MHz) chemical shifts (δ) were referenced
to internal standard TMS (for 1H, δ = 0.00); 13C NMR (100 MHz) chemical shifts were referenced
to internal solvent CDCl3 (for 13C, δ = 77.16). High-resolution mass spectra (HRMS) with electron
spray ionization (Supplementary Materials) were obtained with a micrOTOF-Q spectrometer (Agilent,
CA, USA).

3.2. Typical Procedure for the Synthesis of 2,3-Diphenylisoquinolin-1(2H)-one (3aa)

A mixture of 2-(phenylethynyl)benzaldehyde (1a, 1.0 mmol), aniline (2a, 1.5 mmol), Zn(OTf)2 (0.04
mmol), and K2CO3 (2.0 mmol) in DMSO (5.0 mL) under an oxygen atmosphere was stirred at 120 ◦C,
and the reaction was monitored by GC-MS and TLC. After 24 h, the conversion of 1a was complete,
and then the reaction mixture was cooled to room temperature. Water (10 mL) was added to the reaction
mixture with vigorous stirring, and the mixture was then extracted with ethyl acetate three times
(3 × 10 mL). The combined organic phases were dried overnight by anhydrous MgSO4. The filtered
solution was then concentrated by a rotary evaporator under reduced pressure, and the obtained crude
residue was purified by column chromatography on silica gel (eluent solvents: petroleum ether/ethyl
acetate with the gradient mixture ratio from 100:0 to 80:20) to afford 3aa (258.0 mg, 87%).

4. Conclusions

We have demonstrated that Zn(OTf)2 is a very effective catalyst for the aerobic
cyclocondensation of 2-(1-alkynyl)benzaldehydes with arylamines in the presence of base to afford
2,3-diarylisoquinolin-1(2H)-ones in good to high yields. The present catalyst system is preferred over
the known procedures starting from 2-(1-alkynyl)benzaldehydes to construct an isoquinolin-1(2H)-one
ring with the use of an air-stable and cheap commercially available Lewis acid as the catalyst, high atom
utilization and easily available starting materials.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/6/683/s1,
characterization data and copies of 1H-NMR and 13C-NMR charts of products.
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