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Abstract: Hydrous hydrazine (N2H4·H2O) is a candidate for a hydrogen carrier for storage and
transportation due to low material cost, high hydrogen content of 8.0%, and liquid stability at
room temperature. Pt and Pt nanoalloy catalysts have been welcomed by researchers for the
dehydrogenation of hydrous hydrazine recently. Therefore, in this review, we give a summary
of Pt nanoalloy catalysts for the dehydrogenation of hydrous hydrazine and briefly introduce
the decomposition mechanism of hydrous hydrazine to prove the design principle of the catalyst.
The chemical characteristics of hydrous hydrazine and the mechanism of dehydrogenation reaction
are briefly introduced. The catalytic activity of hydrous hydrazine on different supports and the
factors affecting the selectivity of hydrogen catalyzed by Ni-Pt are analyzed. It is expected to provide a
new way for the development of high-activity catalysts for the dehydrogenation of hydrous hydrazine
to produce hydrogen.

Keywords: hydrous hydrazine; dehydrogenation; Pt nanoalloys; support

1. Introduction

Hydrogen energy, as a kind of green energy with abundant reserves, wide sources, and high
energy density, has shown an excellent application prospect in fuel cells and as a substitute for fossil
fuels [1–4]. In the process of utilization, it is a key to storage and transportation [5,6]. Hydrogen storage
methods can be roughly divided into physical methods [7,8] and chemical methods [9,10], which have
made some progress in a certain extent. Based on the liquid organic hydride, hydrogen storage
technology in chemical methods, owing to large hydrogen storage capacity, high energy density,
and safe and convenient liquid storage and transportation [11–13], has attracted the attention of
scholars. The chemical nature of hydrazine (N2H4) is relatively active and can react with strong
oxidants. However, hydrazine is likely to explode if it is left in the air for a long time or under high
temperature heating. Therefore, hydrazine is an extremely dangerous substance and is not suitable as
a hydrogen storage material [14,15], but hydrous hydrazine (N2H4·H2O), as a liquid hydrogen storage
material with excellent hydrogen storage content (8.0 wt%)—the only by-product when completely
decomposed is N2, which has no pollution to the environment—has always been considered to have
great prospects [16–19].

The decomposition process of hydrous hydrazine is often accompanied by side reactions that
produce ammonia, which greatly reduces the hydrogen production efficiency of hydrous hydrazine [20].
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Therefore, the development of a high catalytic rate and a high selectivity catalyst is the key to the actual
production and application of hydrous hydrazine. Many studies have shown that the Pt-based catalyst
has excellent performance in the decomposition of hydrous hydrazine [21–24]. However, the scarcity
of precious metal resources and the high price has limited its large-scale industrial application [25,26].
Therefore, the addition of the second component active metal is necessary, which can affect the
structural properties of the catalyst, and thus affect the stability of the catalyst. Combining Pt with
other metals can effectively change its surface properties to obtain better catalytic performance, and
bimetallic catalysts can combine the high activity and stability of precious metal catalysts with the
price advantages of other particles [27]. For the hydrogen production reaction of hydrous hydrazine,
in the literature that has been reported so far, the Ni-Pt bimetallic catalyst [28–30] has the best catalytic
effect. The commonly used supports for hydrous hydrazine dehydrogenation catalysts are metal oxide
supports, such as CeO2 [31–33], Al2O3 [34,35], and TiO2 [36,37]. The role of the support in the catalyst
is often overlooked, but for hydrous hydrazine dehydrogenation reaction, the carrier is very important
for its catalytic performance effect.

Herein, we review a general overview of Pt nanoalloy catalysts for hydrous hydrazine reduction
and introduce the decomposition mechanism of hydrazine to illustrate the design principle of the
catalyst. The catalytic activity of hydrous hydrazine on different supports and the factors affecting
the selectivity of hydrogen catalyzed by Ni-Pt are analyzed. This article mainly reviews the research
progress of Ni-Pt catalysts for hydrous hydrazine hydrogen production, introduces the hydrazine
decomposition reaction and the principle of hydrazine hydride decomposition hydrogen production,
and discusses in detail the research status of different kinds of hydrous hydrazine Ni-Pt catalysts for
hydrogen production. We hope to provide a new way for the development of excellent catalysts for
the decomposition of hydrous hydrazine.

2. Mechanism of H2 Production from Hydrous Hydrazine through Pt Nanoalloys

The reaction pathway of hydrous hydrazine [38] depends on the breaking of the N–N bond and
N–H bond. In theory, the N–N bond energy is 286 KJ mol−1 and the N–H bond total cleavage energy
is 360 KJ mol−1 [39]. Thus, the N–N bond seems to be more easily fractured. However, if N2H4

breaks down to N2H2 and H2, the N–H bond energy is 276 KJ mol−1, and the H-metal bond energy is
stronger than the N–metal bond, which makes the N–H bond more likely to break. Zhang’s team [40]
summarized most of the literature on the decomposition of N2H4 and proposed a relatively complete
mechanism of N2H4 (Figure 1). The effective hydrogen storage component of hydrous hydrazine is
hydrazine (N2H4), and its decomposition reaction can be carried out according to the following two
competitive paths [41,42]: complete decomposition,

H2NNH2→ N2 + 2H2, ∆H = −95.4 kJ mol−1 (1)

and incomplete decomposition,

3H2NNH2→ 4NH3 + N2, ∆H = −157 kJ mol−1 (2)

from the application of hydrogen storage, it is necessary to selectively promote the complete
decomposition of N2H4 into H2 and N2, and effectively inhibit the formation of NH3 by-products.
The key to the development of N2H4·H2O controllable hydrogen technology lies in the development of
cheap catalysts with high catalytic activity and high hydrogen production selectivity [43].
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and N2 formation; copyright (2017), National Science Review.

Early studies focused on the mechanism of adsorption on the surfaces of Ir [44], Pt [45,46],
and Rh [47,48] model metals. For hydrogen production from hydrous hydrazine, changing the order
of the rupture of N–N and N–H bonds is the main strategy to change the selectivity. Transition metals
(such as Ir, Ru, and Ni) are the most effective N–H bond activation candidates in various catalytic systems
and exhibit high hydrazine decomposition activity under mild conditions. Nevertheless, the selectivity
of H2 is limited to less than 10% as compared to Ru and Ir catalysts [49]. So far, single-metal catalysts
have failed to achieve complete catalytic decomposition from hydrazine to H2 without forming NH3.
The Pt-based catalysts have strong catalytic activity [50]. Therefore, the modification of the catalyst
is necessary to improve the selectivity of H2. Bimetallic catalysts, due to their unique electronic and
chemical properties, exhibit enhanced activity, selectivity, and stability compared with the parent metals.
For Pt-promoted nickel catalysts, the results of x-ray diffraction (XRD) in Zhang’s experiment [40]
showed that the main d fractionation peaks only show the presence of Ni. The shift of the diffraction
peak to a smaller angle after the substitution of Pt indicates that the co-reduction of Ni-Pt with the
second metal in the bimetallic catalyst further confirms the formation of Ni-Pt alloy, as indicated
by temperature programmed reduction (TPR) data. In addition, the results of x-ray absorption fine
structure (EXAFS) experiments with extended x-ray show that most Pt species exist in Ni-Pt alloys,
which leads to electron transfer from Ni to Pt.

3. Ni-Pt Nanoalloying

In the past reports, many transition metal nano-catalysts have been synthesized by
co-precipitation [51], chemical reduction, combustion synthesis [52], galvanic displacement [53],
impregnation [54], and alloying [55]. Among them, alloying is an effective strategy to improve
catalytic activity and hydrogen selectivity [55]. Fixing the catalyst nanoparticles on the basic carrier
can not only improve the durability of the catalyst, but also improve the selectivity of hydrogen [56].
Compared with the corresponding single-metal, nanoalloys have the advantages of reconfigurable
electronic structure, variable composition ratio, and adjustable selectivity, which show unique properties
different from bulk alloy and metal elements [56]. Because of the nano-size effect and a large number
of kinks, the nanoalloy obtains higher specific surface energy and rich active sites through electronic
configuration reorganization, which greatly promotes its catalytic performance, further evidence that
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it has obvious superiority and broad application prospects in chemical catalysis. On the one hand,
nanoalloy catalytic materials cannot only catalyze the reforming of syngas, but also catalyze various
coupling reactions, which has promoted the development of chemical industry, energy, environment,
medicine, and other industries. Nanoalloy catalytic materials cannot only enhance the activity through
the surface structure, but also improve the performance through the mechanical effect, greatly enriching
the theoretical system of nano-catalysis [57]. The nanoalloys (NAs) are obviously different from bulk
alloy or single-metal, with tunable composition and proportion, variable structure, reconfigurable
electrical characteristic structure, and optimized performance, which give NAs a fascinating prospect
in the field of catalysis.

Based on the previously reported literature, we found that most of the papers were based on the
dehydrogenation of hydrous hydrazine on different supports supported with different proportions of
Ni-Pt bimetallic catalysts [58–60]. The noble metal Pt has high reduction potential and stability, so it is
easier to prepare new structures [61]. They provide excellent catalytic properties that are closely related
to Fermi’s electrons. The base metal, Ni, readily gives up electrons and is oxidized to a lower reduction
potential. Ni is one of the most important catalysts for industrial catalysis because of its excellent
catalytic selectivity and cost efficiency [62]. Compared with the single-metal, the activity and stability
of the Pt-Ni catalyst were improved significantly [57]. Figure 2 shows the etching mechanism of Pt-Ni
nanoparticles (NPs). Noble/base metal-mixed NAs (NBMNAs) [63–65] are promising catalysts that
combine the high catalytic activity of noble metal Pt and the high selectivity of base metal Ni. At the
same time, a high utilization ratio of noble metal atoms can be obtained. The electronic structures of
Pt and Ni are reorganized by alloying, which is an effective way to reduce the irreversible oxidation
or leakage of base metals and to improve the stability of catalysts. The proper distribution of metal
elements helps to form the Pt surface layer of noble metals to protect the catalysts. At the same time,
the performance of the catalyst is improved because of the mechanical action of the alloy base and the
precious metal.
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4. Hydrous Hydrazine

Hydrogen storage materials with a large energy storage density are the radical condition for
practical application; in the required temperature range, the energy hydrogen storage density of a
large number of metal alloy hydrogen storage materials and physical adsorption materials studied
in the past can hardly meet the demand of practical application [66]. Therefore, in recent years,
light-weight hydrogen storage substances with ultra-high hydrogen storage capacity have become a
research hotspot.

In liquid phase hydrogen storage carriers, hydrous hydrazine has been widely studied by scholars
because of outstanding hydrogen storage density, easy storage and transportation, and convenient use
N2H4. There are two decomposition paths for N2H4: complete decomposition to produce H2 and N2,
and incomplete decomposition to produce N2 and NH3. The former reaction path produces H2 for
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human use, while the latter produces NH3 that can poison Nafion membranes and fuel cell catalysts,
so the latter reaction must be avoided. So far, the catalytic decomposition of hydrous hydrazine has
reached 100% catalytic selectivity [67–71]. The catalytic kinetic is still very slow, which enormously
blocks the practical application of the system. Thence, it is urgent to develop highly selective and
efficient e at room temperature.

Hence the decomposition of hydrous hydrazine tends to produce NH3 rather than H2, which not
only reduces the yield of hydrogen, but also complicates the separation process due to the low toxicity
of Nafion membrane and the fuel cell catalyst to NH3 [72–74]. Therefore, it is of great significance to
develop a highly efficient and selective hydrous hydrazine catalyst for hydrogen evolution. In recent
years, metal nano-catalysts have made great progress in the catalytic decomposition of hydrous
hydrazine. The Ir/Al2O3 catalyst was the first reported active catalyst for the decomposition of hydrous
hydrazine catalyzed by highly dispersed metal particles [75]. In order to develop high-property
catalysts for hydrogen-selective dehydrogenation of hydrous hydrazine, bimetallic alloys based on
nickel and noble metals Rh, Pt, or Ir can completely decompose hydrous hydrazine to produce
hydrogen selectively [76–79]. The H2 selectivity of bimetallic NPs is strongly dependent on the metal
ratio, and the alloy nano-catalyst with stable surface activity can achieve 100% hydrogen selectivity,
which is more active than the corresponding single-metal nano-catalyst [80]. It is reasonable to consider
that the coordination in bimetallic catalysts can adjust the bond mode of reactants, stabilize the reaction
intermediates on the catalyst surface, and improve the catalytic activity and stability. These bimetallic
nano-catalysts have good hydrogen selectivity for the dehydrogenation of hydrous hydrazine, but the
chemical kinetics are still exceedingly low [81].

5. H2 Selectivity in Hydrous Hydrazine Dehydrogenation

Although bimetallic nano-catalysts have a good hydrogen selectivity for the decomposition of
hydrous hydrazine, chemical kinetics are still intensely low [82]. In subsequent studies, Zhu et al. [83]
found that the presence of basic additives, such as NaOH, was beneficial to increase the catalytic activity
and selectivity of metal catalysts for hydrogen production from hydrous hydrazine. When NaOH is
added at 0.5 M, the selectivity of Ni45Pt55 increases from 61% to 86%, and the selectivity of Ni50Ir50

increases from 7% to 95% at 25 ◦C [84]. The alkaline solution makes the surface of the catalyst highly
alkaline, which helps to inhibit the formation of alkaline selectivity, and thus favors the formation of
H2. In addition, with the increase of the reaction temperature, the catalytic performance is significantly
improved [85]. In the presence of NaOH, highly dispersed surfactant Ni-Pt NPs were synthesized,
in which NaOH plays an important role in the formation and stability of small-size NPs. The crystalline
porous structure of metal organic frameworks (MOFs) can restrict the migration and aggregation of
metal NPs. The MOF-supported bimetallic NPs [86] have recently been reported as the catalysts of
high properties for the selective decomposition of hydrazine.

6. Catalytic Effect of Different Supports on Hydrous Hydrazine

Extensively used industrial heterogeneous catalysts are usually composed of metal nanoparticles
supported on a large surface area. In recent decades, with the discovery of metal-carrier interactions,
the significance of the oxides has been recognized to an increasing extent. Apart from dispersing
metal particles, oxide supports also play a role in influencing the catalytic performance of metal
catalysts through electronic or geometric effects. Representative oxides include CeO2, TiO2, and Fe2O3.
The strategies to further improve its performance, including the choice of metal composition and the
adjustment of metal-carrier interaction, have been analyzed [87]. In heterogeneous catalysis, support
in the nano-catalyst may play a key role in the whole process. On the one hand, support can be used to
disperse and reduce the size of the metal nanoparticles during the synthesis process, thereby exposing
more active sites and leading to the improvement of catalytic performance. On the other hand, coupling
metal nanoparticles with a support may introduce additional synergistic effects, so inherently changing
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the physical and chemical properties of the interface between them. Therefore, the catalytic activity
and selectivity can be adjusted by changing different supports.

6.1. TiO2-Decorated Ti3C2Tx

In 2020, Ni-Pt nanoparticles (NPs) dispersed on TiO2-decorated Ti3C2Tx (denoted as DT-Ti3C2Tx)
nanosheets were prepared (Lu et al.) [88] by a facile wet chemical reduction method and used as an
effective catalyst for dehydrogenation of N2H4 as shown in Scheme 1. The oxygen-rich functional
groups on the surface of DT-Ti3C2Tx not only contributed to the formation and fixation of monodisperse
Ni-Pt NPs, but also enhanced the synergy between metal NPs and the MXene carrier. In all the tested
samples, the best Ni0.8Pt0.2/DT-Ti3C2Tx nano-catalyst showed 100% H2 selectivity and the optimal
catalytic performance. The turnover frequency (TOF) value of the selective dehydrogenation of N2H4

at 323 K was 1220 h−1. Ni-Pt alloy NPs were evenly dispersed on DT-Ti3C2Tx nanosheets with an
average size of 2.8 nm. DT-Ti3C2Tx in Ni-Pt/DT-Ti3C2Tx acts as an electron donor for Ni-Pt NPs to
enhance the electron density of Ni-Pt NPs. Appropriate oxidation of Ti3C2Tx MXene can augment the
number of oxygen-containing functional groups on the surface of Ti3C2Tx, which plays an important
role in fixing the small particle size Ni-Pt NPs and promoting the synergy between Ni-Pt NPs and
DT-Ti3C2Tx. The Ni-Pt/DT-Ti3C2Tx catalyst shows strong activity, 100% H2 selectivity, and excellent
durability in the production of hydrogen from hydrazine and hydrazinoborane in aqueous solution.
In addition, DT-Ti3C2Tx supports other bimetallic NPs and also shows splendid catalytic activity,
emphasizing the generality of DT-Ti3C2Tx as a carrier.
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6.2. CeO2

In 2018, Luo et al. [89] reported excellent catalytic properties for the co-reduction composite of
Ni-Pt nanoparticles supported on CeO2 nanospheres and the generation of hydrogen from hydrazine
basic solutions at ambient temperature. As can be seen from Figure 3a, Ni-CeO2 has almost no catalytic
activity. However, when Ni-CeO2 is alloyed with Pt, Ni-Pt-CeO2 catalysts with different metal ratios
show strong catalytic activity and selectivity. As can be seen from Figure 3b, the dehydrogenation
effect of the Ni-Pt alloy catalyst on hydrous hydrazine is different with different supports, and the
catalytic performance of Ni-Pt-CeO2 is the best, which indicates that the CeO2 nanosphere is one of the
key factors to promote the catalytic performance. Through the interaction between Ni-Pt and CeO2,
the Ni5Pt5-CeO2 catalyst has remarkable catalytic activity, 100% hydrogen selectivity, and hydrazine
dehydrogenation selectivity, and the TOF value is 416 h−1 at room temperature.
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Wang et al. [90] prepared the Ni50Pt50/CeO2 catalyst, as shown in Scheme 2, in 2019 and then
transferred it to a sealed polytetrafluoroethylene-lined autoclave for aging treatment. Under an H2

atmosphere, the resulting black sediment is finally reduced at a high temperature to obtain a tar
electronic catalyst. According to ICP-AES elemental analysis, the actual composition of the target
Ni50Pt50/CeO2 catalyst is 50.3 mol% Ni50.4Pt49.6/49.7 mol% CeO2, which is close to the originally
designed atomic ratio. In order to better understand the phase evolution of the catalyst during
preparation, they combined phase/microstructure/chemical state analysis of samples collected at
different stages. It was found that the preparation of the catalyst involved the structure of [(CH3)4N]

2PtCl6 and CeNi0.5Ox in the coprecipitation step and their evolution in the consecutive reduction
and aging process. Preventing [(CH3)4N]2PtCl6 corrosion of metal Pt during aging is an essential
procedure in the preparation process. It has a profound impact on the cracking performance of the
catalyst on the composition, microstructure characteristics, and corresponding catalyst of metal Pt.
Their study clearly describes for the first time the phase/structure evolution during the preparation
of Ni50Pt50/CeO2 catalyst. This may lay the foundation for future rational design and control of
the synthesis of high-performance catalysts to promote the production of chemical hydrides such
as N2H4·H2O.
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A simple impregnation-reduction method was used to prepare a monolithic catalyst consisting of
Ni-Pt/CeO2 nanoparticles and granular activated carbon (GAC) by Wang et al. [91] in 2018, as shown in
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Figure 4. The study found that the catalyst activity, H2 selectivity, and atmosphere can be easily adjusted
by transforming the annealing temperature. The optimum Ni-Pt/CeO2/GAC catalyst can completely
decompose N2H4·H2O into H2 in the presence of 1M NaOH at moderate temperature, with 100%
selectivity. Significantly, by utilizing this monolithic catalyst, they have formed an N2H4·H2O-based
H2 generation (HG) system with a material hydrogen capacity of up to 6.54 wt%.

Catalysts 2020, 10, x FOR PEER REVIEW 8 of 21 

 

shown in Figure 4. The study found that the catalyst activity, H2 selectivity, and atmosphere can be 

easily adjusted by transforming the annealing temperature. The optimum Ni-Pt/CeO2/GAC catalyst 

can completely decompose N2H4∙H2O into H2 in the presence of 1M NaOH at moderate temperature, 

with 100% selectivity. Significantly, by utilizing this monolithic catalyst, they have formed an 

N2H4∙H2O-based H2 generation (HG) system with a material hydrogen capacity of up to 6.54 wt%. 

  

Figure 4. The system composed of a concentrated N2H4∙H2O solution and a high-performance 

monolithic catalyst yielded a hydrogen capacity of 6.54 wt%, which is promising for on-board 

application; copyright (2018), American Chemical Society. 

6.3. Al2O3 

In 2012, Pt-modified Ni/Al2O3 catalysts were synthesized by Zhang et al. [92] and studied in the 

dissociation of hydrous hydrazine, as shown in Figure 5. Compared to Ni/Al2O3, TOF was found to 

be 7 times stronger in Ni-Pt, and the selectivity to H2 was improved to 98%. The results show that the 

formation of Pt-Ni alloy weakens the adsorption state, including the interaction between H2 and NHx 

and Ni atoms on the surface. On the Ni-PtX/Al2O3 catalyst, the weakening effect can explain the 

increase of reaction rate and H2 selectivity. 

 

Figure 5. Catalytic performance tests of the Ni-Pt-Al2O3 catalyst with different molar ratios of metal 

in the presence of Ni, Ni-Pt0.014, Ni-Pt0.027, Ni-Pt0.057, and Ni-Pt0.074; copyright (2012), Elsevier. 

Figure 4. The system composed of a concentrated N2H4·H2O solution and a high-performance
monolithic catalyst yielded a hydrogen capacity of 6.54 wt%, which is promising for on-board
application; copyright (2018), American Chemical Society.

6.3. Al2O3

In 2012, Pt-modified Ni/Al2O3 catalysts were synthesized by Zhang et al. [92] and studied in the
dissociation of hydrous hydrazine, as shown in Figure 5. Compared to Ni/Al2O3, TOF was found to
be 7 times stronger in Ni-Pt, and the selectivity to H2 was improved to 98%. The results show that
the formation of Pt-Ni alloy weakens the adsorption state, including the interaction between H2 and
NHx and Ni atoms on the surface. On the Ni-PtX/Al2O3 catalyst, the weakening effect can explain the
increase of reaction rate and H2 selectivity.
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Catalysts 2020, 10, 930 9 of 21

6.4. Graphene Oxide (GO)

In 2018, Xu et al. [93] used the wet chemical reduction method, as shown in Figure 6a, to fix the
ultrafine and uniform dispersion bimetallic Pt-Ni nanoparticles (NPs) onto a new three-dimensional
N-doped graphene network (NGNs), which was fabricated by cross-linking graphene oxide (GO) with
melamine-formaldehyde resin (MFR) and N-dope graphene layers. As can be seen from Figure 6b,
the scanning electron microscope of NGNs-850 and Pt0.5Ni0.5 NGNs-850 showed a porous 3D structure
with randomly opened stomatal layers. The evenly dispersed Pt0.5Ni0.5 NPs on NGNs-850 can be seen
from the transmission electron microscope (TEM) and high-angle annular dark-field scanning image
of Pt0.5Ni0.5 NPs on Figure 6c–f Pt0.5Ni0.5/NGNs-850. The average particle size is 2.2 nm. The main
purpose of this work is to show that the prepared Pt0.5Ni0.5/NGNs-850 catalyst has very high catalytic
activity for hydrous hydrazine to produce hydrogen, and its catalytic activity is 943 h−1 at 303 K.
The high property of the catalyst is mainly due to the ultra-small size effect, the powerful synergy
between Pt and Ni atoms, as well as the excellent porous structure of the 3D network. This was
achieved by increasing the interaction between the graphene surface and the metallic species through
N-bonding and graphene cross-linking.
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Figure 6. (a) Schematic illustration for the synthesis of 3D nitrogen-doped graphene networks
(NGNs−850) and Pt0.5Ni0.5/NGNs−850, (b) SEM image displaying the 3D framework of
Pt0.5Ni0.5/NGNs-850, (c) the transmission electron microscope (TEM) and (d) and (e) high-angle
annular dark-field scanning microscope (HAADF STEM) images showing the presence of ultra-fifine
and highly dispersed Pt-Ni nanoparticles (NPs) in Pt0.5Ni0.5/NGNs-850, and (f) the corresponding size
histograms of Pt-Ni NPs in Pt0.5Ni0.5/NGNs-850; copyright (2018), Journal of Materials Chemistry A.

In 2020, Lu et al. [94] reported a low Ni-Pt-containing bimetallic catalyst immobilized on a new
MIL-101/rGO composite prepared by a simple and easy impregnation-reduction method (Figure 7).
It was discovered that the synthesized Ni-Pt/MIL catalyst has the best catalytic performance and 100%
hydrogen selectivity for the hydrogen evolution of hydrous hydrazine at 323 K alkalinity. The turnover
frequency value (TOF) is 960 h−1. In addition, the Ni-Pt/MIL catalyst also shows excellent durability.
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Figure 7. A low Pt-containing Ni-Pt nano-catalyst immobilized on a metal organic framework
(MOF)/rGO composite has been synthesized for hydrogen production from hydrous hydrazine and
hydrazine borane; copyright (2020), Elsevier.

Xu et al. [95] fixed the ultrafine bimetallic Pt-Ni nanoparticles (NPs) with an average size of 1.8 nm
to zirconia/porous carbon/graphene oxide (ZrO2/C/rGO) by the wet chemical reduction method using
the template for a metal-organic skeleton shown in the Scheme 3. Unexpectedly, hydrogen is generated
from hydrazine, and an extremely high turnover frequency value can be provided to 1920 h−1 at 323 K.
The high enhanced catalytic activity can be attributed to the small size effect, the strong synergistic
effect between Pt and Ni atoms, and the strong metal-support interaction.
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Cheng et al. [96] have successfully synthesized ultrafine monodisperse Ni-Pt alloy NPs by
conjugating nickel acetylacetonate and platinum acetylacetonate with borane-tert-butylamine (BTB) in
90 ◦C oleylamine (Figure 8). The composition of Ni-Pt NPs is controlled by changing the initial molar
ratio of the metal precursor. Ni-Pt NPs were deposited on graphene, and the catalytic dehydrogenation
of hydrazine alkaline solution was tested under ambient conditions. Among all the tested catalysts,
Ni84Pt16/graphene showed 100% hydrogen selectivity and had obvious high catalytic activity. The TOF
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value at 50 ◦C was 415 h−1 and the TOF value at 25 ◦C 133 h−1, higher than most reported values.
It is believed that the metal composition-controlled synthesis of ultrafine alloy NPs with a limited
size distribution strongly promotes the practical application of aqueous hydrazine as a hydrogen
storage material.
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with turnover frequency (TOF) values of 415 h−1 at 50 ◦C and 133 h−1 at 25 ◦C for hydrogen generation
from alkaline solution of hydrazine; copyright (2015), ACS Publications.

6.5. La2O3

Wang et al. [97] reported the catalytic decomposition of concentrated hydrous hydrazine solutions
over La2O3-supported Ni-Pt alloy catalysts. The Ni-Pt/La2O3 catalyst synthesized by one-step
coprecipitation method has high catalytic activity and 100% selectivity. In particular, their research
demonstrated that a system consisting of concentrated N2H4·H2O solutions, a high capability
Ni-Pt/La2O3 catalyst, and an adequate amount of alkali accelerator can produce 6% of the material’s
hydrogenation capacity. As shown in Figure 9, the catalytic performance of the Ni-Pt/La2O3 catalyst is
highly dependent on Pt content. The Pt/La2O3 catalyst was completely deactivated, and the Ni/La2O3

catalyst showed worse catalytic activity and moderate dehydrogenation selectivity. Compared with
the Ni/La2O3 catalyst, the catalytic activity of the Ni-Pt/La2O3 catalyst with Pt/Ni Mole ratio of 1/9 was
increased by 40 times, and the selectivity of H2 was increased from 72% to 100%. When the molar
ratio of Pt/Ni increased to 2/3, the catalyst showed the best catalytic property. In the presence of 3.0 M
NaOH, it can completely decompose N2H4·H2O in 1.5 min at 30 ◦C. Assuming that all the nickel atoms
are involved in the catalytic reaction, the average reaction rate on the Ni60pt40/La2O3 catalyst can reach
448 h−1. Studies have shown that the best Ni60Pt40/La2O3 catalyst can complete the decomposition
reaction of N2H4·H2O in the presence of 3.0 M NaOH at 30 ◦C to generate hydrogen at a rate of 448 h−1.

In this paper [98], the supported Ni@Ni-Pt La2O3 catalyst with core-shell structure was synthesized
by coprecipitation and galvanic displacement method. The catalyst has high catalytic activity and
100% selectivity for hydrous hydrazine hydrogenation under mild conditions, which is superior to
most reported hydrous hydrazine decomposition catalysts. The good catalytic performance of the
Ni@Ni-Pt La2O3 catalyst is related to the electronic and geometric modification induced by Pt on the
surface of the catalyst. When the reaction temperature was raised from 30 ◦C to 60 ◦C, the reaction rate
increased about 6 times, as shown in Figure 10. Interestingly, there was no effect of the temperature
on H2 selectivity. The decomposition of N2H4·H2O over the Ni@Ni-Pt La2O3 catalyst has 100% H2

selectivity in the temperature range of 30–60 ◦C.
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6.6. CN

Highly dispersed Pt-Ni nanoparticles (NPs) were synthesized on the surface of carbon nanodots
(CNDs) with metal-organic framework ZIF-8 as a raw material [99] (Scheme 4). The obtained Pt-Ni-CND
catalyst has 100% H2 selectivity and distinguished activity for the decomposition of N2H4·H2O at
an ambient temperature. Carbon nanotubes (CNTs) were used as the support of NPs to promote
the kinetics of electron transfer and mass transfer in the catalytic reaction. The introduction of
water-soluble CNDs was able to effectively anchor NPs, control the small size of NPs, and guard
against the aggregation in solution. Compared with the traditional water-soluble NPs, due to the lack
of long-chain organic groups on CNDs, the NPs immobilized on CNDs have more catalytic sites for
the contact between reactants and NPs. The results show that the synthesized NP-CND catalyst has
high activity for hydrous hydrazine decomposition at room temperature.
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In this paper [100], a layered nanostructure Ni-Pt/N-doped carbon peroxide is synthesized
without three steps, which can solve these problems simultaneously (Scheme 5). N-doped carbon
substrate and catalytic active Ni-Pt nanoparticles were formed by the chelation of metal precursors
with dopamine and the thermal decomposition of the complexes in reducing atmosphere. Due to the
use of silicon dioxide templates and dopamine precursors, the N-doped carbon substrate has a layered
macroporous structure. This, coupled with the evenly dispersed tiny Ni-Pt nanoparticles on the carbon
substrate, provides opportunities for rich and accessible activity. Because of these favorable properties,
the Ni-Pt/N-doped carbon catalyst can completely and rapidly produce hydrogen in basic N2H4·H2O
solution at 50 ◦C at a rate of 1602 h−1, which is superior to existing N2H4·H2O decomposition catalysts.
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In 2019, Wan et al. [101] designed a series of Ni-Pt/CNTs catalysts and prepared Ni-Pt/CNTs
catalysts by wet chemical reduction method (Scheme 6). The crystal structure, chemical state,
and morphology of the catalyst were characterized in detail. In these catalysts, Ni0.4Pt0.6/CNTs have
higher catalytic activity, a turnover frequency at 50 ◦C of 1725.3 h−1, and a low Ea of 36.3 KJ mol−1.
Ni0.4Pt0.6/CNTs is a promising catalyst for the production of hydrogen from hydrazine hydrolysate.

Cheng et al. [102] reported a simple Ni-Pt-MnOx synthesis method to support nitrogen-doped
porous carbon (NPC) from annealed metal-organic skeleton MOFs at different temperatures in Ar.
Interestingly, the produced (Ni3Pt7)0.5–(MnOx)0.5/NPC-900 exhibitors showed better catalytic activity
for the dehydrogenation of hydrazine in alkaline solution, with primary turnover frequencies of 706
and 120 h−1 at 323 K and ordinary temperature, respectively. Because of the synergistic electronic effect
of Ni-Pt and MnOx and the small-scale size and lofty dispersion of the Ni-Pt-MnOx nano-catalyst, NPC,
as an excellent carrier, may have excellent catalytic performance, large pore volume, high specific surface
area, high nitrogen content and conductivity, and the high density of metal-n active sites between
Ni-Pt-MnOx and NPC. As shown in Figure 11, the presence of OH- limits the formation of undesirable
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N2H5
+ in aqueous solutions and promotes the cleavage of the N–H bond during the determination

of the hydrazine dehydrogenation reaction. The decomposition of (Ni3Pt7)0.5–(MnOx)0.5/NPC-900 in
alkaline solution may be concerned with the following steps: first, target N2H4 adsorption may be
intensified due to the illustrious surface area and porosity of NPC-900; second, N2H4 decomposition
into N2 and H2, the rate of desorption of N2 and H2 molecules generated; third, desorption of the
resultant N2 and H2 molecules as shown in Figure 11. Furthermore, the charge transfer process was
involved in the above three steps, which can be promoted by the NPC-900 porous network with high
conductivity and graphitization, as well as the introduction of nitrogen atoms and MnOx. This can
explain the splendid catalytic performance of (Ni3Pt7)0.5–(MnOx)0.5/NPC-900 catalyst.
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6.7. Summary

Chemical hydrogen storage materials need to be efficiently catalyzed by a suitable catalyst to
release hydrogen efficiently over a wide temperature range and to meet environmental standards [103].
The research results show that hydrous hydrazine can meet the above requirements. The developed
Pt-based catalysts mainly include Ni-Pt alloy catalysts [104], Ni-Pt-supported catalysts [105],
and Ni-Pt-YOx-supported multi-metal catalysts [102]. Among them, Ni-Pt-supported catalysts
and Ni-Pt-YOx-supported multi-metal catalysts have high practicality. The Ni-Pt alloy effect, the strong
interaction between Ni-Pt and the support, and the synergistic effect between the metal oxide and
Ni-Pt are the reasons for the high activity and hydrogen selectivity of the catalyst. In the future,
the development direction of catalysts will tend to be low-cost, low reaction temperature, and low
operating costs to meet the needs of large-scale hydrous hydrazine catalytic hydrogen production.
On the one hand, the presence of Pt and Ni in the Pt-Ni alloy state is an important factor for the high
activity of the catalyst; on the other hand, the carrier rGO also plays a supporting and synergistic role,
making the hydrazine molecule preferentially break the N–H bond on the catalyst surface to promote
the decomposition reaction to proceed completely [106]. The introduction of metal Ce can significantly
improve the catalytic activity and hydrogen selectivity of the catalyst to catalyze the decomposition of
hydrous hydrazine to produce hydrogen. The study also found that only the proper amount of Ce can
be introduced to ensure the high activity of the catalyst, the high dispersion of Ni-Pt-CeOx, and the
strong interaction between Ni-Pt-CeOx and the support. The excellent activity of the catalyst is due to
the synergistic electronic effect between Ni-Pt alloy particles and MnOx.

7. Conclusions

The research progress of Pt-based catalysts for catalytic hydrogen production from hydrous
hydrazine decomposition is reviewed. The decomposition of hydrous hydrazine includes two ways:
complete decomposition and incomplete decomposition. Its hydrogen content is as high as 8.0 wt%,
which has a good application prospect. Pt-based catalysts play an important role in catalyzing the
selective decomposition of hydrous hydrazine to produce hydrogen. They are mainly divided into
Pt-support catalysts, Pt-Ni alloy catalysts, Pt-Ni-supports catalysts, and Pt-Ni-YOx-support multi-metal
catalysts (Y is Mn, Ce). Due to the synergistic effect between the metal oxides YOx and Pt-Ni, and the
strong interaction between the metal or metal composite and the carrier, the Ni-based catalyst exhibits
high catalytic activity and has a good effect on hydrogen in the production of hydrous hydrazine 100%
selectivity. In addition, the existence of basic additives is helpful to improve the catalytic activity
and selectivity of metal catalysts. We look forward to providing some reference for improving the
hydrogen economy of the catalyst and other applications.
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