## **Supplementary Materials**

# Noble Metal Modification of CdS-Covered CuInS<sub>2</sub> Electrodes for Improved Photoelectrochemical Activity and Stability

Toshihiro Takashima<sup>a,b\*</sup>, Yukitaka Fujishiro<sup>b</sup>, and Hiroshi Irie<sup>a,b</sup>

- a. Clean Energy Research Center, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
- b. Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
- 1. XRD pattern of CuInS<sub>2</sub> electrode before and after sulfurization
- 2. SEM images of CuInS<sub>2</sub> film
- 3. SEM image of electrodeposition Pt nanoparticles
- 4. Effect of CdS and Pt deposition on photo response of CuInS<sub>2</sub> electrode
- 5. Band characteristics of the synthesized CdS film
- 6. Comparison of polarization curves of Pt/CdS/CuInS2 electrodes
- 7. Change in XPS spectra between before and after photoelectrochemical CO2 reduction
- 8. SEM images of Au/CdS/CuInS2 and Ag/CdS/CuInS2 electrodes

## 1. XRD pattern of CuInS2 electrode



Figure S1. XRD patterns of CuInS<sub>2</sub> electrode measured (a) before and (b) after sulfurization.

## 2. SEM images of CuInS<sub>2</sub> film



Figure S2. (a) Top-down and (b) cross-sectional views of CuInS<sub>2</sub> film.

3. SEM image of electrodeposition Pt nanoparticles



Figure S3. A magnified SEM image of Pt0.88/CdS/CuInS2 electrode.

4. Effect of CdS and Pt deposition on photo response of CuInS2 electrode



**Figure S4.** Polarization curves of CuInS<sub>2</sub>, CdS/CuInS<sub>2</sub>, and Pt<sub>0.88</sub>/CdS/CuInS<sub>2</sub> electrodes measured under irradiation of visible light ( $\lambda > 420$  nm).

#### 5. Band characteristics of the synthesized CdS film



**Figure S5.** (a) UV-vis absorption spectrum, (b) Tauc plot, and (c) Mott–Schottky plot of CdS film. (d) Band alignment of the synthesized CdS film deduced from the results shown in (a)–(c).

#### 6. Comparison of polarization curves of Pt/CdS/CuInS2 electrodes



Figure S6. Polarization curves of (a) Pt<sub>0.22</sub>/CdS/CuInS<sub>2</sub>, (b) Pt<sub>0.44</sub>/CdS/CuInS<sub>2</sub>, (c) Pt<sub>0.66</sub>/CdS/CuInS<sub>2</sub>, (d) Pt<sub>0.88</sub>/CdS/CuInS<sub>2</sub>, and (e) Pt<sub>1.00</sub>/CdS/CuInS<sub>2</sub> electrodes.

7. Change in XPS spectra between before and after photoelectrochemical CO2 reduction



**Figure S7.** XPS spectra of Pt<sub>0.88</sub>/CdS/CuInS<sub>2</sub> electrode measured before and after 120 min of photoelectrochemical CO<sub>2</sub> reduction experiment.

8. SEM images of Au/CdS/CuInS2 and Ag/CdS/CuInS2 electrodes



Figure S8. SEM images of (a) Au/CdS/CuInS2 and (b) Ag/CdS/CuInS2 electrodes.