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Abstract: In this study, the photocatalytic properties of novel keratin char-TiO2 composite films,
made through the calcination of wool keratin coatings containing TiO2 precursors at 400 ◦C, were
investigated for the photodegradation of organic contaminants under visible light irradiation. Its
structural characteristics and photocatalytic performance were systematically examined. It was
shown that a self-cleaning hydrophobic keratin char-TiO2 composite film containing meso- and
micro-pores was formed after the keratin—TiO2 precursors coating was calcined. In comparison
with calcinated TiO2 films, the keratin char-TiO2 composite films doped with the elements of C,
N, and S from keratins resulted in decreased crystallinity and a larger water contact angle. The
bandgap of the char-TiO2 composite films increased slightly from 3.26 to 3.32 eV, and its separation
of photogenerated charge carriers was inhibited to a certain degree. However, it exhibited higher
photodegradation efficiency to methyl blue (MB) effluents than the pure calcinated TiO2 films. This
was mainly because of its special porous structure, large water contact angle, and high adsorption
energy towards organic pollutants, confirmed by the density functional theory calculations. The
main active species were 1O2 radicals in the MB photodegradation process.

Keywords: wool keratin; char-TiO2; composite film; photocatalytic

1. Introduction

The semiconductor TiO2 can be used in a wide range of applications such as paints,
cosmetics, photoelectric sensors, energy conversion and storage, air and water purifica-
tions, and removal of organic pollutants [1]. With respect to photocatalysis, it is considered
one of the most excellent photocatalytic materials due to its low cost, less toxicity, good
physical and chemical stabilities, and high photocatalytic activities [2]. In general, TiO2
has three phase structures, namely rutile, anatase and brookite, and anatase and rutile
TiO2 can be applied in the field of photocatalysis [3]. The theoretical band gaps are 3.2 eV
for anataseTiO2, and 3.0 eV for rutileTiO2, and their corresponding absorption edges are
separately located at 388 nm and 414 nm [4]. In comparison with rutile TiO2, anatase
TiO2 exhibits stronger photocatalytic activity due to its high local state density, abundant
surface hydroxyl radicals, and long lifetime photogenerated charge carriers [5]. However,
both can only be excited by ultraviolet rays [6], and their photocatalytic activities are
impaired to some degree due to the rapid recombination of photogenerated electron-hole
pairs [7]. However, the decreased particle size of TiO2 particles can lead to the agglomer-
ation phenomenon, which will hinder the incidence of light into the active center [8]. In
addition, the separation, recovery, and reuse of nano-scaled TiO2 photocatalysts pose many
environmental, health, and safety problems in practical application [9].
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Doping TiO2 with metal or non-metal elements is regarded as an effective and feasible
strategy for enhancing light harvesting and minimizing the energy band gap of TiO2 [10]. It
broadens the photo-response range towards visible light or infrared, thereby inhibiting the
recombination of photogenerated electron-hole pairs [11]. Many efforts have been devoted
to improving the photocatalytic activity of TiO2 by using metal or non-metal elements
doping, core-shell structure constructing, and heterogeneous composition. Compared
with metal ions doping, the non-metal elements doping into TiO2 have the benefits of
simple doping process, high photocatalytic stability, and activity [12]. It is demonstrated
that non-metal elements like N, C, S, and P can efficiently improve the photocatalytic
activity of TiO2 [13]. The C element possesses high thermal stability, which can promote
the adsorption of organic molecules on the TiO2 surface and produce a hybrid orbital over
the valence level of TiO2, thereby enhancing the separation of electron and hole pairs [14].
Likely, the interstitial or substitutional N element doping can lead to the red-shift of the
absorption edge of N-doped TiO2, which results in the formation of oxygen vacancies
because its atomic size is very close to that of oxygen [15]. The band gaps of N-doped [16]
and W, N co-doped [17] anatase TiO2 are reduced from around 3.2 eV to 2.20 eV. The
co-doping of N and S elements is beneficial to increase the electronic conductivity of N, S
co-doped TiO2 by creating localized states in its band gap structure [18].

TiO2 film is endowed with unique mechanical, physical, and chemical features, includ-
ing tunable band gap, high refractive index, large surface area, and enhanced photocatalytic
activity [19]. It can be applied to various substrates instead of granular materials, which
greatly saves costs, prevents secondary pollution, and is widely used in sensors, sunscreen,
environmental purification, water decomposition, self-cleaning and antibacterial materi-
als [20]. The technique for preparation of TiO2 film includes chemical vapor deposition,
spray, sputtering, liquid deposition, and sol-gel methods. The sol-gel spin-coating process
is the simplest and most favored procedure to fabricate TiO2 film due to its high efficiency,
uniformity, and reliability, which can be performed at room temperature without using
special equipment [19].In this process, the precursor of metal alcohol oxygen compound or
inorganic metal salt is first hydrolyzed and then polycondensed to form a TiO2 colloidal
suspension, and finally deposited on a support substrate via the dip coating or spin coating
to construct a film with a certain thickness [21]. It is reported that the thickness of TiO2 film
influences the photodegradation performance [22]. By controlling the concentration and
viscosity of the sol-gel solution, photocatalytic films with different porosities and textures
can be obtained [23]. The substitutional and interstitial N doping into rutile (110) orientated
TiO2 films can induce reverse rutile to anatase phase transition at high temperature [24].

It is known that wool is primarily made of 95% keratin proteins, consisting of
7–20 mol% cysteine residue and around 0.1% lipid and 0.5% minerals [25]. Wool ker-
atin is a kind of polypeptide that is constituted by different amino acids. These amino
acids are cross-linked by the inter-molecular bonding resultant from the disulfide cysteine
amino acid and the inter-and intra-molecular bonding resultant from polar and nonpolar
acids [26]. Besides, wool keratin is stabilized by other bonds, including hydrophobic,
hydrogen, and ionic bonds [26]. Wool fibers are a kind of natural protein textile material
having unique properties, which depend upon its chemical composition and morpho-
logical characteristics [27]. The water insolubility, chemical resistance, biodegradability,
and good mechanical properties of wool fibers are mainly determined by the disulfide
bond of keratin [28]. However, under the action of alkaline, or hydrolytic enzymes, or
reducing/oxidizing chemical reagents, the disulfide bonds can be broken, thereby leading
to the hydrolysis of wool keratin [29]. It is confirmed that the C, N, O, and S co-doping from
wools can enhance the photocatalytic activity of rutile TiO2 particles [30]. The primary
reactive radical of TiO2 modified wool powders are holes and •O2, 1O2, and •OH also
take part in the photodegradation of MB dyes under visible light irradiation [31]. Porous
wool keratin film can be applied for filtration, air purification, and tissue engineering [32].
However, TiO2 nanoparticles doped with wool keratins might be prone to alkaline effluents
due to the nature of keratin. It is envisaged that keratin char-TiO2 nanoparticle composite
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catalysts could still be doped with the elements of C, N, S from keratin and might still
have higher efficiency while resistant to harsh alkaline effluents conditions. The keratin
hydrogel-TiO2 composites have been developed for the high-efficiency adsorption and
photodegradation of trimethoprim under UV and visible light irradiation [33]. TiO2 parti-
cles are dispersed in polylactic acid (PLA) solution in the presence of feather keratin and
clay to prepare the keratin/PLA/TiO2/clay nanofibers. The as-prepared nanofibers not
only adsorb and remove the MB dye from the aqueous solution but also degrade the MB
dye under UV irradiation [34]. Currently, neither keratin char-TiO2 nanoparticle composite
films have been investigated, nor have the porous films composed of TiO2 nanoparticles
doped with the elements C, N, and S from keratins char been reported.

In the present work, a novel type of keratin char-TiO2 composite films doped with C,
N, and S elements from wool keratins was prototyped through the calcination of keratin
coatings containing TiO2 precursors. The photocatalytic structures and properties of the
keratin char-TiO2 composite films were investigated, and its photodegradation efficiency
to MB under visible light irradiation was reported. Wool keratin was extracted from
wool fibers firstly using reducing agents. A spin-coating technique was then alternatively
applied to deposit wool keratin and TiO2 precursors films on quartz glass substrates,
followed by annealing at 400 ◦C. The morphology, surface roughness, phase structure,
microstructure, chemical bonding state, hydrophilic properties, energy band structures, and
separation of photoinduced charge carriers of the as-prepared keratin char-TiO2 composite
films were analyzed. The photocatalytic mechanism of its photodegradation to MB dyes
was elucidated. The role of wool keratin’s C, N, and S elements on the photocatalytic
properties of keratin char-TiO2 composite films were verified by density functional theory
(DFT) calculations.

2. Results and Discussion
2.1. Molecular Weight of Wool Keratins

The electrophoretic mobilities of wool keratins and marker proteins were compared to
estimate the molecular mass of as-prepared wool keratins [35]. The electrophoretic separa-
tion patterns of standard and wool keratins are depicted in Figure 1. The molecular weight
from 14 to 97 kDa was applied to line a of Figure 1 for calibration. The electrophoretic
patterns of wool keratin (lines 1 and 2) indicated that the broad dull bands with a low
molecular weight of 31–14.4 kDa were ascribed to the high sulfur proteins of wool ker-
atin. In contrast, the high molecular weight bands (66.2–43 kDa) correlated with the wool
cortex’s low-sulfur intermediate filaments proteins having a typical α-helix secondary
structure [28].
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2.2. Morphology and Surface Roughness of As-Prepared Keratin char-TiO2 Films

The FESEM and laser microscopy images of the TiO2 films and keratin char-TiO2
composite films before and after calcination are displayed in Figure 2. It was noticed
that a compact coating was homogeneously deposited on the glass substrate for all four
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films. After calcination, the surface roughness increased from 1.0 to 3.2 nm for the TiO2
films and from 3.2 to 9.7 nm for the keratin char-TiO2 composite films with spot-like
features. This was because of the crystallization growth of TiO2 grains with phase changes
from amorphous to anatase at 400 ◦C [36]. The surface roughness of the keratinchar-TiO2
composite films was larger than that of the TiO2 ones, suggesting the macromolecular
chains of wool keratin could lead to the agglomeration of TiO2. The annealing treatment
accelerated the crystal growth and agglomeration of TiO2 nanoparticles with improved
crystallinity [20], contrary to the previous reports [37]. The cross-section FESEM images
showed that the thicknesses of the TiO2 films and keratin char-TiO2 composite films were
in the sub-micrometer range with good adherence to the substrate. The magnified FESEM
images of their cross-sections and surfaces demonstrated that many meso- and micro-
porous holes existed in both the internal and surface of all the four films, which was in
agreement with TiO2 film generated from the sol-gel process [38]. After calcination, more
pores were produced in the keratin char-TiO2 composite film.
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cross-section, magnified cross-section and surface, and three-dimensional micrograph of the films, respectively).
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2.3. Crystal Structures

The XRD patterns of the TiO2 films and keratin char-TiO2 composite films before
and after calcination, as well as TiO2 particles, are manifested in Figure 3. The broad
diffraction peak at around 2θ = 22◦ in the XRD patterns for all the films belonged to the
characteristic peak of quartz glass [39]. Prior to annealing, no diffraction peak could
be found in the patterns of the TiO2 and keratin char-TiO2 films, implying TiO2 was an
amorphous structure. After calcination, a relatively weak diffraction peak at 25.1◦ was
detected in the patterns of the calcined films because of the low loading of TiO2. This
was attributed to the (101) crystal plane of anatase phase TiO2 (JCPDS No. 21-1272). The
peak intensity of the calcined TiO2 film was stronger than that of the calcined keratin
char-TiO2 composite film along the preferred (101) plane growth orientation. Thus, the
incorporation of wool keratin into TiO2 affected the crystallization of TiO2 to a certain
degree. For comparison, the XRD pattern of pure TiO2 nanoparticles indicated that the
characteristic diffraction peaks at 25.1◦, 37.8◦, 47.8◦, 54.2◦, 55.4◦, 62.4◦, and 75.3◦ were well
matched with the (101), (004), (200), (105), (211), (204), (116), (220), and (215) crystal planes
of tetragonal anatase TiO2 [40]. According to the Scherrer formula [41], the mean crystal
size of pure TiO2 nanoparticles was calculated to be 9.6 nm by measuring the diffraction
peak widths of (101), (004), and (200) crystal planes.
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2.4. Microstructures of the Calcined Films

The TEM images and selected area electron diffraction (SAED) patterns of the calcined
TiO2 film and calcined keratin char-TiO2 composite film are presented in Figure 4. It was
seen that after calcination, the crystalline TiO2 particles were formed, and the particle sizes
for both films were less than 10 nm with a uniform distribution, which were well consistent
with the calculated values from XRD. The crystal lattice spacing in high-resolution TEM
images were estimated to be 0.32 nm for both the calcined TiO2 film and calcined keratin
char-TiO2 composite film, which were close to 0.35 nm of anatase TiO2 [42]. Moreover,
the crystalline TiO2 nanoparticles were surrounded by disordered carbon layers. The
carbon-type structure was in-situ formed in the TiO2 films calcined at 400 ◦C because of
the oxidation of hydrocarbon compounds in air. However, the lattice spacing of carbon
was not found primarily because the calcination temperature was not high enough to
produce the crystal structure of carbon [43]. As shown in SAED patterns, the intensities
of the diffraction rings of calcined TiO2 nanoparticles were stronger than those of the
calcined keratin char-TiO2 ones. This implied that the crystallinity of the calcined TiO2
nanoparticles in keratin char-TiO2 composite film was not as great as pure TiO2 particles.
Namely, the smaller crystallinity was probably caused by a mixture of TiO2 and amorphous
char/carbon structures. As a result, the in-situ hybridization of C with TiO2 for both the
calcined films might improve the separation of photoinduced electron and hole pairs via
the electronic interaction between C and TiO2 crystals in the films. Besides, the N and S
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doping with TiO2 could further enhance the separation of photoinduced charge carriers in
the calcined keratin char-TiO2 composite film [30].
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2.5. Surface Contact Angles

The optical images of the water contact angles for all the films are represented in
Figure 5. The water contact angle of the blank quartz glass was 58.0◦. The hydrophilicity
of the calcined TiO2 film became better, and its contact angle decreased to 36.2◦ from 90.2◦

after calcination at 400 ◦C. The hydrophilic surface might be due to the removal of organic
components, the structure change from amorphous to anatase phase, and the increased
hydroxyl groups [44]. When wool keratin was introduced into TiO2, the contact angle of
the keratin char-TiO2 composite film increased to 96.6◦ because of the hydrophobic features
of wool keratin and the special topography of film [45]. However, the UV irradiation
could improve the keratin char-TiO2 composite film’s hydrophilicity to some extent with
a water contact angle of 72.3◦. The water contact angle of the calcined keratin char-TiO2
composite film decreased to 61.7◦, implying the limited enhanced wettability. Therefore,
the hydrophilic behavior of the films played a positive role in the photodegradation of the
MB dye solution [44].
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2.6. Chemical Bonds and Element Analyses

The XPS spectra of the TiO2 films and keratin char-TiO2 composite films before and
after calcination are revealed in Figure 6. The XPS survey spectra and chemical elements
confirmed the doping of N and S elements of keratins withTiO2. The relatively high contents
of the C element in both the uncalcined films (TiO2 40.60%, keratin-TiO2 53.22%) suggested
that the organic carbon layers acting as the photosensitizer existed in the boundaries of TiO2
grains, which would result in the interstitial carbon doping into TiO2 [46]. The intensities of
Ti and O elements in the TiO2 films and keratin char-TiO2 composite films were distinctly
enhanced after calcination owing to the loss of organic substances at high temperatures.
For the stoichiometric formation of TiO2,after calcination, the atomic concentration ratios
of O to Ti were reduced from 2.59 to 2.30 for the TiO2 films and from 3.78 to 2.27 for
the keratin char-TiO2 composite films. The corresponding atomic concentrations of the
C element decreased to 19.56% for the TiO2 films and 22.80% for the keratin char-TiO2
composite films.

The high-resolution XPS spectra indicated that C=C (carbide)andC-Ti4+/Ti3+, C-C/C-H,
and C-O groups existed in the C1s spectra of all the films. The number of active sites might
be increased because of the introduction of C element into the lattice of TiO2, which was
caused by the oxidation and decomposition of organic matter at 400 ◦C [47]. It meant the
Ti-C or Ti-O-C bonds between the Ti of the TiO2 and carbon content were formed at this
annealing temperature [48]. Hence, C doping could enhance the photocatalytic properties
of TiO2 film. The groups of O-Ti3+ (lattice oxygen), O-Ti4+ (TiO2), and O-C (caused by
organic components from isopropyl alcohol, acetic acid, and TTIP) presented in the O1s
spectra of all the films. Additionally, Ti3+

2p3/2-O/C, Ti3+
2p1/2-O/C, Ti4+

2p3/2-O/C, and
Ti4+

2p1/2-O/C groups were fitted in the Ti2p spectra of all the films [17]. Ti3+ acting as an
active site for oxygen desorption was assigned to the partial substitution of O atoms by C
atoms in TiO2, promoting the separation of photogenerated electron and hole pairs [13].

In the cases of the keratin char-TiO2 composite films, besides the above-mentioned
fitted subpeaks in the C1s, O1s, and Ti2p spectra, C-N and C=O groups were fitted in the C1s
spectra, and the corresponding O=C group was deconvoluted in the O1s spectra. Likely,
the N1s XPS spectrum could be deconvoluted into N-C and N-Ti4+/Ti3+ (substitutional
and interstitial states of N atom in TiO2 lattice) [46], and the S2p spectrum was fitted
into S-S, S-H, and S-Ti4+/Ti3+ [49]. After calcination, the S-H group disappeared, but
the other two S-S and S-Ti4+/Ti3+ were identified. Furthermore, the fitted groups of
Ti3+

2p3/2-O/C/N/S, Ti3+
2p1/2-O/C/N/S, Ti4+

2p3/2-O/C/N/S, and Ti4+
2p1/2-O/C/N/S

were well consistent with the high-resolution XPS spectra of C1s, O1s, N1s, S2p, and Ti2p.
Consequently, the multi-element doping of C, N, and S elements in carbon layers was
realized in the keratin char-TiO2 composite films, and the calcination treatment was helpful
for the crystallization growth of C, N, and S co-doped TiO2 grains while the structure was
changed from amorphous to anatase phase [50]. In comparison with S-doped TiO2, the C-
doped TiO2 possessed a higher photocatalytic activity in the dye degradation process [13].
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Figure 6. The (a) XPS survey spectra, (b) comparison of elemental compositions, and high-resolution XPS spectra for the 
TiO2 films (c) before and (d) after calcination, and keratin char-TiO2 composite films (e) before and (f) after calcination 
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2.7. Energy Band Gap Structures

The transmission spectra inserted with the plots of (αhν)1/2 versus hν in the 200–800 nm
range, the UPS spectra, and the corresponding band structures of the TiO2 films and keratin
char-TiO2 composite films are illustrated in Figure 7. The transmittances for all the films
sharply decreased at the light absorption edge around 300 nm. The excitation of electrons
induced the strong absorption in UV region from its valence band to the conduction band
of TiO2. After calcination, the absorption edges of the calcined TiO2 film and keratin
char-TiO2 composite film were shifted towards longer wavelengths. This was attributed to
the structure change from amorphous to anatase phase for both films, the C doping for the
TiO2 film and the C, N, and S co-doping for the keratin char-TiO2 composite film [51]. All
the films exhibited good transmittance in visible light wavebands.
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The band gap energies of the TiO2 films and keratin char-TiO2 composite films were
estimated to be 3.53 and 3.50 eV which were reduced to 3.26 and 3.32 eV after the calcination,
respectively. The band gap of the calcined TiO2 film was very close to the theoretic value
3.2 eV of anatase TiO2. The narrowed band gap was ascribed to the crystallization of TiO2
under high-temperature conditions [20]. The C, N, and S co-doping could broaden the band
gap of keratin char-TiO2 composite film. However, the band gap of rutile TiO2 modified
wool powders was slightly reduced compared with the pure rutile TiO2 particles [30]. The
difference in the band gaps between the keratin char-TiO2 composite film and TiO2 film
might be attributed to their different structures, crystallite sizes, electron mobility abilities,
and activation energies [52].

The cutoff energies of the calcinedTiO2 film and keratin char-TiO2 composite film
were separately estimated to be 15.49 and 17.52 eV by extrapolating the straight portion
of the UPS curve at high binding energy region to zero. It was demonstrated that the
work function of semiconductors could be calculated by subtracting the cutoff energy from
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the photon energy of the He I light source (21.2 eV) [53]. Thus, the work functions of
thecalcinedTiO2 film and calcined keratin char-TiO2 composite film were 5.71 and 3.68 eV
with respect to the vacuum level. The Fermi energies of thecalcinedTiO2 film and calcined
keratin char-TiO2 composite film were −5.71 and −3.68 eV under vacuum conditions,
respectively. Moreover, the valence band energy was estimated by extrapolating the
straight line of the UPS curve at the low binding energy region to zero, which was lower
than its Fermi energy. The valence band energies versus vacuum level were respectively
calculated to be 2.19 and 4.02 eV for thecalcinedTiO2 film and calcined keratin char-TiO2
composite film. The valence bands of the calcinedTiO2 film and calcined keratin char-
TiO2 composite film were −7.90 and −7.70 eV with respect to vacuum level, respectively.
Considering the band gaps obtained from Tauc’s plot, the corresponding conduction band
energies were −4.64 eV for the calcinedTiO2 film and −4.38 eV for the calcined keratin
char-TiO2 composite film with respect to the vacuum level. As a result, the valence band
and conduction band energies were respectively3.40 and 0.14 eV for thecalcinedTiO2 film
and 3.20 and −0.12 eV for the calcined keratin char-TiO2 compositefilm versus the normal
hydrogen electrode (NHE).

2.8. Separation Efficiency of Photogenerated Electron–Hole Pairs

The photocurrent-time curves and EIS plots of the calcined TiO2 film and calcined ker-
atin char-TiO2 composite film are exhibited in Figure 8 to judge the separation and transfer
efficiencies of photogenerated electron-hole pairs using the amperometric method. As the
light turned on and off, the photocurrent responses were detected in both films which were
derived from the photogenerated electron and hole separation. The photocurrent density of
the calcined TiO2 film was larger than that of the calcined keratin char-TiO2 composite film.
Hence, incorporating wool keratins into TiO2 might hinder the separation and transfer
of photoinduced charge carriers in TiO2 [54]. As the light on/off cycle increased, the
photocurrent intensity decreased slightly because of the recombination of photogenerated
electron and hole pairs in the photo-response process [55].
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Figure 8. The (a) photocurrent-time curves and (b) EIS Nyquist plots of the calcined TiO2 film and calcined keratin char-TiO2

composite film.

The EIS Nyquist plots indicated that both the semicircle arcs of the calcined films were
very close in the high-frequency region, implying there was no significant difference in
the charge-transfer resistance for the calcined TiO2 film and calcined keratin char-TiO2
composite film [54]. However, in the low-frequency region, the calcined keratin char-TiO2
composite film’s arc radius was larger than the calcined TiO2 film, suggesting the diffusion
process of photogenerated charge carriers was inhibited in the calcined keratin char-TiO2
composite film. The impedance of the calcined keratin char-TiO2 composite film was larger
than that of the calcined TiO2 film. This was probably attributed to the fact that the calcined
keratin char-TiO2 composite film had the elements of N and S, although the C content
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(20.89% in atomic conc.) of the calcined keratin char-TiO2 composite film was slightly
larger than that (19.56% in atomic conc.) of the calcined TiO2 film.

2.9. Photocatalysis Performance

The adsorption ability (in the dark), photocatalytic degradation, cycle stability, and
trapping experiments of MB dye solutions by the TiO2 films and keratin char-TiO2 compos-
ite films under visible light irradiation are described in Figure 9. It was evident that after 1 h
of adsorption in the dark, the removal rate of MB dye from the aqueous solution by the ker-
atin char-TiO2 film (29.9%) was much larger than that of the TiO2 film (13.6%). The removal
rate of MB dye by the calcined keratin char-TiO2 composite film was reduced to 18.9% but
larger than that of the calcined TiO2 film (14.1%). As compared with the calcined TiO2 film,
the strong adsorption ability of the calcined keratin char-TiO2 composite film towards the
MB dye was verified by the following DFT theoretical calculations. The k value for the blank
MB dye solution was calculated to be 1.39 × 10−3 min−1 (R2 = 0.995), indicating the visible
light had a little effect on the photodegradation of the MB due to the photosensitization of
MB molecules [56]. With respect to the uncalcined films, when wool keratin was doped
with TiO2, after 180 min visible light illumination, the degradation rate and k value of the
keratin char-TiO2 composite films increased from 51.4% and 4.01 × 10−3 min−1 (R2 = 0.999)
to 80.6% and 8.90 × 10−3 min−1 (R2 = 0.993), respectively. This was probably because the
wool keratin sulfhydryl group (-SH-) had a strong complexing property and promoted
the contact between TiO2 and MB molecules [57]. After the films were calcinated, the k
values of the calcined TiO2 film and calcined keratin char-TiO2 composite film separately
increased to 7.67 × 10−3 min−1 (R2 = 0.999) and 11.22 × 10−3 min−1 (R2 = 0.998). It meant
that the high-temperature treatment resulted in the incorporation of C, N, and S elements
of wool keratin into TiO2 lattice and the crystallization of TiO2 as confirmed by XPS and
XRD results. Thus the electron energy band structures and the hydrophilic abilities of
the calcined TiO2 film and calcined keratin char-TiO2 composite film were changed. The
separation and transfer of photogenerated electron and hole pairs were improved accord-
ingly. It was confirmed that the non-metal element doping could introduce the O2 sites in
TiO2 to mediate its valence band and reduce its band gap. At the same time, the catalyst
density, the specific surface area, the concentration of valence surface oxygen, and the
surface reaction sites increased to some extent, which further promoted the photocatalytic
activity of TiO2 [12].

The photodegradation stability results indicated that after five successive MB pho-
todegradation, the degradation rates decreased slightly from 75.7% to 73.4% for the calcined
TiO2 film and from 87.4% to 83.6% for the calcined keratin char-TiO2 composite film. The
long-term light irradiation might degrade the C-C bonds, decompose the protein compo-
sitions, and increase the carbon defects in the calcined keratin char-TiO2 composite film
during the photocatalytic process [58]. Hence, the photocatalytic activities of both the
calcined films were well maintained for the photodegradation of the MB solution under
visible light irradiation.

To detect the reactive species of h+, 1O2, •OH, and •O2
−, the trapping experiments of

the calcined films were conducted by adding the scavengers of EDTA, FA, TBA, and BQ in
MB solutions under visible light, respectively. Obviously, after being added with EDTA,
FA, TBA, and BQ individually, the k values decreased to different extents. Both the calcined
films follow the same order: FA > EDTA > BQ > TBA, and thereby 1O2 played a decisive
role in the MB photodegradation process. The k values were reduced to 1.19 × 10−3 min−1

(R2 = 0.954) and 0.81 × 10−3 min−1 (R2 = 0.857) for the calcined TiO2 film and calcined
keratin char-TiO2 composite film, respectively. At the same time, h+, •O2

− and •OH also
affected the MB photodegradation process. The reactive order of radical species was not in
agreement with the previous studies [31]. Therefore, the doping of wool keratin had no
influence on the radical species of calcined TiO2 film in the MB photodegradation process
under visible light irradiation.
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DFT calculations, as displayed in Figure 10. As shown in Figure 10a,b, the relaxed atom 
structures of an MB molecule were separately adsorbed on the calcined TiO2 (C-doped 
TiO2) and calcined keratin char-TiO2 (C, N and S co-doped TiO2). According to Equation 
(5), the Eads values were calculated to be −0.514 eV for the C-doped TiO2 and −0.891 eV for 
the C, N, and S co-doped TiO2 [59]. The higher Eadsof−0.891 eV implied that the adsorption 
of the MB molecules on the calcined keratin char-TiO2 composite film occurred more eas-
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for the adsorption of MB on the calcined keratin char-TiO2 composite film. This was a vital 
process for photocatalytic degradation. Although the calcined keratin char-TiO2 compo-

Figure 9. The (a) removal rate of MB dye, (b) photocatalytic degradation and (c) pseudo-first-order kinetic fitting of MB dye
solution by the TiO2 films and keratin char-TiO2 composite films; (d) cycle photocatalytic degradation of MB dye solution by
the calcined TiO2 film and calcined keratin char-TiO2 composite film, and trapping experiments for the photodegradation of
MB dye solution by the calcined (e) TiO2 film and (f) keratin char-TiO2 composite film under visible light irradiation.

2.10. DFT Theoretical Calculations

The schematic constructions of adsorption energy and energy band structures for the
calcined TiO2 film and calcined keratinchar-TiO2 composite film were simulated using
the DFT calculations, as displayed in Figure 10. As shown in Figure 10a,b, the relaxed
atom structures of an MB molecule were separately adsorbed on the calcined TiO2 (C-
doped TiO2) and calcined keratin char-TiO2 (C, N and S co-doped TiO2). According to
Equation (5), the Eads values were calculated to be −0.514 eV for the C-doped TiO2 and
−0.891 eV for the C, N, and S co-doped TiO2 [59]. The higher Eads of −0.891 eV implied
that the adsorption of the MB molecules on the calcined keratin char-TiO2 composite film
occurred more easily. Thus, the co-doping of C, N, and S elements of keratin into anatase
TiO2 was a benefit for the adsorption of MB on the calcined keratin char-TiO2 composite
film. This was a vital process for photocatalytic degradation. Although the calcined keratin
char-TiO2 composite film’s band gap increased slightly compared to the calcined TiO2 film,
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the photocatalytic degradation performance of the calcined keratin char-TiO2 composite
film did not become deteriorated. The strong adsorption of MB on the composite film
played a privileged role in the MB photocatalytic degradation process [60].
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(a) TiO2 film and (b) keratin char-TiO2 composite film unit cell with an MB molecule, and for the
energy band structures of the calcined (c) TiO2 film and (d) keratin char-TiO2 composite film obtained
from DFT calculations.

The energy band structures along the high symmetry directions were calculated to
investigate the underlying electronic properties of calcined TiO2 film and calcined keratin
char-TiO2 composite film. As shown in Figure 10c,d, because the calculated conduction
band minima and valence band maxima for both the calcined films were located at different
high symmetry points, they had indirect band gaps. Generally, the photogenerated charge
carriers cannot recombine directly for the indirect band gap semiconductors, which is
favorable for the photocatalytic reaction [61]. The calculated band gaps were 3.11 and
3.25 eV for the calcined TiO2 film and calcined keratin char-TiO2 composite film, which
were slightly smaller than the experimental results as shown in Figure 7d (3.26 eV for
the calcined TiO2 film and 3.32 eV for the calcined keratin char-TiO2 composite film),
respectively. Therefore, it was concluded that the band gap of the calcined keratin char-
TiO2 composite film increased when the C, N, and S elements of wool keratins were doped
into anatase TiO2.

2.11. Hydrophobic Behaviors

The time-sequence photographs of water droplets (Congo red was used for better
showing) sliding process on the surfaces of the calcined TiO2 film and calcined keratinchar-
TiO2 composite film at different sliding angles were shown in Figure 11. It was found that
no matter what the film tilt angle was, the water droplets could spread out and slip off
on the calcined TiO2 film leaving their marks (Figure 11a,b). On the contrary, the water
droplets were adhered to the surface of the calcined keratinchar-TiO2 composite film and
were about to roll off when the film tilt angle was smaller than 30◦.Once the inclination
angle of the composite film was larger than 45◦, the water droplets quickly rolled off from
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its surface without any residual liquid left. This was due to the large water contact angle
and rough surface of the calcined keratin char-TiO2 composite film [62]. Hence, the C, N,
and S elements co-doping with TiO2 could significantly improve the hydrophobicity of the
calcined keratinchar-TiO2 composite film.
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(c,d) calcined keratinchar-TiO2 composite films at different sliding angles.

It is known that the hydrophobic self-cleaning film cannot be resistant to acid and
alkali corrosion, resulting in poor waterproof and decontamination performance [63]. Here,
the hydrophobicity of the films was further assessed by acid and base immersion tests, as
illustrated in Figure 12. The calcined TiO2 film and calcined keratinchar-TiO2 composite
film were separately immersed in 10% HCl and 10% alkaline aqueous solution at 30 ◦C for
24 h and then washed with deionized water to remove the residual chemicals. No change
of water droplets state was observed on both acid- and alkali-treated keratinchar-TiO2
composite films, exhibiting better corrosion resistance. However, the hydrophilicity of the
alkali-treated TiO2 film was improved to some degree. This was caused by the increased
surface free energy resultant from OH− groups and small water contact angle [64].
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2.12. Photocatalytic Reaction Mechanism

Based on the above characterization analysis and DFT calculations, the photocatalytic
mechanisms for the MB photodegradation by the calcined TiO2 film and calcined keratin
char-TiO2 composite film are explicated in Figure 13. The atom mass ratios (in percent)
of C1s to Ti2p were 19.56:24.34 for the calcined TiO2 film and 22.89:23.00 for the calcined
keratin char-TiO2 composite film. Thus, the amount of keratin char layer was less than the
amount of TiO2; a certain amount of TiO2 nanoparticles could be exposed to the air in both
films. For both the calcined films, the valence band potentials were more positive than
the redox potential of OH−/•OH (1.99 eV vs. NHE) couples, meanwhile, the conduction
band potentials were more negative than the redox potential of O2/•O2

− (−0.33 eV vs.
NHE) couples. Thus, the photogenerated holes could oxidize H2O to generate OH radicals,
meanwhile, the photogenerated electrons could reduce dissolved O2 to produce O2

−

radicals. Because the absolute value of the adsorption energy (−0.891 eV) of calcined
keratin char-TiO2 composite film was larger than that (−0.514 eV) of the calcined TiO2 film,
the MB dye molecules were closely adsorbed on the calcined keratin char-TiO2 composite
film. The photoinduced active species like 1O2, h+, •O2

− and •OH could easily/quickly
react with the dye molecules. Thus, the calcined keratinchar-TiO2 composite film containing
N and S could result in enhanced photocatalytic activities. Due to the presence of carbon
layer in both films, as demonstrated by TEM and XPS analyses, the photogenerated
electrons were prone to transfer to the carbon layer. In contrast, the photogenerated holes
would stay on TiO2.Hence, the recombination of photogenerated electron and hole pairs
in both the calcined films could be effectively inhibited. As confirmed by the trapping
experiments, the photogenerated electrons could react with dissolved O2 to produce •O2

−

radicals, which further reacted with the photogenerated h+ to generate 1O2 radicals. The
formation rate of 1O2 radical was faster than that of OH radical because the reaction route
of 1O2 was shorter than that of OH. Thus, the main active species was 1O2 radicals in the
MB photodegradation process. In addition, the calcined TiO2 film and calcined keratin
char-TiO2 composite film had many meso- and micro-pores as confirmed by FESEM, which
might facilitate the adsorption of MB dyes molecules. Hence, the adsorption capacities for
both films were a benefit for the removal of dyes from the solution.
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3. Experimental Section
3.1. Materials and Reagents

Wool fibers were obtained from a local textile mill, and the fineness was in the range
from 21.6 to 23.0 µm. All chemical reagents used in the present work were analytical
grade, including absolute ethanol (C2H6O), petroleum ether (CAS No.8032-32-4), sodium
pyrosulfite (Na2S2O5), urea (CH4N2O), sodium dodecyl sulfonate (SDS, C12H25SO4Na), sul-
phuric acid (H2SO4), hydrogen peroxide (H2O2), 3-aminopropyltrimethoxysilane (APES,
C6H17NO3Si), titanium isopropoxide (TTIP, C12H28O4Ti), acetic acid (CH3COOH), iso-
propyl alcohol (IPA, (CH3)2CHOH), methylene blue (MB, C16H18ClN3S), tert-butyl al-
cohol (TBA, C4H10O), benzoquinone (BQ, C6H4O2), furfuryl alcohol (FA, C5H6O2), and
ethylenediaminetetraacetic acid (EDTA, C10H16N2O8). Deionized water was applied for
the preparation of the solutions.

3.2. Preparation of Keratin char-TiO2 Composite Films

The procedure for the preparation of keratin char-TiO2 composite films is shown
in Figure 14. Firstly, wool keratins were obtained from cleaned wool fibers using the
chemical reduction technique. Next, the wool keratin-TiO2 composite films were prepared
by alternatively spin-coating of keratin aqueous solution and TiO2 precursor solution on
quartz glass slides. Lastly, the wool keratin-TiO2 composite films were calcined at 400 ◦C
in an air environment to obtain the keratin char-TiO2 composite films.
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3.2.1. Extraction of Wool Keratins

The as-obtained wool fibers were first degreased on a Soxhlet apparatus using petroleum
ether as the solvent to remove the lipids and impurities of wools at 80 ◦C for 12 h [65], then
successive washed with absolute ethanol and deionized water, and lastly dried at 60 ◦C
overnight. The degreased wool fibers (0.1 g) were cut into snippets with less than 5 mm
length and then immersed in 10 mL of mixture solution containing0.5 M Na2S2O5, 8 M
urea, and 0.2 M SDS based on a chemical reduction method [66]. The mixture solution was
heated to 100 ◦C and treated at a constant temperature for 2 h under continuous magnetic
stirring. After that, 40 mL deionized water was poured into the mixture solution, filtered
with a400-mesh stainless-steel mesh screen with a diameter of 0.037 mm to remove the
insoluble substances. The filtrate was dialyzed against deionized water using a cellulose
tube with a cutoff of 3500 Da for 3 days at room temperature. During the dialysis procedure,
the deionized water was changed every 6 h. The resultant aqueous solution was condensed
with a lyophilizer to obtain the pristine wool keratin powders.

3.2.2. Spin-Coating and Calcinations of Wool Keratin-TiO2 Composite Films

The wool keratin-TiO2 composite films were deposited on quartz glass slides based
on a sol-gel spin-coating technique [67]. Prior to spin-coating, the glass slides were cleaned
with piranha solution (H2O2:H2SO4 = 1:3 in volumes) to remove any organic contaminants
and native oxide layer on the substrate [68]. A thin layer of APES was first spin-coated on
the clear glass slide with 2 vol% APES absolute ethanol solution to improve the binding
ability between wool keratin and glass substrate. Next, 0.142 g TTIP and 0.2 mL acetic
acid were slowly added into 100 mL isopropyl alcohol under stirring to obtain the TTIP
precursor solution. Meanwhile, 3 mg of wool keratin powders was added in 10 mL
deionized water to obtain the keratin solution, which was spin-coated on the glass slide at
a speed of 4000 rpm for 30 s. The glass slide was immediately heated at 80 ◦C for 1 min.
The TTIP precursor solution was subsequently spin-coated on the keratin-coated slide at
4000 rpm for 30 s twice and then treated at 100 ◦C for 10 min. The quartz glass slide was
alternately spin-coated with wool keratin and TTIP precursor solutions for 50 cycles to
obtain the wool keratin-TiO2 composite films. The TiO2 films were also fabricated by the
spin-coating method only with the TTIP precursor solution. Lastly, the spin-coated quartz
glass slides were subjected to annealing at 400 ◦C for 1 h and cooled down naturally.

3.3. Characterization Methods

According to the Bradford protein assay method [69], the molecular weight distri-
bution of as-prepared wool keratins was determined on the Mini-Protean system by the
SDS–polyacrylamide gel electrophoresis (PAGE). The wool keratin powders were dissolved
in a buffer solution containing Tris/HCl (1.25 mM, pH 6.8), SDS (500 mg), bromophenol
blue (25 mg), and glycerin (2.5 mL) to form a 6 mg/mL keratin gel solution. The resultant
gel solution was running at a constant voltage of 180 V. The molecular weights of keratin
proteins could be calibrated by Coomassie Brilliant Blue G250 staining using a kit of molec-
ular weight markers (Shanghai Institute of Biochemical Cell, Chinese Academy of Sciences,
Shanghai, China) containing phosphorylase-b (97.4 kDa), serum albumin (66.2 kDa), actin
(43 kDa), carbonic anhydrase (31 kDa), trypsin inhibitor (20.1 kDa) and R-lactalbumin
(14.4 kDa).

The morphologies of as-prepared films were examined on a Quanta-450-FEG+X-
MAX50 field emission scanning electron microscope (FESEM, FEI Company, Hillsboro,
OR, USA). The specimens were sprayed with conductive gold coating under vacuum prior
to testing.

The surface roughness of the films was investigated on a Laser electron microscope
(Carl Zeiss AG, Oberkochen, Germany).

The crystal structures of the films were analyzed on a 7000S X-ray diffractometer
(Shimazu Corp., Kyoto, Japan) operated at 40 kV and 30 mA at a scanning rate of 8◦/min.
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The Cu Kα1 X-ray source (λ = 0.154056 nm) was used. The crystallinity size (D) was
calculated according to the Scherrer Equation (1) [70] as below.

D = Kλ/βcosθ, (1)

where k, λ, β and θ were a constant (0.89), X-ray wavelength, full width at half maximum
(FWHM), and Bragg angle, respectively.

The microstructures of the calcined films were observed on a JEM-3010 transmission
electron microscope (TEM, JEOL Ltd., Tokyo, Japan).

The static water contact angleof the films was conducted on an OCA25 contact angle
meter (Data Physics Instruments, Filderstadt, Germany) according to the drop method.

The chemical bonding states of the films were carried out on an Axis Ultra electron
spectrometer (Kratos Analytical Ltd., Manchester, UK) operated at 10 kV and 10 mA at the
vacuum below 10−8 Torr. The monochromatic Al Kα (1486.68 eV) radiation was used, and
the binding energies were calibrated through the 284.8 eV C1s peak.

The diffuse reflectance spectra of the films were recorded on a Lambda 950 spectropho-
tometer (PerkinElmer Inc., Waltham, MA, USA) equipped with a 150 mm integrating
sphere. The barium sulfate was applied to calibrate the 100% reflectance. The band gap
energy (Eg) was deduced from the intersection of the extrapolation of (αhv)1/2 versus hv
according to the Tauc Equation (2) [38] as below:

A(hv − Eg)n/2 = αhv, (2)

where α was the absorption coefficient, ν was the light frequency, h was the Planck constant,
A was a constant which was determined by the nature of allowed transition (n = 1/2 for
direct and 2 for indirect).

The calcined films’ ultraviolet photoelectron spectroscopy (UPS) was performed on
the Escalab 250 Xi UV photoelectron spectroscope (Thermo Fisher Scientific Inc., Waltham,
MA, USA).

The photocurrent response curves and electrochemical impedance spectroscopy (EIS)
Nyquist plots of the calcined films were measured on a CHI760E electrochemical worksta-
tion (Shanghai Chenhua Instrument Co., Ltd. Shanghai, China) based on the three-electrode
system. A 300 W Xenon lamp was used to simulate visible lights along with a 420 nm
cutoff filter. The Pt foil and saturated calomel electrode (SCE) were used as the counter and
reference electrodes. The working electrode was prepared by spin-coating wool keratin
and/or TTIP precursor solutions on an indium-tin-oxide (ITO) glass substrate with a size
of 2 × 1 cm2. The photocurrent-time curves were collected under visible lights by turning
on/off cycles at 0.5 V vs. SCE. The electrolyte was 0.5 M Na2SO4 aqueous solution at the pH
value of 7, and the experimental equipment ran for 30 s firstly, and then each illumination
time was 30 s. The frequency for EIS measurements was from 0.1 to 100,000 Hz at an
alternating current voltage amplitude of 5 mV under open-circuit conditions.

3.4. Measurements of Photocatalytic Properties

The photocatalytic properties of the as-prepared films were assessed by measuring the
photodegradation of model MB dye under visible light irradiation. In a typical experiment,
the film specimen (4 × 4 cm2) was put in a glass petri dish (φ = 90 mm) containing 50 mL
of 1.0 mg/L MB solution. The pH of the MB solution was 6.8. Prior to illumination, the dye
solution with the film was placed in the dark for 60 min to reach an adsorption−desorption
equilibrium. After that, a 30 W LED lamp was applied on the dye solution, and the
illuminance of the light was 45,000 Lux. At a given time interval t, 3 mL solution was
extracted from the dye solution. The absorbance At was recorded on a VIS-7220 visible
light spectroscope (Beijing Beifen-Ruili Analytical Instrument Co. Ltd., Beijing, China)
at 664 nm. The concentration Ct was calculated according to the MB calibration curve
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(At = 0.0107 + 0.1767Ct, R2 = 0.99). The degradation rate D (%) was calculated according to
Equation (3) as below:

D (%) = (1 − Ct/C0) × 100%, (3)

where C0 and Ct were respectively the MB concentration at the initial time and time t. To
quantitatively identify the photodegradation of MB solution, the reaction kinetic data were
fitted based on the Langmuir–Hinshelwood model [71]. The pseudo-first-order apparent
rate constant k (min−1) was calculated by Equation (4) as below:

ln(C0/Ct) = kt, (4)

In addition, the oxidized MB dye solution was replaced by the fresh MB solution, and
the cycle photodegradation of MB solution was measured under the same visible light
irradiation condition. The active species of h+, 1O2, •OH, and •O2

− in the photocatalytic
solutions were identified by adding 1.0 mM EDTA, 1.0 mL FA [72], 0.5 mL TBA, and
0.2 mM BQ [73] as the scavengers, respectively.

3.5. Theoretical Calculation Method

The DFT calculations were implemented using the Vienna Ab Initio Package [74,75]
program based on the Perdew–Burke–Ernzerhof generalized gradient approximation [76].
The ionic cores were described by the projected augmented wave potentials [77,78], and the
valence electrons were considered. For the plane-wave basis set, an energy cutoff of 450 eV
was used. The Gaussian smearing techniquewith0.05 eV width was applied to optimize
the partial occupancies of the Kohn−Sham orbitals. Provided that the energy change
was less than 10−4 eV, self-consistent electronic energy was realized. When the force
change was below 0.05 eV/Å, the geometry optimization was supposed to be convergent.
The empirical dispersion correction methodology [79] was employed to explicate the
dispersion interactions.

The Brillouin zone sampling with a 10 × 10 × 4 Monkhorst-Pack k-point grid was
used to optimize the equilibrium lattice constants of TiO2 unit cell. A super cell Graphene
model was constructed in the x and y directions. The 3 × 3 × 1 Monkhorst–Pack k-point
grid was used for the Brillouin zone sampling for the C, N and S atoms doping in the super
cell TiO2 structure in the structural optimization process. Thus, the adsorption energy(Eads)
could be calculated according to Equation (5) as below:

Eads = Ead/sub − Ead − Esub, (5)

where Ead/sub was the total energies of the optimized adsorbate/substrate system, Ead was
the adsorbate energy of the structure, and Esub was the energy of the clean substrate.

4. Conclusions

The hydrophobic self-cleaning keratin char-TiO2 composite films were made from the
calcination of keratin-TiO2 films for the photocatalytic degradation of dye pollutants. The
incorporation of TiO2 precursors in the wool keratin film led to the formation of anatase
TiO2 nanoparticles after calcination. The water contact angle and band gap of the calcined
keratin char-TiO2 composite film were greater than the calcinated TiO2 film. Although the
separation of photogenerated charge carriers was inhibited, the calcined keratin char-TiO2
composite film exhibited better photocatalytic performance in the MB degradation process
and good hydrophobic behaviors to shield off water droplets. Both experiments and DFT
calculations demonstrated that the high photocatalytic properties of the calcined keratin
char-TiO2 composite film were mainly ascribed to its rough surface, particular porous
structure, large water contact angle, and high adsorption energy, which were helpful for
the contact of organic compounds with the composite film. 1O2 radicals were the dominant
reactive species. Overall, the calcined keratin char-TiO2 composite film obtained could be
used in the photocatalysis field.
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