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Abstract: Utilization of CO2 for the production of fine chemicals has become a research hotspot for
a long time. In order to make use of CO2, we developed a highly efficient heterogeneous catalyst
(denoted as Pd@POPs) for the N-formylation reaction of amine and CO2 under mild conditions. The
Pd catalyst was based on a porous organic polymer derived from the solvothermal polymerization of
vinyl-functionalized PPh3. A series of characterizations and comparative experiments demonstrated
that the Pd@POPs catalyst has high BET (Brunauer-Emmett-Teller) surface areas, hierarchical pore
structure, and uniform dispersion of Pd active sites resulting from the formation of strong coordi-
nation bonds between Pd species and P atoms in the porous organic polymer (POP) support. In
addition to the excellent activity, the Pd@POPs catalyst shows good stability for the N-formylation
reaction of amine and CO2.

Keywords: N-formylation; carbon dioxide; heterogeneous catalyst; porous organic polymer

1. Introduction

Carbon dioxide (CO2) is an abundant, low-cost, sustainable, and nontoxic C1 raw ma-
terial. The transformation of CO2 into value-added chemicals has attracted wide attention
in academia and the industry. Additionally, the utilization of CO2 as a carbon source for fine
chemical synthesis can contribute to the reduction of CO2 in the atmosphere [1–3]. Great ef-
forts have been made by researchers for the conversion of CO2 into value-added chemicals,
such as formic acid [4,5], cyclic carbonates [6–8], and formamides [9]. Formamides are often
used as intermediates for the synthesis of fine chemicals [10,11], Vilsmeier–Haack reaction,
and solvents [12,13], and their production is one of the potential ways for the fixation of
CO2. For example, N,N-dimethylformamide (DMF) is produced by an NaOOCH-catalyzed
reaction of dimethylamine with CO in industrial production [14]. However, the toxic CO
hampers its wider use. The carbonylation reaction using cheap and abundant CO2 is a
safer way to synthesize organic chemicals. Using CO2 as C1 block and H2 as formylating
reductant is a substitute green way for the N-formylation of amines.

In recent years, various homogeneous catalysts have been developed to improve the
efficiency of N-formylation reaction under mild conditions. The most active homogeneous
catalyst with a TON (Turnover Number) of up to 1,940,000 for the N-formylation of mor-
pholine was developed by Ding [15], which is a pincer catalyst based on Ru coordinated
with P and N atoms in the form of tridentate chelating ligand. Milstein et al. reported
another similar chelating coordination catalyst based on Co, and a yield of up to 99%
was achieved within 36 h at 150 ◦C, PCO2 = PH2 = 30 bar [16]. Homogeneous catalysts
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possess highly catalytic activity due to their well-defined and uniform single active sites.
Nevertheless, homogeneous catalysts suffer the problem of catalyst recyclability. Thus,
heterogeneous catalysts are desirable for industrial applications because they allow easy
separations and catalyst recovery and recycle. A large number of heterogeneous catalysts
supported on inorganic materials (including PAL [17], TiO2 [18], and so on [19]) have
been developed for N-formylation reaction. For instance, Kaneda et al. reported that the
Au-based TiO2 catalyst exhibited excellent activity and reusability for the catalysis of the
selective N-formylation of functionalized amines [18]. Recently, few metal catalysts immo-
bilized on porous organic polymers (POPs) have been explored for N-formylation reaction.
Compared with conventional inorganic supports, POPs stand out for their permanent
porosity, high surface areas, good thermal stability, and structure diversity [20]. For exam-
ple, Liu et al. synthesized pyridine-functionalized porous organic polymers (CarPy-CMP)
and CarPy-CMP@Ru. Morpholine in this catalytic system can get a conversion of 97% and
a yield of 94% at PCO2 = PH2 = 4 MPa at 130 ◦C within 24 h [21].

Our group has been committed to the preparation and application of triphenylphosphine-
based porous organic polymers. Rh/POL-PPh3 [22], Rh/CPOL-BP&PPh3 [23], and Rh/CPOL-
BP&P(OPh)3 [24] have been applied in the hydroformylation of ethylene, propylene, and
butene, respectively. These catalysts exhibited exciting catalytic activity and stability. We
have also designed and synthesized another two kinds of highly active catalysts (PPh3-
ILX@POPs [8] and Mg-por/pho@POPs [25] for CO2 conversion). From our previous re-
search, we know that the phosphine-rich backbone has a strong adsorption capacity for
CO2 and can fix metals, thus preventing metal loss [8]. Inspired by that, we envisioned
a promising application of heterogeneous Pd@POPs as catalysts for the N-formylation
of amine and CO2. Here, in order to expand the application of POP materials easily ob-
tained in nearly 100% yield, a general and highly efficient Pd-based heterogeneous catalyst
synthesized by the solvothermal polymerization of 3v-PPh3 for N-formylation reaction
was developed. A conversion of 93% was obtained under mild conditions, such as 100 ◦C,
PCO2 = PH2 = 3 MPa, within 24 h. Besides its excellent performance, the Pd@POPs catalyst
is more applicable to secondary amines than primary amines and more stable than other
common Pd catalysts supported on an inorganic carrier due to the formation of Pd–P
coordination bonds.

2. Results and Discussions

The synthesis method of the Pd@POPs catalyst is illustrated in Scheme 1. The vinyl-
functionalized PPh3 ligand was polymerized under solvothermal conditions (THF, 100 ◦C);
then Pd(OAc)2 was added to the reaction mixture.

The pore structure of the catalyst can be determined from the N2 adsorption–desorption
isotherm (Figure 1a) and pore size distribution (Figure 1b). The Pd@POPs exhibits high BET
surface areas and pore volume (900.3 m2/g and 1.504 cm3/g). The pore size distribution
is calculated by the nonlocal density functional theory (NLDFT) method. The pore sizes
of Pd@POPs are mainly distributed in the region of micropores (<2 nm) and mesopores
(2–10 nm). The existence of micropores can be determined by the region of P/P0 = 0–0.01.
The hysteresis loop in the N2 adsorption–desorption isotherm suggests the existence of
mesopores. The TEM image (Figure 1c) and SEM image (Figure 1d) for Pd@POPs also
provide evidence for the hierarchical porosity that facilitates the diffusion of reactants and
products during the reaction. Furthermore, the good thermal stability of POP and Pd@POPs
is proved by thermal gravimetric analysis (TGA, Figure S1). The initial decomposition
temperature is 400 ◦C, which can be well adapted to industrial requirements.

The TEM images of fresh and used Pd@POPs are shown in Figure 2. No obvious big
metal particles or clusters are observed in both of the TEM images, which suggests that the
Pd active species are uniformly dispersed on the POP support. In addition, SEM mapping
images of used Pd@POPs reveal that functional elements (P and Pd) are highly dispersed.
It means that these elements are well integrated in the used Pd@POPs catalyst.
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To explore the oxidation states of Pd species and the coordination effect between
Pd and P, X-ray photoelectron spectroscopy (XPS) analysis was performed for POP and
Pd@POPs, and the results are listed in Figure 3. The P2p spectrum (Figure 3a) mainly shows
the presence of P with BE (Bonding Energy) = 131.79 and 130.42 eV in the POP backbone.
After Pd loading, the binding energy of P2p (Figure 3b) shifts forward to a high field to
132.1 and 130.6 eV. In the Pd3d XPS spectrum (Figure 3c), four peaks with binding energies
at 342.79 and 338.15 eV, which can be ascribed to Pd2+, and 340.4 and 336.8 eV, which are
assigned to Pd0, can be deconvoluted. Compared with Pd(OAc)2 (343.8 and 338.6 eV) [26],
the Pd binding energy shifted negatively. These results demonstrate the coordination of Pd
species with POP, in accordance with the conclusion of 31P solid-state NMR. The presence
of Pd0 could be due to the fact that POP support possesses reducibility.
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The solid-state 13C NMR spectrum of Pd@POPs (Figure 3d) shows two strong broad
peaks at 20–50 ppm (polymerized vinyl group) and 120–160 ppm (aromatic carbons), which
suggests that the polymerization process was completed adequately. The solid-state 31P
NMR spectrum of Pd@POPs is employed to auxiliary XPS, proving the existence of a
P–Pd coordination bond. The peak at −6 ppm in spectrum (Figure 3e) is assigned to the
uncoordinated P specie. The peak at 24 ppm can be ascribed to the P specie coordinated
with Pd due to the fact that the peak of 24 ppm is enhanced after Pd loading, which is
consistent with the literature [27].

Sequentially, the catalytic activity of a few kinds of metal catalysts for the N-formylation
reaction of morpholine to N-formylmorpholine was assessed, and the results are sum-
marized in Table 1. The results show that the homogeneous catalyst of Pd(OAc)2 gave a
conversion of 49% (entry 1) in the absence of K3PO4. After adding K3PO4 to the reaction
system, the conversion increased to 92% (entry 2). It means that alkali is beneficial to the
formation of N-formylmorpholine, which is consistent with the literature [23,28]. Other
precursors of Pd were researched, such as PdCl2 (entry 3), showing a conversion of 71%.
Some other metal catalysts were also investigated, and the results are listed in Table 1
(entry 4–6). RhCl3 (entry 4) is almost not active for the N-formylation of morpholine with
CO2 in a homogeneous system, and the conversion is only 11%. Both IrCl3 (entry 5) and
Co(NO3)2 (entry 6) have low activity for N-formylation and get conversions of 36% and
20%, respectively. It can be concluded that the metal catalysts of palladium are more active
for N-formylation than RhCl3, IrCl3, and Co(NO3)2. Therefore, we used Pd(OAc)2 as the
metal precursor to investigate the effect of supports.

Table 1. Catalytic performance of metal catalysts for N-formylation reaction.
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Entry Catalyst Conv.%

1 a Pd(OAc)2 49
2 Pd(OAc)2 92
3 PdCl2 71
4 RhCl3 11
5 IrCl3 36
6 Co(NO3)2 20

Conditions: morpholine, 1 mmol; precursor, 2.3 mol% based on morpholine; K3PO4, 0.3 mmol;
PCO2 = PH2 = 3 MPa; DMI, 4 mL; 100 ◦C; 24 h; a no K3PO4.

A comparison of catalytic performances for Pd@supports is listed in Table 2, employ-
ing morpholine as a substrate. When POP was used as support (Pd@POPs), the catalyst
obtained conversions of 92% (first run) and 91% (second run). By comparison, the conver-
sions for the first run over Pd@SBA-15, Pd@Al2O3, and Pd@TiO2 were 92%, 61%, and 93%,
respectively, while the conversions for the second run of using Pd@SBA-15 and Pd@TiO2
decreased to 82% and 71%, respectively. The decrease of catalytic activity may be attributed
to the fact that the interaction between Pd and supports is not as strong as the coordination
bond between Pd and P species in POP support. These results show that POP is more active
and stable for the N-formylation of morpholine and CO2 than catalysts with other supports
we selected in the same reaction condition. The high BET surface areas, hierarchical pore
structure, and Pd–P coordination bonds of the Pd@POPs catalyst are responsible for its
improved catalytic performance. Compared with the Pd-based heterogeneous catalysts
(Pd@NC, Pd/LDH) reported in the literature, Pd@POPs exhibits a similar activity under
milder conditions.
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Table 2. Comparison of the catalytic performance of Pd@supports.

Catalyst CO2/H2/MPa T/◦C Conv./%

Pd@POPs 3/3 100 92/91 a

Pd@SBA-15 3/3 100 92/82 a

Pd@Al2O3 3/3 100 61
Pd@TiO2 3/3 100 93/71 a

Pd@NC [29] 3/4 130 93
Pd/LDH [30] 3/3 140 91.7

Conditions: morpholine, 1 mmol; Pd, 2.3 mol% based on morpholine (Pd loading is 0.5 wt%); K3PO4, 0.3 mmol;
PCO2 = PH2 = 3 MPa; DMI, 4 mL; 100 ◦C; 24 h. a The data were obtained with a reused catalyst for the second run.

Inspired by the above results, Pd@POPs was explored as a catalyst for the N-formylation
of other secondary or primary amines (Table 3). The catalyst was successful for secondary
amines, and the N-formylation products of cyclic secondary amines (1a-2a and 1b-2b) were
synthesized with yields of 80–93% (entries 1–2). When aliphatic N-methylpentylamine
was the substrate, a 61% yield of the corresponding formamide was obtained (entry 8).
The Pd@POPs catalyst exhibited good applicability for secondary amines but was limited
for primary amines. In Table 3, when primary amines, such as 4-methylbenzylamine (5a),
were used as the raw material, the highest yield of 47% was achieved (entry 5). For other
primary amines, including cyclohexamine (3a), benzylamine (4a), β-phenylethylamine (6a),
1-heptanamine (7a), and n-pentylamine (9a), the yields of the desired formamides were
only 17–33% (entries 3, 4, 6, 7, 9).

Table 3. Substrate prolongation experiments of the Pd@POPs catalyst.

Entry Substrate Product Conv.%

1
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24

Conditions: morpholine, 1 mmol; Pd, 2.3 mol% based on morpholine (Pd loading is 2.5 wt%); K3PO4, 0.33 mmol;
PCO2 = PH2 = 3 MPa; DMI, 4 mL; 100 ◦C; 24 h.

Additionally, the reusability of the Pd@POPs catalyst was studied. The results (Figure 4)
suggest that the catalyst could be recycled at least five times without obvious loss of cat-
alytic activity. The good stability is attributed to high P ligand concentrations, high surface
areas, and stable coordination bonds between Pd species and P atoms in the POP support.
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catalyst Pd, 2.3 mol% based on morpholine (Pd loading is 0.5 wt%); K3PO4, 0.33 mmol; DMI, 4 mL;
PCO2 = PH2 = 3 MPa; T = 373 K; t = 24 h.

As we know that the N-formylation reaction mechanism (Figure 5) is similar in most
literatures, CO2 is reduced to formic acid in a hydrogen atmosphere, and then reacts
with amine to form amides [17,29,31]. We also demonstrated the reaction mechanism in a
previous work [32].
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3. Conclusions

In summary, we successfully synthesized a Pd@POPs catalyst by the solvothermal
synthetic method for the N-formylation reaction of amine and CO2. The Pd@POPs catalyst
can immobilize Pd active species, which simplifies the recovery and reuse for the N-
formylation reaction system. Especially, the heterogeneous catalyst has a good practical
prospect because it not only is easy to synthesize but also has high catalytic efficiency and
excellent stability. Characterization results indicate that the Pd@POPs catalyst has high BET
surface areas, hierarchical pore structure, and uniform dispersion of Pd active species due
to the formation of strong Pd–P coordination bonds. With the above-mentioned advantages,
this method may be expected to replace the current ways for N-formylation reaction.

4. Materials and Methods
4.1. Material

All solvents and other chemicals were commercially available. Anhydrous THF
(Tetrahydrofuran) is prepared by distillation from sodium benzophenone ketyl. The DMI
(≥99.5%) was purchased from the Macklin Biochemical Co., Ltd. (Shanghai, China).
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4.2. Synthesis of PPh3-POP

PPh3-POP was synthesized by solvothermal polymerization. Typically, 100 mL THF
was added into a 250 mL round-bottom flask loaded with a mixture of 3v-PPh3 (tris-(4-
vinylphenyl)-phosphine, 10 g), AIBN (2,2’-azobis(isobutyronitrile), 0.25 g), and a magnetic
rotor. After stirring for 1 h to make it completely dispersed, the solution was transferred
into an autoclave under Ar atmosphere. After sealing, the solution was kept at 100 ◦C
for 24 h. After the system was cooled to room temperature, the polymer was collected
by vacuum filtration and washed by THF. Then, the polymer was dried at 60 ◦C under
vacuum for 12 h. Eventually, white powder was got and labeled as PPh3-POP.

4.3. Synthesis of Pd@POPs

Pd(OAc)2 (0.0108 g) was dispersed in 50 mL THF under Ar atmosphere. Afterwards,
POP (1.0103 g) was introduced. The resulting mixture was stirred at room temperature for
24 h. The precipitate was collected by filtration and washed with THF. After drying at 60 ◦C
under vacuum for 12 h, a pale-yellow powder was acquired and labeled as Pd@POPs.

4.4. Synthesis of Pd@SBA-15, Pd@Al2O3, and Pd@TiO2

The Pd@SBA-15, Pd@Al2O3, and Pd@TiO2 catalysts were prepared by the same
method as described above except that POP was replaced with SBA-15, Al2O3, and TiO2.

4.5. A Typical Procedure for N-Formylation Reaction

Pd@POPs (Pd loading was 2.3 mol% based on morpholine), morpholine (1 mmol),
K3PO4 (0.3 mmol, 0.063 g), and DMI (1,3-dimethyl-2-imidazolidinone, 4 mL) were succes-
sively added into a stainless steel autoclave reactor (30 mL inner volume). The autoclave
was purged by mixed gas three times and charged with the mixed gas (CO2:H2 = 1:1)
up to 6 MPa at room temperature. Then the system was heated by an electric heating
jacket to 100 ◦C and stirred for 24 h. The products were analyzed by Agilent 7890A (Santa
Clara, CA, USA) gas chromatography (GC) with a capillary column (HP-5, 30 m × 0.32 µm
diameter) using a flame ionization detector. Gas chromatography analysis used toluene
as an internal standard. 1H NMR spectra were acquired on Bruker AVANCE III NMR
spectrometer (Kloten, Zürich, Switzerland) at 400 MHz using trimethylsilane (TMS) as an
internal standard.

4.6. Recycling Stability of Pd@POPs Catalyst

The used catalyst was obtained by centrifugation after every cycle. The above catalyst
was thoroughly washed with ethanol and THF. After drying at 60 ◦C under vacuum for 12
h, the used catalyst was reused for the next reaction cycle.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
344/11/2/220/s1. Information on the characterization instruments, thermal gravimetric analysis
(TGA, Figure S1), and GC or NMR spectra of the products (Figures S2–S10) can be obtained from
Supplementary Materials.
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