

Supplementary Materials

Green Synthesis of 2-Oxazolidinones by an Efficient and Recyclable CuBr/Ionic Liquid System via CO₂, Propargylic Alcohols, and 2-Aminoethanols

Chao Bu ^{1,3}, Yanyan Gong ², Minchen Du ^{1,3}, Cheng Chen ¹, Somboon Chaemchuen ¹, Jia Hu ^{1,3}, Yongxing Zhang ^{1,3}, Heriberto Díaz Velázquez ⁵, Ye Yuan ^{1,*} and Francis Verpoort ^{1,3,4,6,*}

- ¹ State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; buchao0507@gmail.com (C.B.); yuqingwen321@gmail.com (M.D.); chengchen@whut.edu.cn (C.C.); sama_che@hotmail.com (S.C.); liuxiao17612704929@gmail.com (J.H.); zyx18327006800@whut.edu.cn (Y.Z.)
- ² State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, ShanDong Academy of Sciences, Jinan 250353, China; kxf@whut.edu.cn
- ³ School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- ⁴ National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russia
- ⁵ Dirección de Investigación en Transformación de Hidrocarburos, Instituto Mexicano del Petróleo, Mexico City 07730, Mexico; hdiaz@imp.mx
- ⁶ Global Campus Songdo, Ghent University, 119 Songdomunhwa-Ro, Yeonsu-Gu, Incheon 21985, Korea
- * Correspondence: fyyuanye@whut.edu.cn (Y.Y.); francis.verpoort@ghent.ac.kr (F.V.); Tel.: +86-18635800380 (Y.Y.); +86-15071172245 (F.V.)

1. TON reported in the previous literatures.

Figure S1. The literatures reported for the three-component reactions.

Figure S1 showed the literatures reported for the three-component reactions up to now. A TON of 1260 could be obtained by the Ag₂O/TMG catalytic system. Particularly, a higher TON of 2960 was reached by this CuBr/[C₄C₁im][OAc] system. For the other systems, no TON data was expressly reported, indicating that 2960 is the highest TON up to now for this three-component reaction.

Ref.	TON
1[1]	No mention
2[2]	1260
3[3]	No mention
4[4]	No mention
This work	2960

Table S1. TON reported in the previous literatures.

2. The reaction of propargylic alcohols and CO2

To prove whether the cyclic carbonates could be produced without the use of aminoethanols, the control experiment was performed as follows: **2a** (7.5 mmol), CuBr (0.025 mmol) and $[C_4C_1im][OAc]$ (6.5 mmol) were prepared in a Schlenk tube under 1 atm of CO₂ at 100 °C. After 12 h, the reaction mixture was directly in situ examined by ¹H NMR in CDCl₃ (Figure S2). A characteristic

double peak of the α -alkylidene cyclic carbonate at δ = 4.788 was clearly observed [1], indicating the formation of the corresponding carbonate.

Figure S2. ¹H NMR of the control experiment mixture (red) and the pure cyclic carbonate (blue).

3. The reaction of cyclic carbonates and 2-aminoethanols

To prove whether the cyclic carbonates from step 1 would react with 2-aminoethanols to give the desired products using the CuBr/[C₄C₁im][OAc] catalytic system, the following control experiment was performed: **1a** (5 mmol), cyclic carbonates (7.5 mmol), CuBr (0.025 mmol, 0.5 mol%) and [C₄C₁im][OAc] (6.5 mmol) were mixed in a Schlenk tube under 1 atm of CO₂ at 100 °C for 12 h. Once the reaction was finished, the reaction mixture was directly in situ examined by ¹H NMR in CDCl₃ (Figure S3). The characteristic peaks of **3a** at δ = 3.43, 4.32, 4.45 and **4a** at δ = 1.41, 2.26, 3.77 were clearly observed, indicating the formation of the final products from cyclic carbonates and 2aminoethanols [2].

Figure S3. 1H NMR of pure 4a (green), pure 3a (red) and the control reaction mixture (blue).

4. Activation of the hydroxyl group in the presence of 1 atm of CO2

Substrate **2a**, and the mixture of **2a**/[C₄C₁im][OAc] (1.5:1.3), **2a**/**1a** (1.5:1) were respectively prepared in the closed Schlenk tubes at 1 atm of CO₂ at 100 °C. After 5 mins, three samples were respectively taken from them into DMSO-*d*₆ and examined by ¹H NMR (Figure S4). As the NMR results showed, in the presence of 1 atm of CO₂, the hydroxyl groups of propargylic alcohols could be strongly activated by [C₄C₁im][OAc] and slightly activated by 2-aminoethanols.

Figure S4. Investigations on the activation of hydroxyl protons in the presence of 1 atm of CO2.

5. Exploration of metal leaching in the recycling experiments

The metal leaching occurred in the extraction process was explored by the ICP analysis after each round. The results were showed below:

	initial amount	after round 1	after round 2	after round 3
CuBr amount (mmol)	0.02516	0.02124	0.01915	0.01732
Leaching (%)	/	15.58	9.84	9.56

Table S2. Exploration	n of metal l	eaching in	the recycling	experiments
-----------------------	--------------	------------	---------------	-------------

Based on the ICP data, we could calculate that after the first round, 15.58% of CuBr was leached from the system, while after 2nd and 3rd rounds, similar leaching values of 9.84% and 9.56% were obtained respectively.

6. Characterization Data for Substrates and Products

2-(4-Methylbenzylamino)ethanol. Colourless oil. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.22 (d, *J* = 7.9 Hz, 2H), 7.16 (d, *J* = 7.8 Hz, 2H), 3.78 (s, 2H), 3.66 (t, *J* = 5.0 Hz, 2H), 2.81 (t, *J* = 5.0Hz, 2H), 2.36 (s, 3H), 2.19(-OH, -NH) ppm. ¹³C NMR (126 MHz, Chloroform-*d*) δ 137.0, 136.7, 129.2, 128.1, 61.0, 53.2, 50.5, 21.1 ppm. These data are matched with the reported publication [3]. HRMS (ESI) calcd for C₁₀H₁₆NO⁺ [M+H]⁺ 166.1226; found 166.1227.

$$H_{3C}$$
 H_{N} OH_{1c}

2-(3,4-Dimethylbenzylbenzylamino)ethanol. Colorless solid. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.17–7.03 (m, 3H), 3.76 (s, 2H), 3.67 (t, *J* = 5.0 Hz, 2H), 2.82 (t, *J* = 5.0 Hz, 2H), 2.27 (d, *J* = 6.1 Hz, 6H), 2.07(-OH, -NH) ppm. ¹³C NMR (126 MHz, Chloroform-*d*) δ 137.4, 136.7, 135.4, 129.7, 129.5, 125.5, 60.9, 53.2, 50.5, 19.7, 19.4 ppm. These data are matched with the reported publication [3]. HRMS (ESI) calcd for C₁₁H₁₈NO⁺ [M+H]⁺180.1383; found 180.1384.

2-(4-Methoxybenzylamino)ethanol. Light yellow oil. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.24 (d, *J* = 8.6 Hz, 2H), 6.87 (d, *J* = 8.6 Hz, 2H), 3.80 (s, 3H), 3.74 (s, 2H), 3.65 (t, *J* = 5.3 Hz, 2H), 2.77 (t, *J* = 5.0 Hz, 2H), 2.69(-OH, -NH) ppm. ¹³C NMR (126 MHz, Chloroform-*d*) δ 158.8 , 131.78, 129.4, 113.9, 60.8, 55.3, 52.9, 50.5 ppm. These data are matched with the reported publication [3]. HRMS (ESI) calcd for C₁₀H₁₆NO₂+ [M+H]+ 182.1176; found 182.1177.

2-(4-Chlorobenzylbenzylamino)ethanol. Light yellow oil. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.33–7.26 (m, 4H), 3.80 (s, 2H), 3.69–3.67 (t, *J* = 5.0 Hz, 2H), 2.82–2.80 (t, *J* = 5.0 Hz, 2H), 2.05(-OH, - NH) ppm. ¹³C NMR (126 MHz, Chloroform-*d*) δ 138.5, 132.8, 129.4, 128.6, 61.0, 52.8, 50.5 ppm. These

 O_2N OH 1f

2-(4-Nitrobenzylbenzylamino)ethanol. Brown solid. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.21 (d, *J* = 8.6 Hz, 2H), 7.53 (d, *J* = 8.5 Hz, 2H), 3.96 (s, 2H), 3.73–3.71 (t, *J* = 5.0 Hz, 2H), 2.86-2.84 (t, *J* = 5.0 Hz, 2H), 2.05(-OH, -NH) ppm. ¹³C NMR (126 MHz, Chloroform-*d*) δ 147.8, 147.2, 128.6, 123.7, 61.2, 52.8, 50.7 ppm. These data are matched with the reported publication [3]. HRMS (ESI) calcd for C₉H₁₃N₂O₃+ [M+H]+197.0921; found 197.0922.

3-Benzyloxazolidin-2-one. Light yellow solid. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.39–7.28 (m, 5H), 4.45 (s, 2H), 4.32 (t, *J* = 10.0 Hz, 2H), 3.46–3.43 (t, *J* = 7.5 Hz, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 135.8, 128.8, 128.2, 128.0, 61.8, 48.5, 44.0 ppm. These data are matched with the reported publication [3]. HRMS (ESI) calcd for C₁₀H₁₁NNaO₂+ [M+Na]+200.0682; found 200.0683.

3-(4-Methylbenzyl)oxazolidin-2-one. Colorless oil. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.21–7.17 (m, 4H), 4.40 (s, 2H), 4.30 (t, *J* = 10.0 Hz, 2H), 3.42 (t, *J* =10.0 Hz, 2H), 2.36 (s, 3H) ppm. ¹³C NMR (126 MHz, Chloroform-*d*) δ 158.5, 137.8, 122.7, 129.5, 128.2, 61.8, 48.1, 43.9, 21.1 ppm. These data are matched with the reported publication [3]. HRMS (ESI) calcd for C₁₁H₁₄NO_{2⁺} [M+H]⁺ 192.1019; found 192.1020.

3-(3,4-Dimethylbenzyl)oxazolidin-2-one. Light yellow oil. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.25–7.02 (m, 3H), 4.38 (s, 2H), 4.31 (t, *J* = 10.0 Hz, 2H), 3.43 (t, *J* = 7.5 Hz, 2H), 2.28 (s, 6H) ppm. ¹³C NMR (126 MHz, Chloroform-*d*) δ 158.5, 137.1, 136.4, 130.0, 129.5, 125.7, 61.8, 48.2, 43.9, 19.7, 19.4 ppm. These data are matched with the reported publication [3]. HRMS (ESI) calcd for C₁₂H₁₆NO₂⁺ [M+H]⁺ 206.1176; found 206.1177.

3-(4-Methoxybenzyl)oxazolidin-2-one. Colorless solid. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.14 (d, *J* = 8.5 Hz, 2H), 6.81 (d, *J* = 8.5 Hz, 2H), 4.29 (s, 2H), 4.21 (t, *J* = 10.0 Hz, 2H), 3.73 (s, 3H), 3.33 (t, *J* = 10.0 Hz, 2H) ppm. ¹³C NMR (126 MHz, Chloroform-*d*) δ 159.4, 158.5, 129.6, 127.8, 114.2, 61.8, 55.3, 47.8, 43.8 ppm. These data are matched with the reported publication [3]. HRMS (ESI) calcd for C₁₁H₁₄NO₃+ [M+H]+ 208.0968; found 208.0968.

3-(4-Chlorobenzyl)oxazolidin-2-one. Light yellow oil. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.35 (d, *J* = 8.3 Hz, 2H), 7.25 (d, *J* = 8.3 Hz, 2H), 4.42 (s, 2H), 4.33 (t, *J* = 10.0 Hz, 2H), 3.44 (t, *J* = 7.5 Hz, 2H) ppm. ¹³C NMR (126 MHz, Chloroform-*d*) δ 158.5, 134.3, 133.9, 129.5, 129.0, 61.8, 47.8, 44.0 ppm. These data are matched with the reported publication [3]. HRMS (ESI) calcd for C₁₀H₁₁ClNO₂⁺ [M+H]⁺ 212.0473; found 212.1473.

3-(4-Nitrobenzyl)oxazolidin-2-one. Light yellow solid. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.25 (d, *J* = 8.0 Hz, 2H), 7.50 (d, *J* = 8.0 Hz, 2H), 4.56 (s, 2H), 4.40 (t, *J* = 7.8 Hz, 2H), 3.50 (t, *J* = 7.8 Hz, 2H) ppm. ¹³C NMR (126 MHz, Chloroform-*d*) δ 158.5, 147.8, 143.2, 128.8, 124.1, 61.9, 47.9, 44.3 ppm. These data are matched with the reported publication [6]. HRMS (ESI) calcd for C10H11N₂O₄+ [M+H]+ 223.0713; found 223.0713.

3-(2-Hydroxyethyl)oxazolidin-2-one. Colorless oil. ¹H NMR (500 MHz, Chloroform-*d*) δ 4.36 (t, *J* = 7.5 Hz, 2H), 3.81 (t, *J* = 5.1 Hz, 2H), 3.71 (t, *J* = 7.5 Hz, 2H), 3.41 (t, *J* = 5.0 Hz, 2H) ppm. ¹³C NMR (126 MHz, Chloroform-*d*) δ 159.4, 62.2, 60.5, 46.9, 45.7 ppm. These data are matched with the reported publication.[3] HRMS (ESI) calcd for C₅H₁₀NO₃+ [M+H]+ 132.0655; found 132.0656.

3-Methyl-2-oxazolidinone. Oil. ¹H NMR (500 MHz, Chloroform-*d*) δ 4.23 (t, *J* = 8.0 Hz, 2H), 3.50 (t, *J* = 8.0 Hz, 2H), 2.80 (s, 3H) ppm. ¹³C NMR (126 MHz, Chloroform-*d*) δ 61.5, 46.7, 31.0. These data are matched with the reported publication [7]. HRMS (ESI) calcd for C₄H₈NO₂⁺ [M+H]⁺ 102.0553; found 102.0550.

3-Ethyl-2-oxazolidinone. Yellow liquid. ¹H NMR (500 MHz, Chloroform-*d*) δ 4.31 (t, *J* = 8.0 Hz, 2H), 3.55 (t, *J* = 8.0 Hz, 2H), 3.31 (q, *J* = 7.2 Hz, 2H), 1.16 (t, *J* = 7.2 Hz, 3H) ppm. ¹³C NMR (126 MHz, Chloroform-*d*) δ 61.6, 43.9, 38.9, 12.5 ppm. These data are matched with the reported publication [8]. HRMS (ESI) calcd for C₅H₁₀NO₂⁺ [M+H]⁺ 116.0708; found 116.0706.

3-Isopropyl-2-oxazolidinone. Yellow liquid. ¹H NMR (500 MHz, Chloroform-*d*) δ 4.31 (t, *J* = 8.0 Hz, 2H), 4.11 (hept, *J* = 6.8 Hz, 1H), 3.51 (t, *J* = 8.0 Hz, 2H), 1.19 (d, *J* = 6.8 Hz, 6H) ppm. ¹³C NMR (126 MHz, Chloroform-*d*) δ 61.9, 44.8, 39.6, 19.7 ppm. These data are matched with the reported publication [8]. HRMS (ESI) calcd for C₆H₁₂NO₂+ [M+H]+ 130.0863; found 130.0863.

3-Hydroxy-3-methylbutan-2-one. Colorless oil. ¹H NMR (500 MHz, DMSO-*d*₆) δ 5.22 (s, 1H), 2.16 (s, 3H), 1.18 (s, 6H) ppm. ¹³C NMR (126 MHz, DMSO-*d*₆) δ 214.3, 76.2, 26.6, 24.7 ppm. These data are matched with the reported publication [3].

3-Hydroxy-3-methylpentan-2-one. Colorless oil. ¹H NMR (500 MHz, DMSO-*d*₆) δ 5.04 (s, 1H), 2.14 (s, 3H), 1.61 (m, 1H), 1.47 (m, 1H), 1.13 (s, 3H), 0.76 (t, *J* = 7.5 Hz, 3H) ppm. ¹³C NMR (126 MHz, DMSO-*d*₆) δ 214.5, 78.9, 32.2, 25.5, 24.5, 8.3. These data are matched with the reported publication [3].

3-Hydroxy-3-dimethyl-2-hexanone. ¹H NMR (500 MHz, DMSO-*d*₆) δ 4.99 (s, 1H), 2.17 (s, 3H), 1.59 (dd, *J* = 13.9, 6.9 Hz, 1H), 1.42 (dd, *J* = 13.9, 5.6 Hz, 1H), 1.15 (s, 3H), 0.87 (d, *J* = 6.6 Hz, 3H), 0.79 (d, *J* = 6.6 Hz, 3H) ppm. ¹³C NMR (126 MHz, DMSO-*d*₆) δ 214.8, 79.0, 48.0, 26.4, 25.6, 24.7, 24.2 ppm. These data are matched with the reported publication [9].

1-(1-Hydroxycyclohexyl)ethenone. Yellow oil. ¹H NMR (500 MHz, DMSO-*d*₆) δ 5.06 (s, 1H), 2.14 (s, 3H), 1.60–1.42 (m, 9H), 1.18 (m, 1H) ppm. ¹³C NMR (126 MHz, DMSO-*d*₆) δ 214.6, 77.3, 33.3, 25.5, 24.9, 21.3 ppm. These data are matched with the reported publication [3].

3-Hydroxy-3-phenylbutan-2-one. Brown oil. ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.44 (d, *J* = 7.2 Hz, 2H), 7.35 (t, *J* = 7.6 Hz, 2H), 7.27 (t, *J* = 7.3 Hz, 1H), 6.04 (s, 1H), 2.02 (s, 3H), 1.52 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 210.7, 143.7, 128.6, 127.6, 125.5, 80.2, 26.5, 24.7 ppm. These data are matched with the reported publication [3].

7. NMR Spectral Copies of the Substrates and Products

References

- Q.-W. Song, Z.-H. Zhou, M.-Y. Wang, K. Zhang, P. Liu, J.-Y. Xun, L.-N. He, Thermodynamically Favorable Synthesis of 2-Oxazolidinones through Silver-Catalyzed Reaction of Propargylic Alcohols, CO₂, and 2-Aminoethanols, ChemSusChem 9(16) (2016) 2054-2058, https://doi.org/10.1002/cssc.201600470.
- X.-D. Li, Q.-W. Song, X.-D. Lang, Y. Chang, L.-N. He, AgI/TMG-Promoted Cascade Reaction of Propargyl Alcohols, Carbon Dioxide, and 2-Aminoethanols to 2-Oxazolidinones, ChemPhysChem 18(22) (2017) 3182-3188, https://doi.org/10.1002/cphc.201700297.
- 3. X.-D. Li, Y. Cao, R. Ma, L.-N. He, Thermodynamically favorable protocol for the synthesis of 2oxazolidinones via Cu(I)-catalyzed three-component reaction of propargylic alcohols, CO₂ and 2aminoethanols, J. CO₂ Util. 25 (2018) 338-345, https://doi.org/10.1016/j.jcou.2018.01.022.
- S. Xia, Y. Song, X. Li, H. Li, L.-N. He, Ionic Liquid-Promoted Three-Component Domino Reaction of Propargyl Alcohols, Carbon Dioxide and 2-Aminoethanols: A Thermodynamically Favorable Synthesis of 2-Oxazolidinones, Molecules 23(11) (2018), https://doi.org/10.3390/molecules23113033.
- Q.-W. Song, W.-Q. Chen, R. Ma, A. Yu, Q.-Y. Li, Y. Chang, L.-N. He, Bifunctional Silver(I) Complex-Catalyzed CO₂ Conversion at Ambient Conditions: Synthesis of alpha-Methylene Cyclic Carbonates and Derivatives, Chemsuschem 8(5) (2015) 821-827. https://doi.org/10.1002/cssc.201402921
- T. Buyck, D. Pasche, Q. Wang, J. Zhu, Synthesis of Oxazolidin-2-ones by Oxidative Coupling of Isonitriles, Phenyl Vinyl Selenone, and Water, Chem.-Eur. J. 22(7) (2016) 2278-2281, https://doi.org/10.1002/chem.201505050.
- M. Makoto, N. Masahiro, K. Shozo, Cyclization of (2-hydroxyethyl)urea derivatives to give 3-nitroso-2oxazolidinones under usual nitrosation conditions, Chem. Pharm. Bull. 33(2) (1985) 497-502, https://doi.org/ 10.1248/cpb.33.497.
- A.H. Fournier, G. de Robillard, C.H. Devillers, L. Plasseraud, J. Andrieu, Imidazolium and Potassium Hydrogen Carbonate Salts as Ecofriendly Organocatalysts for Oxazolidinone Synthesis, Eur. J. Org. Chem. 2016(21) (2016) 3514-3518. https://doi.org/10.1002/ejoc.201600550.
- Y. Zhao, Z. Yang, B. Yu, H. Zhang, H. Xu, L. Hao, B. Han, Z. Liu, Task-specific ionic liquid and CO₂cocatalysed efficient hydration of propargylic alcohols to alpha-hydroxy ketones, Chem. Sci. 6(4) (2015) 2297-2301, https://doi.org/10.1039/c5sc00040h.