

Supplementary Materials: The Ionic Organic Cage: An Effective and Recyclable Testbed for Catalytic CO₂ Transformation

Wenlong Wang ^{1,*}, Yuanyou Mao ^{1,2}, Jutao Jin ¹, Yanping Huo ^{2,*} and Lifeng Cui ^{1,*}

- ¹ School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China; maoyuanyou126@126.com (Y.M.); jinjt@dgut.edu.cn (J.J.)
- ² School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- * Correspondence: wangwl@dgut.edu.cn (W.W.); yphuo@gdut.edu.cn (Y.H.); lcui@dgut.edu.cn (L.C.)

Figure S3. ³¹P NMR spectrum of cage 3.

Figure S4. Solid-state ³¹P NMR spectrum of cage Iq-POC.

Figure S5. Monoclinic space group C2 of cage 3.

Figure S6. The PXRD spectrum of Iq-POC.

Figure S7. $\rm N_2$ sorption isotherms of Iq-POC measured at 77 K.

Figure S8. Proposed catalytic mechanism.

Figure S9. ¹H NMR copies of known products.