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1. Introduction

Methane (the major component of natural gas) is one of the main energy sources for
gas-powered turbines for power generation, and transport vehicles. Methane is 84 times
more potent than carbon dioxide as a greenhouse gas and is emitted from power generation,
diesel and compressed natural gas engines, gas wells, etc. Catalytic oxidation of methane
is an important area for both academic research and industrial applications. The three-way
catalytic converters work well at higher temperatures (above 600 ◦C) but are not very
effective for lean-burn engines and “idling”. Even though a good amount of research
has been reported on the catalytic oxidation of methane, the search is still on for the
development of low-temperature catalysts [1]. Two recent reviews [2,3] summarized the
advances made on development of catalysts, including identification of the active and
surface species and the reaction mechanisms during the catalytic combustion of methane.
Catalytic oxidation of methane over alumina and ceria supports have been reported to be
promising [4–6]. Additionally, particle size, chemical composition, surface species, and
metal–support interactions could significantly influence the properties and activities of
metal catalysts [7–11].

2. The Special Issue

The focus of this Special Issue was on the synthesis, characterization, and activity
of catalysts on various supports (alumina, ceria, silica), methane combustion over com-
posite catalysts, reactor design and the combustion characteristics in small-scale systems.
Liu et al. [12] reported the development of Pd/CeO2 catalysts on rice husk silica support
for the catalytic methane combustion in the temperature range of 150–500 ◦C, under
methane lean conditions. The incorporation of Pd-CeO2 into rice husk silica support im-
proved the water-resistance. Khader et al. [13] synthesized palladium/ceria nano-catalysts
supported on alumina and prepared via a one-step solution-combustion synthesis (SCS).
High-resolution transmission electron microscopy showed bigger Pd particles (5 nm and
more) were surrounded by CeO2, resembling a core shell structure. The results indicated
that the Pd-SCS nano-catalysts were exceptionally more active and stable than conventional
catalysts. A PdO-PdOx/γAl2O3 catalyst synthesized by a vortex-assisted incipient wetness
method exhibited exceptional low-temperature activities, with 90–94% methane conversion
at 300–320 ◦C. X-ray photoelectron spectroscopy established that the active phase, PdOx,
originated from the interaction of PdO with the alumina support during the calcination
process [14]. Banerjee et al. [15] compared the relative efficiencies of Pd/alumina catalysts
prepared by the vortex and incipient wetness methods. The catalyst synthesized by the
vortex method produced smaller PdO/PdOx nanoparticles (2–5 nm) and converted 90%
methane at 325 ◦C. Li et al. [16] reported nitrogen-modified perovskite type composite
catalysts prepared by a hydrothermal method for catalytic oxidation of methane. The
surface reaction mechanism was investigated using in-situ diffuse reflectance infrared
Fourier transform spectroscopy. LaMnO3 catalysts synthesized by sol–gel methods and
characterized by a variety of techniques displayed good catalytic activities for hydrocarbon
oxidation [17]. Sang et al. [18] designed a novel rotary regenerator-type catalytic com-
bustion reactor and found that the performance of the reactor was more sensitive to the
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increase of velocity and the decrease in methane concentration. Chen et al. investigated
the catalytic combustion characteristics of methane-air mixtures in small-scale systems,
using computational fluid dynamics simulations and chemical kinetic mechanisms. The
results indicated that the distribution of oxidized products depended critically on the feed
composition, dimension, temperature, and pressure.
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