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Abstract: Pristine and modified/doped titania are still some of the most widely investigated photo-
catalysts due to its high activity, stability, abundance and proper redox properties to carry out various
reactions. However, modifiers and/or dopants resulting in visible-light activity might be expensive
or work as recombination centers under UV irradiation. It seems that defective titania, known as
“self-doped” TiO2, might be the best solution since it can be obtained under mild conditions without
the addition of expensive materials and methods. This review discusses various methods of defective
titania preparation, characterization of defect types, their localization (surface vs. bulk) and their
function, as well as proposed mechanisms of photocatalytic reactions in the presence of self-doped
titania. Although many kinds of defective titania samples have already been prepared with different
colors, color intensities and defect kinds (mainly Ti3+ and oxygen vacancies), it is difficult to conclude
which of them are the most recommended as the preparation conditions and activity testing used
by authors differ. Furthermore, activity testing under solar radiation and for dyes does not clarify
the mechanism since bare titania can also be excited and sensitized, respectively, in these conditions.
In many reports, authors have not considered the possible influence of some impurities originated
from the synthesis method (e.g., H, Al, Zn, Cl, F) that could co-participate in the overall mechanism
of photocatalytic reactions. Moreover, some reports indicate that defective titania, especially black
ones, might decrease activity since the defects might work as recombination centers. Despite some
unproven/unclear findings and unanswered questions, there are many well-conducted studies
confirmed by both experimental and theoretical studies that defective titania might be a promising
material for various photocatalytic reactions under both UV and visible-light irradiation. Based on
available literature, it could be proposed that optimal defects’ concentration, the preferential role of
surface defects, a higher surface-to-bulk ratio of defects in rutile than in anatase, and the beneficial
impact of disordered surface are the most important aspects to be considered during the preparation
of defective titania.

Keywords: defective titania; vis-response; heterogeneous photocatalysis; hydrogenated titania;
oxygen vacancy; Ti3+; disordered titania

1. Introduction

Over the past 40 years, titanium(IV) oxide (TiO2; titania) has been of great interest
because of its exceptional properties as an efficient photocatalyst in the different types of
reactions. Its important advantages are its good stability toward photocorrosion, positions
of conduction (CB) and valence bands (VB) corresponding to redox potentials of various
crucial chemical transformations (e.g., photooxidation of organic compounds, photocat-
alytic hydrogen generation and CO2 photoreduction), low cost, and relative nontoxicity,
which are the main factors contributing to its wide research interest [1–8]. However, the
overall efficiency of photocatalytic processes based on titania can be hampered by the
recombination of photogenerated charge carriers (electrons and holes) and the intrinsic
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photoabsorption properties of TiO2. The relatively wide bandgap of titania (3.0–3.2 eV)
corresponds only to UV light absorption and, as a result leads to very small utilization of
solar radiation (3–4%). Many attempts to improve the photocatalytic performance of titania
by overcoming the above-mentioned functional limitations have been proposed. Most of
these methods concern metal or non-metal modification/doping of TiO2, and preparation
of titania-containing heterojunction systems [9–20].

The introduction of external species to titania structure and the interaction between
modifier/dopant and titania brings many challenges, such as intrinsic stability problems
and the real possibility of commercialization of designed visible-light active photocatalysts.
The development of semiconductors such as titania with structural defect disorders to in-
troduce visible-light photoabsorption properties and subsequently provide corresponding
photocatalytic efficiency in this irradiation range has been shown as a promising strategy.
Numerous studies have shown that the introduction of defects such as oxygen vacancies
or Ti3+ species might be responsible for the resultant properties of such prepared materials
also described as a ‘self-modified/doped titania’ [21–82]. Furthermore, the presence of
defects can also affect charge transport [83] and surface properties of semiconductor [25].
However, many studies have shown that the modification of photo-absorption properties
(most often towards visible light) does not correspond in every case to photocatalytic
activity improvement in the considered range of irradiation (the debatable example of
black titania). Therefore, the origin of the enhancement of photocatalytic performance
of titania-containing defects is still under discussion and requires clarification. In this
review, a brief overview of defective TiO2 has been carried out in relation to the above-
mentioned fundamental issues to provide the current knowledge and perspectives of
defective materials.

2. The Types of Defect Disorders in Titania

The crystal imperfections, characteristic for solids, might be divided concerning the
dimensionality of the crystal lattice: (i) zero-dimensional defects (known as point defects),
(ii) one-dimensional defects (line defects), (iii) two-dimensional defects (planar defects),
and (iv) three-dimensional defects (volume defects) [84]. The point defects are places where
an atom is missing or irregularly placed in the crystal array. One-dimensional defects are
recognized as dislocations (edge or screw). Planar defects can be divided into three groups:
grain boundaries, twin boundaries, and stacking faults. In turn, 3D-defects can be described
as aggregates of atoms or vacancies (precipitates, dispersants, and voids/cracks).

The point defects are present in any titania nanocrystal involving the following types:
(i) oxygen vacancies, (ii) titanium interstitials, (iii) titanium vacancies, (iv) interstitial (e.g.,
hydrogen or nonmetal dopants), and (v) substitutional impurity (e.g., metal or nonmetal
dopants) [25,66,85]. The formation of intrinsic defects (i)–(ii) can be described using the
Kröger–Vink notation by the following example of defect equilibria (1) and (2) [26,85]:

Ox
O ↔ V••O + 2e′ +

1
2

O2 (1)

Tix
Ti + 2Ox

O ↔ Ti•••i + 3e′ + O2 (2)

where:

Ox
O—O2− ion in the oxygen lattice site,

V••O —oxygen vacancy,
e′—Ti3+ ion in the titanium lattice site (quasi-free electron),
Tix

Ti—Ti4+ ion in the titanium lattice site,
Ti•••i —Ti3+ in the interstitial site.

As shown in Figure 1a, the removal of surface oxygen ion results in the formation
of oxygen vacancy, whereas the consequence of the removal of two oxygen ions from the
lattice is the formation of titanium interstitial, as presented in Figure 1b. Both formations
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occur in reducing conditions. Taking into consideration the oxidizing conditions, oxygen
adsorption triggers the formation of titanium vacancies (Equation (3)) [85].

O2 ↔ V
′′′′
Ti + 4h• + 2Ox

O (3)

where:

V
′′′′
Ti titanium vacancy,

h•—O− ion in the oxygen lattice site (quasi-free electron hole).
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Figure 1. Formation of doubly ionized oxygen vacancy (a) and trivalent titanium interstitial (b):
large and small circles represent lattice oxygen and titanium ions, respectively; black circles denote
electrons and the square represents an empty lattice site. Reprinted with permission from [28].
Copyright 2011, American Chemical Society.

The existence of point defects is responsible for the formulation of structural rearrange-
ments, which might cause distortions in the local symmetry of Ti octahedra, influencing the
charge carriers’ transport, thus affecting the efficiency of the photocatalytic process [66].

It must be emphasized that the correlation between oxygen vacancies and Ti3+ is
complex. One can distinguish three cases of these relations: (i) the electric charges of
Ti3+ species in TiO2 can be balanced by oxygen vacancies→ Ti3+ and oxygen vacancies
appear/disappear simultaneously, (ii) besides Ti3+ and oxygen vacancies, a certain amount
of structural defects are present→ inequalities between Ti3+ and oxygen vacancies occur,
(iii) electric charges of Ti3+ species in TiO2 are balanced by protons→ Ti3+ has no direct
connection with oxygen vacancies [86]. Furthermore, it is necessary to underline that the
ionic defects are responsible for the formation of donor and acceptor levels in the electronic
structure of TiO2 (Figure 2) [26]. As one can see, the type of intrinsic defects determines the
band configuration.

An important issue influencing the electronic properties of titania is the location of
point defects. There are three main locations: (i) at the surface (first atomic layer), (ii) at the
subsurface (crystal slab), and (iii) in the bulk of crystal [66]. Furthermore, an interesting
and challenging point is the parallel formation of different types of defects, described as
defects pairing. Its role in the explanation of photocatalytic mechanisms is often overlooked,
mainly because of the difficulties in their proper characterization [66,87].
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3. Dopant-Free Defective Titania Nanomaterials—Preparation Strategies
and Properties

The incorporation of defects into titania structure can be conducted by: (i) changes
of the titanium-to-oxygen ratio and related concentration of point defects (self-modified
titania), (ii) incorporation of higher- and lower-valence ions, forming donors and acceptors,
respectively [28]. This review focuses on the first approach described as a dopant-free
defective or self-modified titania.

3.1. Thermal Treatment in the Presence of Hydrogen Gas

The application of hydrogen to prepare the reduced, defective form of titania was
introduced in the early works of Cronemeyer and Breckenridge [88,89]. Cronemeyer
performed hydrogen reduction of rutile single crystals at high temperatures (e.g., 800 ◦C),
obtaining blue-color samples. In the next work, the increased electrical conductivity in
the reduced rutile crystals was described as the consequence of the ionization of trapped
electrons in oxygen vacancies [90]. For the first time, in the case of hydrogen-reduced rutile,
Chester found that lines in the electron spin resonance spectrum might be attributable to
Ti3+ interstitials or oxygen vacancies [91]. Hasiguti and Yagi have proposed that electrical
conductivity is connected with the presence of Ti3+ interstitials defects [92]. However,
Sekiya et al. have suggested the dominant role of oxygen vacancies for hydrogen-reduced
anatase [93].

It has been proposed that during hydrogenation, hydrogen reacts with the lattice
oxygen to form oxygen vacancies and simultaneously one oxygen vacancy leaves behind
two excess electrons [86]. The mentioned electrons can locate at titanium positions, and thus
Ti3+ formation can also occur. Therefore, the type of defects (including their coexistence)
is strictly dependent on the preparation conditions. As shown in the work of Liu et al.,
the setting of hydrogen-treatment temperature below 450 ◦C results in the appearance
of only oxygen vacancies, whereas an increase in the temperature to the higher values is
responsible for the coexistence of both oxygen vacancies and Ti3+ interstitials [94].

Yu et al. discussed the relation between types of defects, their distribution and hydro-
genation conditions [95]. During the preparation of hydrogenated samples at 600 ◦C, a
high concentration of Ti3+ was detected in the bulk at early stage of the process, and subse-
quently, their gradual transformation into surface oxygen vacancies has been observed with
reaction progress. Therefore, the longer duration of thermal treatment under hydrogen
causes the attenuation of Ti3+ and the increase of oxygen vacancies which produced O−

species as a result of oxygen presence at ambient conditions. Figure 3 shows the color
changes of hydrogenated samples depending on the time of the thermal treatment.
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Chen et al. prepared the novel black hydrogenated titania exhibiting solar-induced
photocatalytic activity (related to methylene blue and phenol degradation, and hydrogen
generation with Pt-particles presence as co-catalyst) [96]. They applied H2-thermal treat-
ment in high-pressure system (20 bar) at 200 ◦C for five days. In this case, the presence
of mid-gap electronic states in the lattice of disordered titania structure was indicated
as the main reason for observed photocatalytic behavior [96,97]. Wei et al. synthesized
hydrogenated {001}-facets-dominated anatase nanosheets [98]. These materials showed
higher UV/vis and vis irradiation-induced photocatalytic activity than pristine TiO2. The
presence of both oxygen vacancies and Ti3+ was detected, resulting in a significant bandgap
narrowing [98]. Similarly, Naldoni et al. prepared black TiO2 nanoparticles with spe-
cific crystalline core/disordered shell morphology and the significant bandgap narrowing
(Figure 4) [30]. Oxygen vacancies were present in the bulk anatase crystalline phase,
whereas the disordered surface was nearly stoichiometric.

In the other work, Lu et al. prepared defective titania nanomaterials by hydrogenation
at room temperature under hydrogen with a pressure of 35 bar [99]. They used P25 as a
staring material and found that titania powders treated under hydrogen for more than
15 days had a dark color and a crystalline-disordered core–shell structure. Liu et al. utilized
titania nanotubes to prepare black, photocatalytically active material [100]. The hydrogen
treatment was applied using different preparation conditions, e.g., under atmospheric
conditions or high pressure. It has been stated that the high H2-pressure annealing results in
the temperature stable, Ti3+-defect structure of anatase nanotubes with good photocatalytic
properties towards hydrogen generation under solar radiation.

In contrast, Leshuk et al. obtained contradictory photocatalytic results for black TiO2
prepared by high-temperature hydrogenation (up to 450 ◦C) under 20-bar H2 for 24 h [101].
The deterioration of photocatalytic activity under sunlight irradiation of methylene blue
solution for hydrogenated samples with an increase in H2-treatment temperature was
observed despite strong visible-light absorption. It has been proposed that the presence of
vacancy defects is confined rather to the core of TiO2 crystals than their surface, and, in this
case, they behave as trap sites and charge recombination centers [101]. Similar conclusions
were drawn by Liu et al. for the black and grey-colored titania samples prepared by
hydrogenation [49]. The better photocatalytic effects were achieved for gray-colored
titania, which means that photocatalytic activity (H2 evolution) is not related to the optical
absorption of TiO2. It has been suggested that black titania obtained at higher temperature
contains a higher concentration of Ti3+ defects that might act as recombination centers.

Therefore, the proper conditions for hydrogenation of titania (temperature, H2 pres-
sure, time of treatment) are very important to adjust the best ratio between different types
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of defects. Though the presence of defects has been confirmed by experimental approaches
in most of these studies, there is no information on the possible role of adsorbed/bound
hydrogen. An unanswered question is how and if hydrogen participates in the overall
mechanism, and thus the observed visible-light activity of these “hydrogenated” samples.
Additionally, the use of dyes for visible-light activity testing does not guarantee the real
vis response due to the competitive mechanism of titania sensitization by dyes. Moreover,
in many cases the mechanism of visible-light activity of “self-doped” titania has not been
discussed in detail. It should be pointed out that the bandgap narrowing also means lower
redox properties, and thus inability to reduce oxygen by one-electron mechanism.
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3.2. Application of Other Reductants

Another approach to preparing self-doped TiO2 without application of high tempera-
ture/pressure conditions, and thus with less energy consumption than H2-gas hydrogena-
tion, is to apply mild sources of hydrogen such as NaBH4 [102]. The respective reactions
are as follows [36]:

NaBH4+8OH− → NaBO2+8e−+6H2O (4)

Ti4++e− → Ti3+ (5)

Xing et al. successfully prepared self-doped titania nanoparticles by a simple one-
step solvothermal method with NaBH4 added as a reductant [32]. Self-modified titania
samples had a good visible light photocatalytic activity in phenol degradation. The authors
found the positive correlation between the activity and the concentration of Ti3+ and
oxygen vacancies. Similarly, Fang et al. obtained self-doped TiO2 samples through NaBH4
reduction step with visible-light induced activity for Rhodamine B degradation [73]. It has
been proposed that under visible-light irradiation of photocatalyst, electrons are excited to
the impurity levels resulting from the presence of Ti3+ and oxygen vacancies. Moreover, it
has been suggested that the life of the photoinduced electron in the oxygen vacancy trap is
longer than that in the conduction band, which favorably reduces oxygen and produces a
superoxide radical, thus enhancing photocatalytic activity [32].



Catalysts 2021, 11, 978 7 of 21

An interesting approach has been proposed by Zuo et al., who developed the prepara-
tion method with in situ generated reducing gases (CO and NO) [27]. By the combustion
of ethanol solution of titanium(IV) isopropoxide and 2-ethylimidazole at 500 ◦C in the
air the blue powders are obtained. During combustion, the imidazole reacts with oxygen
to form reducing gases that cause the reduction of Ti4+ to Ti3+. Theoretical calculations
and experimental results have confirmed the presence of Ti3+ defects and improvement of
photocatalytic activity in the visible-light region.

Apart from gases, solid materials have also been proposed as a reductant. For example,
Wang et al. prepared oxygen-deficient TiO2−x by the application of aluminium [103]. The
mechanism of reduction by alumina is attributed to sustaining low oxygen partial pressure
from melting aluminum and releasing oxygen from TiO2. TiO2−x nanocrystals possess a
unique core–shell structure of TiO2@TiO2−x, inducing significant enhancement of visible
and near-infrared photoabsorption. In the other work, Cui et al. prepared black anatase
TiO2 nanotubes by the melted aluminum reduction of pristine anodized and air-annealed
TiO2 nanotube arrays [104]. In the reduction process, TiO2 nanotubes and aluminum
powder were heated to 500 ◦C and 850 ◦C for 4 h, respectively. The black anatase TiO2
nanotubes have strong absorption ability from visible-light to near-infrared regions. Apart
from aluminum also zinc has been used as a reducing agent. For example, Zhao et al.
obtained gray-colored rutile by reduction with Zn in a solvothermal process, i.e., TiCl3
aqueous solution in the presence of isopropanol and Zn is heated at 180 ◦C for 6 h [105]. The
excess of zinc is removed by aqueous solution of hydrochloric acid. It has been observed
that an increase in Zn amount applied to the solvothermal synthesis results in a stronger
visible-light absorption of prepared powders.

3.3. Oxidative Treatment

In contrast to reduction methods, an oxidative treatment has also been proposed to
obtain defective titania samples, e.g., oxidation of TiH2. Liu et al. performed the oxidation
of TiH2 by H2O2 during hydrothermal treatment at 160 ◦C for 20–27 h, resulting in the
preparation of titania powders with blue and light blue colors [31]. It has been proposed
that the rice-shaped Ti3+ self-doped titania nanoparticles have been obtained, according to
the surface oxide–interface diffusion–redox reaction mechanism (Figure 5).
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Similarly, a successful approach was achieved by Grabstanowicz et al. for Ti3+-self-
doped rutile (black powders) prepared via solution-based oxidation of TiH2 in H2O2,
followed by calcinations in Ar. [106]. The prepared samples possess high stability in the
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air up to 180 ◦C and exhibit strong visible-light photocatalytic activity in the degrada-
tion of organic compounds in water. Another oxidative approach has been proposed
by Pei et al. [107]. TiO2 of grey color was prepared by facile hydrothermal treatment of
titanium monoxide in HCl solution at 160 ◦C for 24 h. The presence of both Ti3+ and oxygen
vacancies was reported.

Interesting method based on oxidation has been proposed by Kako et al., in which
colorful (mostly yellow and pale yellow) rutile samples are prepared by heating Ti2O3 at
550–900 ◦C [35]. It has been proposed that the formation of Ti3+-interstitial (Tii3+) sites is
mainly responsible for visible-light absorption.

3.4. Other Methods

Considering low-temperature plasma treatment, it is possible to reduce the surface
layer of titania owing to the presence of high-energy electrons and atoms. Indeed, Naka-
mura et al. have obtained hydrogen plasma-treated TiO2 containing oxygen vacancies with
visible-light activity [22]. In the other study, Teng et al. prepared black TiO2 by hydrogen
plasma treatment, and band gap narrowing has been explained as a result of the syner-
gistic presence of oxygen vacancies and Ti-H bonds [108]. Wang et al. proposed the black
core–shell structure of TiO2@TiO2−xHx, prepared also by hydrogen plasma method [109].
The enhanced solar light absorption of prepared samples has been explained by the ex-
istence of the amorphous shell inducing the localized surface plasmon resonance. It has
been proposed that hydrogen treatment is responsible for the reduction of titanium (Ti3+

localized states), and thus improved photocatalytic activity.
It should be mentioned that most methods described above are based on the addi-

tion of other chemical species, e.g., hydrogen, chloride, zinc, alumina, etc., and thus their
possible presence in the final product should be also considered. To avoid this problem,
physical methods of titania modification have also been proposed. For example, Xiang et al.
prepared defect-containing and highly air-stable titania samples using a low-temperature
vacuum-activated method [75]. The obtained photocatalysts possess higher visible light ac-
tivity in degradation of methyl orange and phenol than commercially available unmodified
Degussa P25 titania. By EPR analysis, it was confirmed that three types of oxygen-vacancy
states exist in the bandgap of vacuum-activated titania, i.e., Ov

++, [Ov·Ti3+]+ and [Ov·Ti3+]0

(Figure 6). It was found that neutral [Ov·Ti3+]0 readily transforms to [Ov·Ti3+]+ in the
presence of O2 and light irradiation. This transformation can move up the oxygen vacancy
color center, resulting in a decrease in the visible-light response and decay of color [75].

In the other work, Xia et al. prepared vacuum-treated titania nanocrystals, which
displayed long-wavelength optical absorption due to the existence of oxygen vacancies
and Ti3+ defects, as well as possible surface structural disorders [110]. It has been proposed
that both oxygen vacancies and Ti3+ defects might influence the photocatalytic activities
in methylene blue decomposition and hydrogen generation. Interestingly, it has been
concluded that oxygen vacancies positively influence the decomposition of methylene blue
while harming the photocatalytic generation of hydrogen.

Dong et al. confirmed by the analysis of vacuum-activated P25 samples that their
enhanced photocatalytic activity is attributed to the high separation efficiency of photogen-
erated electron-hole, caused by decreasing the ratio of bulk to surface oxygen vacancies [72].
Different strategy to apply vacuum to generate surface oxygen vacancies in titania has been
proposed by Katal et al. [58]. Degussa P25 titania pellets were transformed by sintering
at different temperatures (500–800 ◦C) under vacuum conditions. The color of pellets has
changed from white to black, and the presence of oxygen vacancies and Ti3+ was confirmed.
It was found that the density of oxygen vacancy influences the solar light-induced pho-
tocatalytic activity for acetaminophen degradation. Furthermore, it was stated that this
density might be optimized for a sample, i.e., the higher density than the optimum value
has a negative effect on the photocatalytic activity [58].

A promising approach is to combine the defect engineering with the facets’ control,
e.g., by the application of hydrothermal methods. Liu et al. obtained anatase nanosheets
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with controlled defect locations exclusively in the bulk or on the surface by adjusting
temperatures and HF amount during hydrothermal synthesis [111]. It has been proven
that photocatalytic performance has a strong correlation with charges-participated surface
reactions with the relation to the controlled defect locations. The TiO2 {001} nanosheets
exclusively with surface defects are more photocatalytic active than other photocatalysts
with bulk defects.

The innovative strategy to obtain defective titania material is the application of γ-ray
radiation [112]. The γ-ray reduction has interesting advantages over traditional reduction
methods, i.e., no required strict controlled experimental conditions, mostly independent on
temperature, no need to require the addition of reductant substances. The γ-ray radiation
at room temperature has been applied by Zhao et al., who obtained defective titania with
both oxygen vacancies and Ti3+ defects, and good visible light-induced photocatalytic
properties [112]. Another “green” approach to generate structural disorders in titania is
to apply mechanochemical synthesis. For example, Wang et al. have used planetary ball
milling apparatus to provide the milling in air or argon atmosphere [61]. It was proposed
that the generated defects (VO and Ti3+) are responsible for color change (yellow–milling
at air atmosphere or gray–argon atmosphere) and visible-light photocatalytic activity.
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4. Defect-Depending Photocatalytic Activity of Self-Doped TiO2

As stated for the visible light-induced photocatalysis, the semiconductor materials
utilized in this process should provide photoabsorption properties connected with the
corresponding range of irradiation [9]. In the case of UV-active TiO2, the extension of
the absorption into visible-light region can be achieved through different methods of
modification by addition of modifier/dopant (e.g., metal or non-metal elements). Other
approach is to focus on the modification of defect disorder that determines the related
semiconducting properties of TiO2 such as electronic structure and charge transport [28].
Among methods based on defect engineering; it has been proposed that the preparation
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of modifier/dopant-free titania is a promising direction to obtain efficient visible-light
active photocatalysts.

In the preliminary works on reduced titania, it was shown that a slight reduction of
TiO2 could modify an absorption spectrum towards visible-light region, including also
infrared part of irradiation [89,90]. This statement was firstly correlated with photocatalytic
activity by Nakamura et al. in 2000 [22]. They applied plasma treatment to prepare reduced
TiO2 with defective structure. The presence of oxygen vacancies was confirmed, and
the electrons trapped on oxygen vacancies were detected under visible light irradiation.
Interestingly, the clear correlation between the number of trapped electrons on oxygen
vacancies and the removal rate of NOx (the photocatalytic oxidation of NO to NO3

−) was
presented, as shown in Figure 7. Authors have postulated that the formation of the oxygen-
vacancy states located between the VB and CB is crucial for the visible-light-induced
photocatalytic activity (as shown in Figure 2).
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In the important work by Kuznetsov and Serpone, the correlation between the oc-
currence of spectral bands in the absorption spectra of visible-light-active TiO2 was dis-
cussed [21]. They concluded that the presence of absorption bands in the visible-spectra
region of doped titania results from the reduction of TiO2, causing the formation of oxygen
vacancies in the presence of an effective electron acceptors, which competes with Ti-related
sites in the capture of electrons. Furthermore, it was stated that visible-light activity origi-
nates from the color centers associated with oxygen vacancies, while the spectral bands
detected at longer wavelengths correspond to Ti-related color centers [21].

Zuo et al. prepared self-doped titania by the combustion method using ethanolic solu-
tion of titanium(IV) isopropoxide and 2-ethylimidazole [27]. Ti3+ centers were recognized
by EPR analysis. The authors stated that the Ti3+ inside the bulk is responsible for the
bandgap narrowing. Additional presence of oxygen vacancies has been described as an
extra benefit for visible-light absorption. Moreover, the high concentration of VO can break
a selection rule for indirect transitions, causing an enhanced absorption for photon energy
below the direct bandgap. The visible-light activity of prepared materials was confirmed
in the reaction of hydrogen evolution [27].

The breakthrough research on defective titania was performed by Chen et al. in
2011 [96]. For the first time, black titania nanoparticles were prepared by thermal treat-
ment under high pressure of hydrogen. The significant color change from white to black
has involved the absorption in the near-infrared region. The exceptional visible-light
activity for black titania is mainly connected with the presence of defects such as oxygen
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vacancies [30,48,113,114]. However, in the case of black TiO2, there is an important role of
modified light absorption properties, which results from the introduction of lattice disorder
and hydrogen impurities, causing bandgap narrowing to 1.54 eV by the incorporation of
electronic states [96].

It should be pointed out that this findings by Chen et al., i.e., that introduction of a
disordered surface layer in titania crystal has been beneficial for photocatalytic activity,
was not entirely consistent with the accepted knowledge. The mostly considered statement
was that the high crystallinity was the basic condition to avoid detrimental recombination
effects [115]. It has been known that titania disordering occurs by reduction methods from
the surface to the core. Therefore only a disordered outer shell was in contact with water
(interface). It is in agreement with the work by Naldoni et al. [30] mentioned before, stated
that oxygen vacancies are present in the bulk anatase crystalline phase (core), whereas the
disordered surface (shell) is nearly stoichiometric (Figure 4).

The concept of the order/disorder junction system for the defective titania system
was also studied by Zhang et al. [116]. They prepared selectively reduced/disordered
photocatalyst based on Degussa P25. The strong reducing agent in superbase consisting
of lithium in ethylenediamine was applied at the room temperature. The anatase phase
was unchanged remaining white color, but the rutile one was fully converted into black
titania. In consequence, the overall color of transformed P25 turned to blue. In opposition
to anatase phase, the atomic arrangement of black rutile was strongly disordered. They
tested blue P25 in a simulated solar light-induced photocatalytic generation of hydrogen.
The following reaction rates of H2 evolution were reported: 13.89 mmol h−1 g−1 using
0.5 wt% of Pt (co-catalyst) and 3.46 mmol h−1 g−1 without using any co-catalyst. The
exceptional efficiency without Pt was ascribed to the internally separated electrons/hole
through type-II heterojunction. Figure 8 shows the mechanistic differences between con-
ventional black titania (core-shell) and the three-phase interfaces composed of ordered
white anatase and disordered black rutile with open structures for electrolyte access. In
the case of conventional black titania, the photogenerated electrons migrate out from
the ordered core to the disordered shell via a tunneling process to achieve contact with
water. When there is no electron acceptor (e.g., Pt) on the shell surface, the probability
of charge recombination increases. A different situation is considered for blue P25 with
water/order/disorder/water junction, where the efficient separation of redox sites for
oxidative and reductive processes occurs (Figure 8) [116].
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Liu et al. prepared different types of defective titania by hydrogenation procedure,
resulting in gray, black-gray and black titania samples [49]. They found that gray-colored
titania is more active than the black (H2 production), concluding that the additional op-
tical absorption in the visible range, induced by the reductive reaction conditions, does
not correlate with the photocatalytic efficiency. Black titania shows several magnitudes
higher concentration of paramagnetic Ti3+ states, which might act as recombination cen-
ters for charge carriers, mainly in the sub-band-gap range, and therefore might suppress
visible-light photocatalytic activity [49]. These results confirm the statement that the
photocatalytic performance of defective titania materials relies on the concentration and
distribution of defects: oxygen vacancies or Ti3+. In another research project, Tan et al.
prepared colored (from light blue to black) defective titania nanoparticles by using NaBH4
as a reductant [117]. Their results have shown that an optimum concentration of oxygen
vacancies gives a maximum improvement of photocatalytic activity, beyond which the
photocatalytic efficiency decreases. The darkest sample does not have the highest pho-
tocatalytic performance. The experimental results, together with theoretical calculations,
indicated that the energy level of defective TiO2 consists of two categories: first one is the
conduction band tail owing to the presence of vacancy bands, and the second one is the
valence band tail contributed from the crystalline phase transformation. Both categories
imply a bandgap narrowing, a broad visible light absorption and the presence of disordered
layer [117].

Kong et al. focused their efforts on an explanation of the influence of surface/bulk de-
fects ratio on the photocatalytic activity [118]. They prepared titania samples with tunable
bulk/surface defects by vapor-induced hydrothermal hydrolysis at different temperatures.
It was experimentally confirmed that both surface and bulk defects are important for the
efficiency of photocatalytic processes. A decrease in the relative concentration ratio of bulk
defects to surface defects significantly improves the charge carrier separation and simul-
taneously enhances the photocatalytic performance. Similar observations were obtained
by Yu et al. [95]. As mentioned in the previous section, they also analyzed the types and
distribution of defects. The remarkable improvement of photocatalytic activity for TiO2
sample hydrogenated at 600 ◦C has been reported. It was concluded that this phenomenon
occurs because of a diffusion of bulk defects to the surface.

The role of surface defects such as oxygen vacancies has also been confirmed by
Jiang et al. [119]. The VO on the titania surface plays an important role in the adsorption of
oxygen molecules interacting with Ti3+ sites or acts as electron scavengers (charge carrier
trapping and prevention of recombination). In the study by Amano et al., the role of defects
in the photocatalytic activity of rutile was discussed [45]. The most suitable temperature
for hydrogen treatment to achieve the best photocatalytic efficiencies was found to be
at 600–800 ◦C. The H2 treatment at 500 ◦C created Ti3+ ions, whereas the annealing at
700 ◦C has increased the density of electrons in the conduction band, resulting in an
improvement of the electrical conductivity of titania, which might play an important role in
suppressing the fast recombination. Therefore, the hampering of the recombination effect
in the defective TiO2 might be caused by a high electrical conductivity and high degree of
band bending [45].

In the other work, Sinhamahapatra et al. prepared black titania samples with good
photocatalytic properties for visible-light assisted hydrogen production by magnesiother-
mic reduction [42]. They postulated that the balance combination of different factors such
as the content of Ti3+ and VO defects (surface/bulk) and recombination centers exist simul-
taneously with an optimized bandgap and band positions. The correlation between surface
VO and photocatalytic performance was also determined in the study by Chen et al. [81].

Different observation were performed by Leshuk et al. [101]. As shown in Figure 9,
pristine, non-hydrogenated titania had better photocatalytic activity than all hydrogenated
samples. With an increase in hydrogenation temperature the photocatalytic efficiency
decreases. Furthermore, with a higher temperature of hydrogenation, stronger photoab-
sorption in the visible-light region was observed, i.e., from light yellow color for the sample
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prepared at 250 ◦C to black color for that at 450 ◦C. Authors attributed this activity decrease
mainly to the presence of oxygen vacancies in the bulk as a result of hydrogenation—the
higher temperature, the higher is the content of VO bulk defects. This localization of VO de-
fects means that the vacancies behave as trap states and charge recombination centers [101].
This is in agreement with the previous study by Kong et al. [118].
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An important aspect of the photocatalytic properties of defective TiO2 is the role
of the crystal phase. It has been shown, owing to theoretical calculations, that oxygen
vacancies are more stable on the surface of rutile than anatase [120]. Furthermore, it was
confirmed that defects introduce a gap state near the conduction band. In other work,
based on first-principles density-functional theory calculations, the subsurface dominance
of oxygen vacancies in anatase was found [121]. The latest paper of Wagstaffe et al.
distinguishes the differences between the reduced rutile {110} and anatase {101} in relation
to the photooxidation of carbon monoxide reaction [122]. The defective rutile possesses
higher photocatalytic activity than the defective anatase due to the different locations of
defects within the crystal structure, as shown in Figure 10. These results are in agreement
with the above-mentioned theoretical works. In the case of anatase, the surface-to-bulk
ratio is small, therefore the bulk defects are more important acting as charge traps. Then, a
recombination rate increases and photocatalytic efficiency decreases.
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A different situation is observed for defective rutile, where a significant defect concen-
tration is on the surface. Therefore, any charge trapped by these defects will be held at the
surface and made available to participate in the reaction, which influences the inhibition
of the recombination effect. Furthermore, some of the surface defects will immediately be
eliminated by exposure to oxygen and will no longer act as charge traps [122].

Another factor influencing the photocatalytic efficiency of defective TiO2 might be
the titania structure arrangement. Lan et al. prepared black TiO2 samples based on
ordered mesoporous microspheres [60]. They utilized a compatible reducing agent (2-
ethylimidazole) to introduce it into the mono-micelle assembly process. Such type of
reductant also plays the role of a building block of mesostructured frameworks and, in situ,
reduces Ti4+ to generate defects during calcination.

Finally, the coexistence of bulk Ti3+ defects and ordered mesostructured has been
found. Interestingly, the optimal amount of reductant influencing Ti3+ defects concentration
were established to prepare the most active sample for solar-induced hydrogen production
and dye degradation. It was stated that the 3D has opened mesoporous alignment com-
prehensively access to the reactive solution and provided an effective transport pathway,
while the stable Ti3+ defects enable narrowing the bandgap for extended light absorption
simultaneously, improving charge carriers separation [60]. Another interesting approach
was performed by Xin and Liu [74]. They combined the well-ordered inverse opal structure
of titania and chemical hydrogenation to prepare black TiO2 inverse opals. It was found
that after hydrogenation, the inverse opal morphology had not changed (Figure 11), but
the visible-light-induced photocatalytic activity improved significantly in comparison to
white inverse opal titania and P25 [74].
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The promising direction of the design of defective TiO2 for many photocatalytic
applications is the combination of defect design with crystal facets’ engineering. Single-
crystalline titania with exposed crystal facets have been described in many research reports
as a semiconducting material with an exceptional photocatalytic activity [123–128]. In
the study of Liu et al. titania nanocrystals with exposed {001} and {101} facets, and {001})
or {101} dominated facets were prepared by a hydrothermal method with the usage of
HF as a morphology controlling agent [47]. Subsequently, faceted nanocrystals with
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defects were prepared by a solid-state method through NaBH4 reduction. Taking into
consideration the samples without introduced defects, the efficiency of photocatalytic
CO2 reduction was highest for the sample with co-exposed {001} and {101} facets due to
the enhanced charge transfer separation between {001} and {101} interfaces. Comparing
samples with defects and without defects, in each case, better photocatalytic activity was
reported for defective samples. Authors have found that the applied reduction method
(NaBH4) have induced the formation of both surface and subsurface Ti3+ on the TiO2−x{101}
and surface/subsurface/bulk Ti3+ on the TiO2−x{001})-{101}) but only surface Ti3+ on the
TiO2−x{001). It was concluded that the presence of co-exposed {001} and {001} facets and
point defects could provide more active sites, better charge separation efficiency by the
existence of {101}-{001} surface junction, and finally, the extension of visible-light response
due to the presence of defects [47]. In the latest work, Liu et al. synthesized self-doped
anatase nanosheets with co-exposed {001} and {101} facets, with different percentage of
exposed {001} facets by hydrothermal method [111]. The obtained samples have possessed
different locations of defects. A sample with 70% content of exposed {001} facets is the
most active in the photocatalytic H2 evolution under solar-light simulated irradiation.

It has been suggested that the presence of only surface defects could be responsible
for the highest activity of this sample. Different from bulk defects, surface defects might
play the role not only as charge-carrier traps but also adsorption sites. Simultaneous
trapping of charges and adsorbed species at the same surface defects might enhance the
efficiency of photocatalytic processes. The reaction mechanism of photocatalytic generation
of hydrogen over self-doped faceted anatase nanosheets is shown in Figure 12. The
existence of {001}-{101} surface heterojunctions causes the migration of photogenerated
electrons to {101} surfaces to mediate the surface reduction reactions to produce hydrogen,
whereas the photogenerated holes tend to migrate to {001} facets to initiate the surface
oxidation reactions of methanol. A high density of surface defects might improve the
dissociative adsorption of water into surface OH groups, facilitating the formation of
surface H-bonding network and, subsequently, the hydrogen production rate [111].
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5. Summary and Conclusions

The concept of visible-light-induced photocatalysis is still mainly based on modified
or doped titania. Modification usually means the use of metal or non-metal elements or
preparation of heterojunctions with different materials. However, so-called ‘self-doping’
is also promising option. This approach is equated with defect engineering. With proper
design, it is possible to prepare photocatalysts with exceptional visible-light activity, even
driving co-catalyst-free hydrogen evolution (without the use of noble metals). However,
there are also research reports about defective titania-based materials without beneficial
photocatalytic properties, also suggesting a detrimental effect of defects on the overall
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performance. These discrepancies are due to the application of different methods of intro-
ducing defects (e.g., hydrogenation, chemical reduction, or vacuum treatment), including
various modification parameters (e.g., the temperature of annealing or H2 pressure). The
application of different defects’ introduction conditions results in dissimilar defects’ con-
figurations including various types of defects and variety of their distribution. At this
point, it is important to emphasize the role of proper characterization of defects using
techniques such as EPR and XPS. There are also some papers, in which this characterization
and the corresponding discussion are incomplete, and thus the drawn conclusions do
not fully support the research hypothesis. Moreover, it should be pointed out that the
modification methods and chemical species used for the preparation of defective titania,
e.g., H, Cl, F, Al, Zn, etc., could also influence the final product (e.g., impurities as addi-
tional dopants/modifiers), and thus influencing the overall activity and the mechanism of
photocatalytic reactions.

However, there are only several studies that consider this aspect. Moreover, dyes
(commonly tested in these studies) are not recommended to be used for photocatalytic
activity measurements under visible-light irradiation because of competitive titania sensiti-
zation by dyes. Additionally, the activity testing under natural or simulated solar radiation
does not allow to discuss the mechanism of photocatalytic reactions on defective titania
samples since unmodified titania is also excited under these conditions. Furthermore,
in many cases, the mechanism of photocatalytic reactions under visible-light irradiation
has not been discussed in detail. Many authors have not considered that the bandgap
narrowing also means lower redox properties, and thus, the inability to perform some
reactions, e.g., one-electron reduction of oxygen in the case of titania excitation from VB to
defective sites (below CB).

Despite some unproven/unclear reports/findings and unanswered questions, there
are many well-conducted studies indicating that defective titania might be promising
materials for various photocatalytic reactions under overall solar radiation. Based on
the available literature, one can formulate the following guidelines relevant to prepare
visible-light active photocatalysts based on defective titania:

- The existence of optimal defects’ concentration—stronger photoabsorption properties
in the visible-light range does not directly mean higher photocatalytic activity, as
charge carriers’ recombination effect on defect sites exists;

- The preferential role of surface defects in comparison to bulk defects was shown;
- The surface-to-bulk ratio is higher for rutile than anatase (the role of crystal phase);
- The beneficial impact of the disordered surface layer of titania should be clarified.

Furthermore, the promising direction to design self-doped TiO2 with extended poten-
tial of application is the combination of defect architecture with crystal facets engineering.
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