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Abstract: Polyoxometalates (POMs), as carbon-free metal-oxo-clusters with unique structural prop-
erties, are emerging water-splitting electrocatalysts. Herein, we explore the development of cobalt-
containing polyoxometalate immobilized over the carbon nanotube fiber (CNTF) (Co4POM@CNTF)
towards efficient electrochemical oxygen evolution reaction (OER). CNTF serves as an excellent
electron mediator and highly conductive support, while the self-activation of the part of Co4POM
through restructuring in basic media generates cobalt oxides and/or hydroxides that serve as cat-
alytic sites for OER. A modified electrode fabricated through the drop-casting method followed by
thermal treatment showed higher OER activity and enhanced stability in alkaline media. Further-
more, advanced physical characterization and electrochemical results demonstrate efficient charge
transfer kinetics and high OER performance in terms of low overpotential, small Tafel slope, and good
stability over an extended reaction time. The significantly high activity and stability achieved can
be ascribed to the efficient electron transfer and highly electrochemically active surface area (ECSA)
of the self-activated electrocatalyst immobilized over the highly conductive CNTF. This research is
expected to pave the way for developing POM-based electrocatalysts for oxygen electrocatalysis.

Keywords: polyoxometalates; carbon nanotube fibers; oxygen evolution reaction; water oxidation;
electrocatalysis

1. Introduction

The production of renewable and clean energy is one of the most critical issues of
the modern sustainable society. Therefore, the development of green and sustainable
energy science by means of energy conversion and storage technologies is of utmost
importance [1–5]. Water is the essential renewable energy source that has the potential to
meet current energy needs by producing hydrogen as green fuel through photochemical,
electrochemical, or photoelectrochemical processes [6,7]. In electrochemical water splitting,
water electrolysis generates hydrogen and oxygen at the cathode and anode, respectively.
Water oxidation into molecular oxygen is a more challenging half reaction due to the four-
proton and four-electron transfer multistep process as opposed to the two-electron and
two-proton hydrogen evolution reaction (HER) [8]. Therefore, there is a need to develop
efficient water oxidation electrocatalysts to overcome their sluggish kinetics and large
overpotential [9].
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Rare earth metal-oxide-based electrocatalysts, such as ruthenium and iridium oxides,
demonstrated high water oxidation efficiency in both acidic and basic environments [10].
However, their scarcity and high cost prevent their usage on a commercial basis. Over
the past few years, Earth-abundant transition metal oxides [11–14], phosphides and sul-
fides [15,16], selenides [17], perovskites [18], olivines [19], hydro(oxy)oxides [20,21] and
chalcogenides [22] have been promising photochemical and electrochemical water oxida-
tion catalysts.

Polyoxometalates (POMs), also known as polyoxoanions, are polynuclear oxo-bridged
anionic clusters of early transition metals in their highest oxidation states, and exhibit a
wide range of structural and compositional characteristics [23]. They are used extensively
in catalysis, medicine, electrochemistry, photochromism, and magnetism [24]. In 2008,
the noble metal-based POM, i.e., [Ru4O4(OH)2(H2O)4(SiW10O36)2]10− was independently
the first example of an efficient water oxidation catalyst by the group of Bonchio [25] and
Hill [26]. Soon after the demonstration of Ru-based POM, research was further extended
towards cheap metals-based electrocatalysts [27–29]. Of all known POM-based frameworks,
the tetracobalt(II)-containing Weakly dimer, i.e., [Co4(H2O)2(PW9O34)2]10− (Co4), which
was identified by Weakly in 1973 [30], is widely used as electrocatalyst for oxygen evolution
reaction (OER) [31–46]. In 2011, Stracke et al. reported the same catalyst for water oxidation
and indicated that the dominant water oxidation catalyst was heterogeneous CoOx rather
than homogenous Co4 in basic media [33]. Later, in 2013, Vickers et al. confirmed that
Co4-POM is a true molecular water oxidation catalyst by differentiating homogenous and
heterogeneous water oxidation catalysts [36]. Till now, POM immobilized over different
substrates was utilized as an electrocatalyst for OER activity due to its reversible stepwise
multielectron transfer ability [28,46]. Furthermore, photo- and electrocatalytic performance
was investigated and understood at the molecular level for POMs immobilized over con-
ducting materials such as graphene, carbon nanotubes (CNTs), and graphitic carbon nitride
(gC3N4), which reveals changes in the electrical structure of the cluster and some cases of
self-activation through the restructuring that takes place depending upon the pH of the
medium [31–47].

Carbon nanotube fibers (CNTFs) are an essential class of conducting materials com-
posed of arrays of CNTs aligned in one dimension [48,49]. These are quasi-one-dimensional
assemblies having unique characteristics such as high stiffness and tensile strength, low
weight, excellent mechanical and electrical properties, high chemical resistance, high aspect
ratio with low defects, self-lubrication and corrosion resistance, high-temperature toler-
ance, and high electrical conductivity [48,49]. CNTF improves electrical conductivity by
increasing the charge carrier density in a fibrous carbon conjugated system.

Motivated by the electrocatalytic activity of Co4-POMs, and the exceptional properties,
including excellent mechanical and electrical, high chemical resistance, and high sur-
face area of CNTFs, we present a 4-Co(II)-based tungstophosphate immobilized on CNTF
(Co4POM@CNTF) as an efficient water oxidation catalyst in alkaline medium. Self-activated
electrocatalyst showed efficient activity for water oxidation with a low overpotential of
323 mV at a current density of 10 mA cm−2 and Tafel slope of 69 mV dec−1. Chronoam-
perometry over an extended time showed the stability and robustness of the self-activated
Co4POM@CNTF.

2. Results and Discussion
2.1. Characterization

The morphological features of bare CNTF and Co4POM@CNTF were investigated
through SEM analysis. Figure 1a,b show the SEM images of bare CNTF at different
magnifications. The SEM images of Co4POM@CNTF show that Co4POM was uniformly
distributed on the surface of CNTFs (Figure 1c,d).
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Figure 1. SEM images of (a,b) bare CNTF and (c,d) Co4POM@CNTF at different magnifications.

Furthermore, Co4POM@CNTF was characterized through energy-dispersive X-ray
(EDX) spectroscopy to identify its elemental composition. Figure 2a shows that cobalt
(Co), tungsten (W), phosphorus (P), oxygen (O), potassium (K) and sodium (Na) were all
present in the modified electrode that stemmed from Co4POM. A peak observed in the
range from 0.1 to 0.2 keV was assigned to carbon, which is attributed to the CNTF substrate.
The peak between 6.2 and 6.6 keV was of iron (Fe) and arose because of the iron catalyst
used for the synthesis of CNTF through chemical vapor deposition (CVD) method [50].
Figure 2b illustrates the EDX-layered image depicting that all the components (colored
dots) of Co4POM were uniformly spread throughout the surface of CNTF. Furthermore,
elemental mapping supported the presence of the corresponding elements in the fabricated
electrode (see Figure 2c).

The redox behavior of Co4POM as a heterogeneous catalyst was examined and com-
pared with that of bare CNTF. This further supports the successful immobilization of POM
over CNTF (See Figure S1).

The fabricated electrode was characterized through X-ray diffraction analysis (XRD).
Figure 3 shows that CNTF had an amorphous pattern, whereas that of Co4POM@CNTF had
prominent peaks at 6◦, 8◦, and 12◦ 2θ values, which confirmed the deposition of Co4POM
on the surface of CNTF. The peaks at 2θ values from 22◦ to 32◦ were not dominant due to
the presence of the amorphous CNTF phase.
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2.2. Water Oxidation Studies

Co4POM@CNTF was employed as a working electrode to examine its OER activity in a
three-electrode system at pH 13.5 (0.1 M KOH). By comparing the LSV curves of bare CNTF
with the POM-modified electrode (Figure 4a), OER activity was significantly increased by
the immobilization of Co4POM over CNTF. Co4POM@CNTF demonstrated a remarkable
increase in current density and significantly lower overpotential of 323 mV at anodic
current density of 10 mA/cm2 compared to the bare CNTF, which required overpotential
of 737 mV for the same anodic current density. The low overpotential exhibited by the
Co4POM@CNTF can be attributed to the tubular shape of CNTF that provided a high
surface area and more active sites. Moreover, the high current-carrying capability and
ballistic electron transport of CNTF increased electrical conductivity and current density
due to its uniform nanochannels, which are superior to most of the Co-based heterogeneous
electrocatalysts in basic media (Table S1) [51,52].
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Figure 4. (a) LSV curves for CNTF and Co4POM@CNTF in 0.1 M KOH at a scan rate of 10 mV s−1;
(b) Tafel plots for bare CNTF and Co4POM@CNTF; (c) cyclic voltammograms for Co4POM@CNTF
at various scan rates from 50–250 mV/s; (d) scan rate versus current plots for the bare CNTF and
Co4POM@CNTF.

The Tafel plots of bare CNTF and as-prepared catalyst were constructed from the LSV
curves, as shown in Figure 4b, to better understand the OER kinetics. Compared to the bare
CNTF having a Tafel slope value of 288 mV/dec, Co4POM@CNTF exhibited a Tafel slope
value of 69 mV/dec, showing the enhanced reaction kinetics of the modified electrode.
The faster rate of the multiple electron transfer process presented in Co4POM@CNTF
complimented the modified electrode’s higher activity and current-carrying ability. The
high activity of the modified electrode can be attributed to the self-activation of Co4POM
through restructuring in basic media that generated cobalt oxide and hydroxide as catalytic
sites for OER. This self-activation, as a result of the restructuring of POM, was discussed
in detail by the group of Streb [45]. Figures S2 and S3 show a similar phenomenon that
aligned with the group’s report. This was further supported by performing the UV–vis
spectroscopy of Co4POM in different pH solutions (see Figure S4) [33]. In 0.1 M phosphate
buffer (pH 7), the absorption band at 582 nm depicted the presence of Co4POM. In 1 M
H2SO4 (pH 1), Co4POM showed a slight hypsochromic shift due to protonation. On the
other hand, in basic media (0.1 M KOH), Co4POM showed multiple peaks, where the
absorption peak at 628 nm indicated the presence of cobalt oxide and the restructuring of
Co4POM into CoOx. Furthermore, compared with the different classes of reported WOCs
(Table S1), Co4POM@CNTF showed excellent OER activity regarding overpotential and
Tafel slope.

Figure 4c depicts the cyclic voltammograms at different scan rates, i.e., from 50 to
250 mVs−1 in the non-Faradic region, to assess the ECSA of bare and Co4POM-modified
electrodes. The plot of anodic current versus scan rate at a potential from 0 to 0.1 V versus
RHE, as illustrated in Figure 4d, yielded a straight line where the slope obtained with
linear fitting showed the double-layer capacitance (Cdl) of the respective electrodes. By
comparing the Cdl value of the bare CNTF with that of Co4POM@CNTF, Co4POM@CNTF



Catalysts 2022, 12, 1242 6 of 12

had a higher Cdl value of 0.9 mF owing to the higher surface area and thereby more active
sites, resulting in higher efficiency. ECSA was calculated by applying Equation (1).

ECSA = Cdl/Cs, (1)

where Cs represents the specific capacitance of the monolayer, and its value of 0.04 mF cm−2

was used for the calculation of ECSA [47]. ECSA is directly related to Cdl; the higher the Cdl
is, the higher the ECSA. Similarly, the roughness factor (Rf) is another surface characteristic
and an important parameter for the electrocatalytic activity of the electrode material, and
can be calculated with the ratio of ECSA and the geometric area of the electrode (equation
given in Supplementary Materials.). The higher ECSA (22.5 cm2) and Rf (402) calculated
for Co4POM@CNTF than those for the bare CNTF (0.45 cm2 and 8) confirm its improved
electrochemical OER activity (see Table 1).

Table 1. Comparison of electrochemical parameters calculated for the bare CNTF and
Co4POM@CNTF in alkaline media.

Electrocatalysts η at 10 mA/cm2

(mV)
Tafel Slope (mV dec−1) Cdl

(mF)
ECSA
(cm2) Rf

Bare CNTF 737 288 0.018 0.45 8

Co4POM@CNTF 323 69 0.9 22.5 402

To further understand the electrocatalytic activity of the catalyst, electrochemical
impedance was performed to investigate the electron transport kinetics in bare and Co4POM-
modified CNTF electrodes. EIS was recorded in a frequency range from 0.1 to 105 Hz at a
small AC amplitude of 5 mV. The Nyquist plot obtained with EIS presents the criterion for
the efficient electrocatalyst having small charge transfer resistance in terms of the smaller
diameter of the semicircle in the high-frequency region. In Figure 5a, the Nyquist plot
of the real and imaginary components reveals that, for Co4POM@CNTF, the semicircle
had a smaller diameter than that of the bare CNTF owing to the smaller charge transfer
resistance (Rct) from the electrode. The calculated value for Rct for Co4POM@CNTF was
2.533 kOhm, while that of the bare CNTF was 24.9 kOhm. This shows that, during OER,
electron transport in the modified electrode is faster than that in the bare CNTF. This can be
explained on the basis of the strong electrostatic interactions between CNTF and Co4POM
that boosted the transfer rates of electrons and thereby sped up electrocatalytic activity.
These findings suggest that the synergistic effect of CNTF and Co4POM contributed to the
high electrocatalytic activity of the modified electrode towards OER.
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Chronoamperometry was performed at 1.55 V vs. RHE for 24 h to examine the stability
and robustness of Co4POM@CNTF under constant oxygen production. Throughout the
potentiostatic measurements, H2 and O2 bubbles continuously escaped out of the anode
and cathode [53,54], respectively, and the catalyst generated current density of nearly
10 mA cm−2 without any appreciable loss in activity (Figure 5b). On the basis of the
chronoamperometric stability test, Co4POM-modified electrode is a potential candidate
electrocatalyst for OER that is stable for several hours.

Finding the Faradaic efficiency (FE) is an important experiment to support the cata-
lyst’s ability to produce oxygen during OER. FE is calculated by comparing the experimental
and theoretical oxygen production during controlled-potential electrolysis (CPE). The CPE
test was performed for 3000 s at 1.55 V against RHE in a 0.1 M KOH solution. To determine
the experimentally calculated oxygen production, an oxygen probe of a dissolved oxygen
(DO) meter was inserted into a gas-tight anodic portion during electrocatalytic activity. The
theoretical yield of O2 for a four-electron process was calculated using the charge built up
during the electrochemical reaction (see Figure S5). On the basis of theoretical and actual
yield calculations, the FE was approximately 94.9%.

Equations (2)–(5) represent the most likely mechanism of half reaction of water splitting
as OER:

[Co4POM@CNTF]/CoOx * + OH− [Co4POM@CNTF]/CoOx-HO * + e− (2)

[Co4POM@CNTF]/CoOx-OH * + OH− [Co4POM@CNTF]/CoOx-O * + H2O + e− (3)

[Co4POM@CNTF]/CoOx-O * + OH− [Co4POM@CNTF]/CoOx-OOH * + e− (4)

[Co4POM@CNTF]/CoOx-OOH * + OH− [Co4POM@CNTF]/CoOx * + O2 + H2O + e− (5)

The proposed mechanism illustrates that the hydroxyl species (OH−) from water be-
came attached to the catalyst by removing an electron to generate (Co4POM@CNTF)/CoOx-
OH *, which was then combined with another OH− to form oxospecies as surface-active
sites. These active sites captured more OH− ions to generate a hydroperoxide intermediate.
Lastly, hydroperoxides produced O2 molecules by reacting with OH− in the solution. This
is in line with the reports in the literature [55,56]. Table S1 shows the electrocatalytic activity
of recently reported electrocatalysts, where it is evident that Co4POM@CNTF showed
appreciable electrocatalytic OER activity in comparison with that of other recently reported
catalysts.

3. Experimental
3.1. Materials

The used chemicals were sodium tungstate dihydrate (Na2WO4·2H2O), glacial acetic
acid (CH3COOH), cobalt acetate tetrahydrate (Co(CH3COO)2·4H2O), disodium hydrogen
phosphate heptahydrate (Na2HPO4·7H2O), sodium chloride (NaCl), potassium hydrox-
ide (KOH), potassium chloride (KCl), and ethanol (C2H5OH). All these chemicals were
purchased from Sigma Aldrich and utilized without further purification.

3.2. Synthesis of Na10[Co4(H2O)2(PW9O34)2] (Co4POM)

Co4POM was synthesized according to the procedure modified by Hill and cowork-
ers [31], and was confirmed with FT-IR spectroscopy (see Figure S6). Briefly, 16.5 g of
Na2WO4·2H2O, 1.50 g Na2HPO4·7H2O, and 3.2 g Co(CH3COO)2 were dissolved in 50 mL
of distilled water, and the pH of this solution was adjusted to 7.8 with the addition of
CH3COOH. After that, the solution mixture was refluxed at 100 ◦C for 2 h, resulting in
a dark purple solution. The solution was then saturated with NaCl and allowed to cool
to room temperature. The obtained purple crystals were collected and recrystallized in
hot water.
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3.3. Electrode Fabrication

CNTF about 2.5 cm long was fixed onto a glass slide by binding both its ends with
Teflon tape. A concentrated POM solution was drop-casted thrice onto CNTF with one
hand, and the glass plate was dried in an oven at 70 ◦C. The fabricated electrode was then
thermally treated at 120 ◦C for 72 h in a furnace followed by washing with water [57].
Lastly, the Teflon tape was removed from one end, which was sealed with conducting silver
paste to produce the electrode connection. Figure 6 depicts electrode fabrication by drop
casting.
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3.4. Electrochemical Studies

The steady-state electrochemical measurements were carried out using a three-electrode
setup at room temperature in a 0.1 M KOH solution (pH 13.5) as an electrolyte. The used
working electrode was the modified CNTF (0.056 cm2 surface area; calculations are in
SI), whereas the reference and counter electrodes were an Ag/AgCl and platinum sheet
electrode (2 × 6 mm), respectively. Linear sweep voltammetry (LSV), cyclic voltammetry
(CV), chronoamperometry, and electrochemical impedance spectroscopy (EIS) tests were
performed on a Gamry Interface 1010E potentiostat/galvanostat. All the measured po-
tential values were converted into reversible hydrogen electrode (RHE) using the Nernst
equation (E vs. RHE = 0.197 + EAg/AgCl + 0.0591 × pH) and were iR-compensated. LSV
was performed at a scan rate of 10 mV/s; to calculate the electrochemical surface area
(ECSA), CV scans were performed at a scan rate from 50 to 250 mV/s in the non-Faradaic
region. The chronoamperometric response was measured at 1.55 V vs. RHE for 24 h in an
O2-saturated KOH solution for the stability tests. The EIS was performed in the frequency
range of 0.1–105 Hz at a small AC signal of 5 mV.

4. Conclusions

In conclusion, we reported ws preparation of Co4POM@CNTF via the drop-casting
method followed by thermal treatment. The OER performance of the prepared electrocata-
lyst was improved significantly, in which CNTF served as an excellent electron mediator,
while self-activated Co4POM provided the catalytic sites. It exhibited low overpotential
value, i.e., 323 mV, and faster kinetics for OER catalysis in terms of a smaller Tafel slope.
The improvement in electrocatalytic performance may also be attributed to the increase in
the high surface area of the catalyst; this was suggested by high ECSA to lead to high RF,
providing more active sites. In a nutshell, the fabrication of POM over CNTF provides an
efficient heterogeneous electrocatalyst with superior properties such as high activity, high
surface area, and electron transfer ability for OER- and energy-related applications.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal12101242/s1. Figure S1: CV curves of bare CNTF and
Co4POM@CNTF in 0.1 M KOH at a scan rate of 10 mV s−1; Figure S2: postcatalytic SEM im-
ages of Co4POM@CNTF at (a) higher and (b) lower magnification; Figure S3: EDX spectrum of
CO4POM@CNTF after chronoamperometric stability test. Figure S4: UV–vis spectra of Co4POM in
different pH aqueous solutions; Figure S5: Faradic efficiency of Co4POM@CNTF in 0.1M KOH at
1.55 V against RHE; Figure S6: FT–IR spectrum of synthesized Co4POM. Table S1: comparative OER
performance of Co-based heterogenous electrocatalysts in basic media. Equations: calculations of
surface area of CNTF and RF. [45,47,58–66]
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