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Abstract: Benefiting from the exceptional selective catalytic reduction of NOx with ammonia (NH3-
SCR) activity, excellent N2 selectivity, and superior hydrothermal durability, the Cu2+-exchanged
zeolite catalyst with a chabazite structure (Cu-CHA) has been considered the predominant SCR
catalyst in nitrogen oxide (NOx) abatement. However, sulfur poisoning remains one of the most
significant deterrents to the catalyst in real applications. This review summarizes the NH3-SCR
reaction mechanism on Cu-CHA, including the active sites and the nature of hydrothermal aging
resistance. On the basis of the NH3-SCR reaction mechanism, the review gives a comprehensive
summary of sulfate species, sulfate loading, emitted gaseous composition, and the impact of exposure
temperature/time on Cu-CHA. The nature of the regeneration of sulfated catalysts is also covered in
this review. The review gives a valuable summary of new insights into the matching between the
design of NH3-SCR activity and sulfur resistance, highlighting the opportunities and challenges pre-
sented by Cu-CHA. Guidance for future sulfur poisoning diagnosis, effective regeneration strategies,
and a design for an efficient catalyst for the aftertreatment system (ATS) are proposed to minimize
the deterioration of NOx abatement in the future. Finally, we call for more attention to be paid to the
effects of PO4

3- and metal co-cations with sulfur in the ATS.

Keywords: selective catalytic reduction; Cu-CHA; active site; aftertreatment system; sulfur poisoning;
sulfur regeneration

1. Introduction

With the aggravation of the global energy crisis, lean-burn combustion diesel engines
featuring strong power and economical merits have been widely used in road and off-
road machines. Excessive air intake during engine combustion can not only increase fuel
combustion efficiency but also reduce the contents of carbon monoxide (CO), hydrocarbons
(HC), and particulate matter (PM) in exhaust emissions [1]. However, lean burn combustion
tends to emit excessive NOx and ammonia (NH3), which cause damage to the environment
and human health. In recent years, stringent regulations have been formulated to control
exhaust emissions in various countries and regions. In order to comply with these stringent
regulations, the ATS, as shown in Figure 1, consisting of a diesel oxidation catalyst (DOC),
a diesel particulate filter (DPF), ammonia selective catalytic reduction (NH3-SCR), and an
ammonia slip catalyst (ASC), has been successfully developed as a promising technology for
NOx emission control [1–4]. The implemented CHINA VI emission regulation requires an
80% reduction in NOx and a 40% increase in durability compared with CHINA V in heavy-
duty vehicles [4,5]. Therefore, advanced ATS catalysts shall have better hydrothermal aging
resistance and NOx abatement ability, especially during the cold start (below 200 ◦C) and
DPF active regeneration operations (above 650 ◦C) [5,6]. As can be seen, during DPF active
regeneration, excessive fuel is injected into the upstream DOC for soot combustion. This
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requires the SCR catalysts to have superior stability to withstand HC adsorption and HTA
resistance in humid and high-temperature environments [6].
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Recently, Cu-CHA has been reported as one of the most promising commercial cata-
lysts in the current emission control of diesel engines [6–8]. CHA zeolites are a group of
small-pore structures (pore size of ~3.8 Å) that consist of connected TO4 (T represents the
framework atom) tetrahedral units by sharing oxygen atoms [6]. Because of the advantages
of excellent shape selectivity, hydrothermal aging (HTA) resistance, adjustable acid sites,
and a huge specific surface, Cu-SSZ-13 has been widely used in the ATS [6,7].

Rapidly expanding regulations have been enabled by the ultra-low sulfur content in
fuel [7]. A drastic reduction in sulfur content has been achieved in diesel engines [7,8].
However, even with the ultra-low sulfur content (10 ppm) under CHINA VI regulations,
sulfur poisoning remains one of the most significant deterrents to the catalyst in real appli-
cations [9,10]. Compared with Fe-zeolite, Cu-zeolite is more sensitive to sulfur, which has
been proven by many groups [9–11]. Meanwhile, accumulated lifetime exposure to sulfur
in the diesel ATS always results in a dramatic deterioration of NOx conversion [12–14].

Numerous studies have been carried out to explore the damaging effects of sulfur on
Cu-CHA structures and the nature of activity recovery during DPF active regeneration [12].
It is generally considered that the deactivation over Cu-CHA is caused by damage to zeolite
structures, including the drastic decrease in the specific surface area and the binding of SOx
to copper species [15]. In addition, SO2 and NH3 tend to adsorb together to form sulfate
species on isolated Cu2+, which further aggravates the pore block and SCR reaction at low
temperatures [14,15]. Gao et al. [15] proved that with an increase in SO2 concentration and
sulfur exposure time, more sulfate formed and NOx conversion worsened for Cu-SAPO-34.
Meanwhile, the active site of Cu(OH)+ can also form copper sulfate species under the
impact of SO2. CuO species could further promote the oxidation of SO2 and thus accelerate
sulfur poisoning [15,16].

Currently, there are no on-board diagnostics (OBD) specified for sulfur poisoning
and regeneration in real applications, resulting in massive parts of failure caused by
sulfur poisoning/regeneration. It is essential to explore the nature of sulfur poisoning
and regeneration over Cu-CHA, thereby providing guidance for future sulfur poisoning
diagnosis, effective regeneration strategies, and a design for an efficient catalyst for the ATS
to minimize NOx deterioration in applications.

2. Research on Copper’s Active Sites and NH3-SCR Reaction over Cu-CHA

A major breakthrough was achieved several years ago: researchers discovered that
Cu-CHA (e.g., Cu-SAPO-34 and Cu-SSZ-13) could meet the HTA resistance and low/high-
temperature activity for commercial utilization [15]. Both catalysts were used in the ATS
of diesel vehicles before 2011. However, Cu-SAPO-34 experienced unexpected failure in
diesel after-treatment commercial utilization due to a lack of durability at low temperatures
upon contact with moisture [16]. Wang et al. [16] studied the deactivation mechanism of
Cu-SAPO-34 at an atomic level. It was proposed that Cu-SAPO-34 was deactivated by the
formation of Cu-aluminate-like species that were derived from the interaction between
Cu(OH)2 and the hydrolysis of framework Al species. Compared with Cu-SAPO-34,
Cu-SSZ-13 was reported to have better HTA resistance and predominant NO conversion
efficiency [17]. Studies further verified the hydrothermal durability of Cu-SSZ-13 and
found nearly no deterioration in comparison with the activity of fresh samples [18].

In principle, there are four most probable ion exchange sites on Cu-SSZ-13, i.e., in the
center of double-6-membered rings, inside the CHA cage near the face of the six-membered
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ring, and in the CHA cage along the three-dimensional axis and near the eight-membered
ring [19]. On the basis of previous studies, Gao et al. [20] calculated and analyzed the
possible locations of Cu2+ active sites on Cu-SSZ-13 by electron paramagnetic resonance
(EPR) and other measurements, as shown in Figure 2. The results revealed that Cu2+

was able to migrate within different locations and even within unit cells. When the ion
exchange rate was lower than 23%, which was normally accompanied by a low Cu loading
and a Cu-Cu spacing greater than 20 Å, Cu2+ occupied a six-square cell and resided in
a six-membered ring. With an increase in the ion exchange rate, Cu loading became
relatively higher. Cu2+ resided in the six-membered ring, and the other resided near the
eight-membered ring in the cage. When the Cu-Cu spacing narrowed to 4 Å–5 Å, the
Cu2+ was supposed to be located in sites A and B (Figure 2) or the hexagonal cell with a
distribution of mirror symmetry.
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2.1. NH3-SCR Reaction Mechanism over the Cu-CHA Reaction

Many researchers have been devoted to studying the SCR reaction cycle over Cu/SSZ-
13, including the oxidation and reduction half-cycle, as shown in Figure 3a [21]. It has
been reported that NH3 can react with [CuII(OH)]+ to form a [(NH3)2-CuII-OH]+ complex
that migrates into the CHA cage. NO adsorbed on CuII and was oxidized to HONO,
resulting in CuII reduction to CuI. In the oxidation half-cycle at low temperatures (below
250 ◦C), CuI and CuII participated in the catalytic reaction in (the formation of pairing
with CuI(NH3)2). It migrated to another CuI(NH3)2 and was activated by O2 to produce
a CuI(NH3)2-O2-[CuI(NH3)2 dimer, and it was calculated by density functional theory
(DFT) that O2 activation was the rate-determining step of the NH3-SCR reaction on Cu-
SSZ-13 [21,22]. Palucci et al. calculated the diffusion radius of Cu(NH3)2

+ and found that it
could migrate through the 8MR CHA [21]. More recently, Negri et al. discovered the for-
mation of a [Cu2(NH3)4O2]2+ (Figure 3b) complex with a side-on formation of a side-group
(µ-η2, η2-peroxodiiamino dicopper) structure by X-ray absorption spectroscopy (EXAFS)
and other measurements [22]. Meanwhile, their findings revealed that [Cu2(NH3)4O2]2+

could be completely reduced to [CuI(NH3)2]+ when NO and NH3 appeared in the mix-
ture [22]. These findings indicated a possible low-temperature SCR reaction mechanism
of these complexes with NO. When the reaction temperature increased, isolated Cu ions
species were anchored at the ion exchange site due to the decomposition of Cu(NH3)n
species [23–26]. Gao and his coworkers calculated that the activation energies of standard
SCR at high and low temperatures were about 140 kJ/mol and 70 kJ/mol, respectively [5,23].
Janessens et al. [24] proposed the reaction mechanism of standard SCR and fast SCR, which
was more like the reaction cycle at high temperatures, as shown in Figure 3c. According
to this mechanism, the mixture of NO and O2 was oxidized on the catalyst surface and
subsequently reduced in the atmosphere of NO and NH3. Contact of Cu+ with NO2 or with
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a mixture of NO and O2 could form the same dicoordinated (Cu-NO3
−). In the presence of

NH3 and NO, Cu2+ was reduced to Cu+ and formed a product of [CuI (NH3)2]+, which
was a linear coordination of Cu+ with NH3.
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2.2. HTA Resistance over Cu-CHA

Due to the humid and high-temperature atmosphere in the ATS, researchers have been
devoted to studying the HTA deactivation mechanism over Cu-CHA. Kwak [27] carried
out studies on the HTA resistance over Cu-SSZ-13 and found that the lifetime exposure to
exhaust emitted from diesel engines had little impact on its NH3-SCR activity. Moreover,
it has been reported that two types of active sites exist in Cu-SSZ-13, namely, the isolated
Cu2+ that resides in the six-membered ring and the hydroxylated [CuOH]+ that resides in
the eight-membered ring site [23,25,27]. Except for the Cu active sites, Brønsted acid sites
functioning as NH3 storage has also been reported as the rate-determining factor in NH3-
SCR of Cu-SSZ-13. Gao et al. comprehensively studied the hydrothermal aging mechanism
over Cu/SSZ-13 [25]. It was reported that dealumination occurred and Al(OH)3 formed,
as shown in Figure 4a [25]. Moisture attacked the Si–OH–Al, resulting in the break of the
Al–O bond. A further attack could completely dislodge the framework Al to form Al(OH)3
outside of the framework. The dissociation of Al led to the absence of ion exchange sites
and the unstable existence of Cu2+ ions on the exchange sites. Cu aggregated to form
CuOx species under high temperatures, as shown in Figure 4b [26]. Song et al. [26] found
that [CuOH]+ had lower hydrothermal stability than Cu2+ at high temperatures, which
indicated that Cu species residing in the eight-membered ring were more likely to aggregate
to form Cu(OH)2. Furthermore, Cu(OH)2 could travel through the channels of Cu/SSZ-13,
resulting in further destruction of the pore structure on the catalyst [24,26,27].
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3. Sulfur Poisoning and Regeneration over Cu/CHA

The sulfur poisoning over Cu-CHA is closely related to the NH3-SCR mechanism.
Meanwhile, the poisoning process is also closely related to the parameters of catalyst status,
Cu loading, HTA, sulfurizing atmosphere (SO2, SO3, SOx, H2O, and NH3), sulfur exposure
time, exposure temperature, evaluation conditions, etc. [28,29].

3.1. SO2 Poisoning over Cu/CHA

Great efforts have been made to study the impact of sulfur on catalysts. It has been
proven by many groups that SO2 severely inhibits the NH3-SCR activity over Cu-CHA
at low temperatures, while the high-temperature performance is nearly inhibited [25–30].
Wang et al. [30] verified that when Cu-SAPO-34 was exposed in SOx with different gaseous
compositions, the NOx conversion at low temperatures was severely inhibited (100~300 ◦C)
in a standard SCR reaction, as shown in Figure 5a. Furthermore, the TOF results showed
that all the samples exhibited identical calculation values, which indicated that different
SOx composition poisoning on Cu/SAPO-34 were all caused by the reduction of Cu2+

quantity in the kinetic temperature range. In addition, for the remaining Cu2+ that was not
poisoned by SOx, the activity remained unchanged [30].
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Su [31] further compared the sulfate species on Cu-SAPO-34 and Cu-SSZ-13 and found
that three main sulfates formed on zeolite, including H2SO4, CuSO4, and Al2(SO4)3. With
stronger oxidation, more sulfates could be loaded on Cu-SSZ-13 compared with Cu-SAPO-
34. By contrast, Cu-SSZ-13 and Cu-SAPO-34 tended to generate H2SO4 and Al2(SO4)3,
respectively. H2SO4 could be decomposed at a lower temperature than Al2(SO4)3, resulting
in the complete regeneration of Cu-SSZ-13 at 450 ◦C [30,31].

When evaluating the NH3-SCR performance of Cu-SSZ-13 on a synthetic gas bench
lower than 350 ◦C, the catalytic activity of sulfated samples was significantly decreased,
indicating that most of the active sites were impacted by sulfur. When the reaction temper-
ature reached beyond 350 ◦C, the impact of sulfur poisoning gradually decreased, which
indicated the removal of sulfur substances and the recovery of active sites [31,32]. Luo
et al. [32] revealed that both the Cu2+ active sites coordinating with the six- and eight-
membered rings were significantly reduced after sulfur exposure using an analysis of
diffuse reflectance infrared Fourier transform spectroscopy (DRIFTs). The isolated Cu2+

was supposed to react with sulfur, which resulted in a decrease in active sites and NOx
conversion. Jangjou [33] reported that the decreased activity of Cu-SSZ-13 after sulfur
exposure was related to the Cu-S species generated on the active sites. In addition, com-
pared with isolated Cu2+, active Cu (OH)+ on the Cu/SSZ-13 framework was more likely
to react with SO2 to form sulfate. The sulfur exposure time, sulfur concentration, and
exposure temperature of CHA were investigated by Ren et al. [34]. It was found that the
sulfur loadings in the catalyst increased with an extension of the sulfur exposure time,
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an increase in SO2 content, and a decrease in exposure temperature. The relationship
between sulfur content with a specific surface and the activity was investigated. Combined
with thermo-gravimetric analysis (TGA) results, it was pointed out that pore blocks by
ammonium sulfate and a decrease in the specific surface area on the framework directly
led to deteriorated NH3-SCR activity. Previous studies [33–35] observed SO2 had a higher
selective reactivity with CuII species when it coordinated with NH3 and extra-framework
oxygen, in particular for [CuII

2(NH3)4O2]2+, by X-ray adsorption spectroscopy (XAS), as
shown in Figure 6. By contrast, SO2 was less reactive with Cu species in the absence of NH3
or [CuII

2(NH3)4O2]2+, resulting in less NH3-SCR deactivation under low temperatures [35].
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In a typical NH3-SCR reaction, urea injection can be identified in the downstream
sulfur atmosphere, and the co-adsorption of ammonia sulfate and Cu-S substance must
be considered. Jangjou [33] found that when feeding gas containing a mixture of SO2,
NH3, and NO, NH3 facilitated SO2 adsorption on Cu-SAPO-34 at 200 ◦C. Sulfur was stored
on zeolite and co-adsorbed with NH3, which resulted in the formation of ammonium
sulfate. On the one hand, the DRIFT results showed that in the absence of NH3, Cu2+

resided at the six-membered ring and was completely poisoned by sulfur and partially
poisoned at the eight-membered ring in a typical NO adsorption reaction [35,36]. On the
other hand, the co-adsorbed ammonium sulfate could be consumed by NO in the SCR
reaction [36]. Shen [37] proved that no matter which sulfate was generated at the active
sites, the decrease in the active sites of isolated Cu2+ mainly accounted for the decrease
in activity. Wijayanti et al. [38] studied the sulfate species on Cu-CHA and found that
(NH4)2SO4 and CuSO4 formed at 200 and 400 ◦C, respectively, on the isolated Cu2+ active
sites. Both led to deactivation over Cu-CHA [39,40]. It was proven that two kinds of
active Cu species exist on Cu/CHA, namely Cu2+-2Z and [Cu (OH)+]-Z [40–43]. As shown
in Figure 7, Jangjou [33] pointed out that Cu2+-2Z had a different low-temperature SO2
poisoning mechanism compared with [Cu (OH)+]-Z. Cu2+-2Z active sites were less reactive
with SO2. However, when SO2 and NH3 co-existed in a typical SCR reaction, NH3 and
SO2 could react at a low temperature and decompose below 550 ◦C. On the contrary, SO2
reactively adsorbed with [Cu (OH)+]-Z and formed CuHSO3, which could be composed
below 580 ◦C. Above that, CuHSO3 was oxidized to CuHSO4 with gaseous oxygen feeding.
Meanwhile, CuHSO4 required a relatively high decomposition temperature, i.e., 750 ◦C,
according to DFT calculation and FTIR measurement. In addition, this mechanism was
further proven by Hannershoi [44] through quantitative identification of EPR. Olsson et al.
proposed a kinetic model of SO2 poisoning and regeneration in which the copper resided in
the six-membered rings (S1Cu), and copper in the larger CHA cages (S2 and S3) adsorbed
SO2 and formed S1Cu-SO2 and S2-SO2. In addition, NH3 was adsorbed on those sites and
formed S1Cu-SO2-(NH3)2 and S2-SO2-(NH3)2 complexes, which worked as precursors of
(NH4)2SO4 [45].
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3.2. SO3 Poisoning over Cu/CHA

In a typical ATS, a substantial percentage of SO2 in the diesel exhausts can be oxidized
by DOC. The impact of an upstream DOC catalyst on Cu-SSZ-13 was investigated by
Kumar [46]. DOC was used for oxidizing CO/HC/soot and generating heat for the
downstream DPF for the passive/active soot oxidization and fast reaction on SCR. During
DOC oxidation, SO2 tended to be oxidized into SOx, especially SO3. Different sulfur species
were added to the synthetic gas bench to study their influence on the NH3-SCR activity
of Cu-SAPO-34. The results showed that, compared with SO2, SO3 severely damaged the
NH3-SCR activity. Kumar also found that more copper sulfate could be generated under
SO3. Sulfated samples could not recover to the initial status after regeneration, inferring
the formation of sulfate on Cu-SAPO-34. Wang et al. [30] pointed out that Cu-SSZ-13 can
also oxidize SO2 into SO3 due to its strong oxidation, which can lead to the formation of
H2SO4, CuSO4, and Al2 (SO4)3 in a typical NH3-SCR reaction. Kumar et al. [46] quantified
the gaseous sulfur species on Cu-CHA zeolite and found that the NH3-SCR performance
was relevant to the sulfur loading and quantification. The FTIR measurement reported
SO3 transformation into H2SO4 in the H2O gaseous feeding. Cheng [47] evaluated the
influence of SO2 and SO3 on Cu-zeolite and found that SO3 had a more severe deterioration
effect on NH3-SCR performance. With identical sulfur content adsorption, it was easier
for SO3 to generate more sulfate. X-ray near edge spectroscopy (XANES) and X-ray
photoelectron spectroscopy (XPS) techniques revealed that more CuSO4 was generated
under SO3 exposure at the active sites compared with SO2. SO3 could result in a decrease in
activity and could be recovered by the transformation of CuSO4 into isolated Cu2+ [48,49].
H2O also impacted sulfate formation on Cu-SSZ-13. Massive CuSO4 was formed on Cu-
SSZ-13 compared with moisture-free conditions in the feeding gas. Therefore, the SOx
could react with single Al-coordination Z-Cu-OH without H2O. By contrast, SOx could also
react with dual Al coordination Z2-Cu with moisture that produced more copper sulfate, as
shown in Equations (1) and (2) [41,49,50]. Shan’s study also proved that SO2 could dislodge
the extra-framework Al that resulted from the dealumination during the hydrothermal
aging process. More Cu2+ active sites formed as CuOx after high-temperature sulfurization
when compared with samples with only hydrothermal aging [50].

Z–Cu–OH + SOX → Z–Cu–HSOX+1 (1)

Z2–Cu + SOX+H2O → Z–OH–HSOX+1+Z–H (2)

It is worth noting that NO2/NOx also has a significant impact on NH3-SCR activity
after exposure to sulfur. Compared with FSCR and slow SCR reactions, sulfated Cu/CHA
experienced a drastic drop in NOx conversion in the standard SCR reaction but no obvious
decrease in fast SCR and slow SCR reactions [28,29,51,52]. Wijayanti et al. [29] found that
(NH4)2SO4 and CuSO4 formed under 200 and 400 ◦C, respectively, in a typical fast SCR
reaction. In addition, sulfur deactivation was also closely related to Cu loading, Cu/Al, the
aging degree, H2O gaseous feeding, etc.
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On the basis of these studies, we found that the sulfate species and loadings generated
under different sulfur exposure conditions were different and that the deactivation of NH3-
SCR activity over Cu/CHA was closely related to the decrease in active sites. Furthermore,
hydrothermal aging typically took place when the catalyst was exposed in the humid
atmosphere during DPF regeneration. It was pointed out that SO3 can accelerate the
dealumination on Cu-SSZ-13 and result in the irreversible collapse of the framework at
high temperatures [50–54].

3.3. Sulfur Regeneration over Cu-CHA

The reversible and irreversible deactivation over Cu-CHA after sulfur poisoning has
been investigated in recent years. In real applications, Cu-CHA regenerated along with
the active regeneration over the DPF catalyst. Sulfates formed on Cu-CHA catalysts can be
partially or completely restored during DPF active regeneration.

The regeneration mechanism over Cu-CHA varied with the feeding gas. Zhang
et al. [40] reported that when both SO2 and NH3 were co-added into the NH3-TPD, Cu-
CHA was found with more ammonia stored. Ammonia sulfate was desorbed below
450 ◦C, indicating a relatively lower regeneration temperature. Su et al. [31] studied the
sulfate regeneration of Cu/SSZ-13 catalyst and found that ammonium sulfide species could
be removed at 450 ◦C, while copper sulfate needed a higher temperature before being
completely removed.

Hammershøi et al. [44] studied the regeneration activity for the SO2 poisoning of
Cu-SAPO-34 and concluded that its NH3-SCR activity could recover nearly 80% below
550 ◦C. When heated to 700 ◦C, it gained complete recovery. Wang et al. [30] reported
the recovery mechanism of Cu-SSZ-13 in a wide temperature range. The phenomenon of
reversible and irreversible deactivation was similar to that of Cu-SAPO-34. Wang explained
the correlation between the regeneration temperature and SCR activity. It was reported that
when the generation temperature was below 600 ◦C, there was a clear trend of irreversible
deactivation over Cu-CHA, in a particular activity in a low temperature range [46]. Since
CuSO4 was decomposed to abundant CuO, which inhibited the SCR performance, the NH3
oxidation increased at high temperatures [55–57]. When the regeneration temperature was
increased to 650 ◦C, the deactivation at low temperatures declined significantly, which
accounted for the CuSO4 decomposition and migration to isolated Cu2+ and Cu+ [41–43].
These results were in agreement with studies of Shen et al. [55] and Jangjou et al. [33]
regarding the recovery mechanism of stable copper sulfate decomposition on the Cu/SSZ-
13 catalyst.

All in all, the relatively low SO2 resistance limits the broader application of Cu-CHA in
NH3-SCR. Except for the regeneration method reviewed above, it was reported that some
reductants, such as NH3, C3H6, and n-C12H26, can achieve the removal of sulfate without
heat treatment by changing the oxidation state of Cu [58–60]. Kumar et al. [46] reported that
1000 × 10−6 C3H6 can achieve the complete removal of sulfate in the oxidizing atmosphere.
It was proposed that recovery is beneficial for the reduction in binding energy between
sulfate and Cu. Yu and his coworkers found that the hybrid catalysts incorporated ZnTiOx,
which was proposed to work as a sacrificial reaction with SO2, thus preventing the Cu2+

from poisoning by SO2 [61]. Other alkaline elements, such as Ce and Fe modification, can
also improve the SO2 resistance over Cu-CHA [59–61]. These findings enhance the SO2
tolerance of Cu-CHA to some extent and give guidance to the further design of Cu-CHA in
NH3-SCR applications. However, the effect is still limited, and more studies are required in
the future.

4. Conclusions

The deactivation and regeneration behavior over Cu-CHA in the NH3-SCR reactions
were reviewed in this paper. According to the findings reviewed above, it is obvious
that different sulfate species and loading generated under different sulfur exposure condi-
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tions can be identified. Sulfur poisoning and regeneration can proceed through different
mechanisms depending on the conditions.

The sulfur poisoning that occurs at low temperatures over Cu-CHA by feeding SO2
has an impact on SCR activity. Notably, NH3 and SO2 tend to form ammonium sulfate
and coordinate with the isolated Cu2+, which results in pore blocks and the deactivation
of activity. Both copper sulfate and ammonia sulfate can impact NH3-SCR activity by
reducing the content of Cu2+. In addition, the thermal decomposition temperatures of
ammonium sulfate species and copper sulfate are around 550 ◦C and 700 ◦C, respectively.
Meanwhile, the regeneration process is always accompanied by the redispersion of copper.
Therefore, the activity caused by SO2 or ammonium sulfate species could be partially or
completely recovered.

SO3 is reported to have more severe deactivation within 200~400 ◦C compared with
SO2, which is mainly attributed to the massive CuSO4 formation. The presence of SO3 could
cause dealumination on the framework, resulting in the fracture of the Si–O(H)–Al bond.
In addition, SO3 can poison more isolated Cu2+; therefore, the decrease in Cu2+ is the main
reason for the decrease in NH3-SCR activity. Furthermore, the decrease in Cu2+ and the
fracture of the Si–O(H)–Al bond lead to a drop in high-temperature activity. The formation
of copper sulfate requires nearly 700 ◦C for regeneration. It is always accompanied by
the formation of CuO and Cu migration in the cage. However, the active sites cannot
completely recover because of the influence of dealumination.

It can be seen that many trials have been carried out to improve the SO2 tolerance over
Cu-CHA. The addition of other metals as a sacrificial component is proposed as an efficient
way to improve its SO2 tolerance in real applications. Moreover, it is essential to clarify the
nature of co-poisoning by alkaline, PO4

3−, etc. with sulfur in real applications. This could
provide a specified regeneration strategy for calibration over the ATS, thus enhancing the
durability and NOx abatement of Cu-CHA in industrial applications.
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