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Abstract: The activation and transformation of C–F bonds in fluoro-aromatics is a highly desirable
process in organic chemistry. It provides synthetic methods/protocols for the generation of organic
compounds possessing single or multiple C–F bonds, and effective catalytic systems for further study
of the activation mode of inert chemical bonds. Due to the high polarity of the C–F bond and it having
the highest bond energy in organics, C–F activation often faces considerable academic challenges.
In this mini-review, the important research achievements in the activation and transformation of
aromatic C–F bond, catalyzed by transition metal and metal-free systems, are presented.
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1. Introduction

Organic fluoride refers to a class of organic compounds in which one or more of the
C–H bonds are replaced by C–F bonds. Due to the high electronegativity of the fluorine
atom and the high C–F bond energy, the fluorine-containing organic molecules usually
exhibit unique and interesting chemical and biological properties to a great extent [1] and
have been widely used in pharmaceuticals, synthetic materials, agricultural chemicals
and fine chemicals [2,3], which play indispensable roles in our daily life. The nonmetallic
element fluorine atom with the highest electronegativity (Pauling’s Electronegativity 3.98)
in the periodic table of elements is indeed a small atom (Pauling’s Van der Waals radius
135 pm)with increasing impact in organic and biochemistries [4–6].

The activation of inert chemical bonds is an ineluctable task in general organic synthe-
sis; however, compared with the rich chemistries of activation/transformation of various
single bonds with high bonding energies, such as (Eb kJ/mol) C–H (Eb 414) [7–19], C–C
(Eb 347) [20–30], C–N (Eb 308) [31–40] and C–O (Eb 358) [41–53], the activation of C–F bond
(Eb 485)—which could be built efficiently following typical procedures [4,54–62]—is still
scarce, due mainly to the abnormal strength of the bond energy and the shielding effect of
fluorine atoms. Developing an efficient methodology for the functionalization of C–F bond
is highly desirable for the following both academic and industrial reasons [63–65]: (1) It
will enrich the catalytic toolbox for the activation of inert and polarized chemical bonds;
(2) Selective C–F activation of multiple C–F bond containing compounds can provide at-
tractive strategies for synthetic organic chemistry; (3) Regio-selective conversion of fluoride
into various functional groups could provide novel molecular structures that are otherwise
difficult to create. Therefore, catalytic C–F activations are receiving increased attention and
significant progress has been made in the activation and transformation of C–F bonds in
alkane fluorides [66–77]. This mini-review focuses on recent progress in the activation and
functionalization of aromatic C–F bonds catalyzed by transition metal catalysts, as well
some metal-free catalytic systems [78–80].
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2. Transition Metal-Promoted Catalytic C–F Activation of Aromatic Hydrocarbons

Transition metals catalyst-promoted C–F bond activation and functionalization with
high selectivity and activities represent effective ways to convert easily available and low-
cost fluoro-aromatics into high value fluorine-containing or fluorine-free products via C–C
(carbon–carbon coupling), C–H (hydro-defluorination, HDF) and carbon-hetero-atom bond
formation processes [81]. Progress in recent years in aromatic C–F bond activation has
accumulated steadily, and the newly developed methods could potentially also be applied
to fluoro-containing organic waste degradation.

2.1. Ni-Catalyzed Activation of C–F Bonds in Fluoro-Aromatics

Nickle complexes are widely used in catalytic chemical transformations. The coupling
reaction between the Grignard reagent and fluoro-aromatics catalyzed by Nickel (II) com-
plexes containing bidentate phosphine ligands (1,2-diphenylphosphinoethane, DPPE, and
1,3-diphenyl phosphinopropane, DPPP) proved to be an efficient method for the defluoro-
coupling reaction. Thus, in the presence of a DPPE-Ni(II) complex, Grignard reagent reacts
with N-heterocyclic aryl fluorides to produce N-heterocyclic biphenyl compounds (TOF
ca. 1.1 h−1,Scheme 1), whereas in the presence of DPPP-NiCl2 under mild conditions, the
reaction proceeded smoothly to generate the corresponding unsymmetrical biphenyl com-
pounds with high yield and selectivity (TOF ca. 76 h−1, Scheme 1) [82,83]. The structure of
the bidentated phosphino-ligand plays a key role [84].
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Scheme 2. NiCl2 (dppp) catalyzed cross–coupling of fluoro–aromatics with organozinc reagents. 

Scheme 1. Activation of C–F Bond catalyzed by nickel complexes with bidentate phosphine ligand.

Cao et al. reported a Na-assisted NiCl2-dppp catalytic coupling reaction between
fluoro-aromatics and alkyl zinc reagents. The pyridinyl ring was used as a guiding group
to introduce a new C–C bond at the ortho position. The mechanistic study showed that
there were free radical intermediates generated during the reaction [85]. The C–C coupling
product can be obtained in high yield (TOF ca. 1.2–1.5 h−1, Scheme 2).
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Zhang et al. reported the ortho-selective hydrodefluorination (HDF) of the simi-
lar fluoro-aromatics. In the presence of silane, using easily available inorganic Ni(II),
NiCl2·6H2O, o-2-pyridinyl-fluorobenzene derivatives underwent selective partial HDF
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reaction (TOF ca. 1.3–2.0 h−1) [86]; this reaction can be applied to a variety of multifluoro-
aromatic substrates, and a range of usually hard-to-access partial fluoro-aromatics can be
effectively prepared (Scheme 3).
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Shibata et al. developed an effective nickel(0)-based catalytic metathesis system for
the defluoro-silylation reaction between fluoro-aromatics and R3SiBpin, i.e., an aromatic
C–F bond can be activated in the absence of additional ligands to obtain aryl silanes in
high yield. This reaction is suitable for various inert fluoro-aromatics and a wide range of
substrates [87]. Interestingly, it was further observed that the reaction can proceed under
very similar conditions in the absence of a Ni(0) catalyst (Scheme 4).
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In 2018, Sawamura et al. reported the cross-coupling reaction between fluoro-aromatics
and primary amines, mediated by Ni-complexes and producing secondary amines in high
selectivity [88]. Electron-rich aryl fluoride 4-fluoroanisole reacted with alkyl-amine to give
secondary amine products in up to 94% isolated yields (TOF ca. 0.9 h−1). More importantly,
no tertiary amine was detected in the crude product. Thus, this method has the potential
for the synthesis of multifunctional aniline derivatives from diversified fluoro-aromatic
substrates (Scheme 5).
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Zhang et al. [89] developed a method for the nickel-catalyzed coupling of fluoro-
aromatics with oxazole. Studies showed that the heteroaryl fluoride is a class of substrate
that can tolerate various functional groups. The mechanism of the C–F/C–H metathesis
coupling reaction was thusly proposed: fluoro-aromatics first coordinate with Ni(0), I, and
then C–F is oxidatively added to the center of Ni(0) to obtain Ni(II) intermediate II. In the
presence of the base, the deprotonation reaction of benzoxazole generates a benzoxazole
anion, which undergoes the metal transformation with intermediate II to form diaryl
intermediate III. Finally, the required product is obtained through reductive elimination
and regeneration of active Ni(0) species I (Scheme 6).
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2.2. Pd-Catalyzed Activation of C–F Bonds in Fluoro-Aromatics

Other than nickel species, palladium complexes were also frequently utilized in the
activation of C–F bonds.

Suzuki coupling is a heavily explored C–C formation reaction involving aryl groups [90–92].
Widdowson et al. carried out the first successful Suzuki coupling of fluoro-aromatics [93];
the ortho-substituted nitrofluorobenzene can proceed smoothly under Suzuki coupling
conditions (TOF ca. 1.1 h−1). However, no coupling product is detected when the ortho-
position is substituted by –CF3. Thus, the reaction clearly indicated that the ortho-nitro
group is a necessary electron-withdrawing group for the catalytic activation of the C–F
bond. Two possible reaction pathways may have operated in the products’ formation:
cooperative insertion (path a) or addition-elimination sequence (path b) (Scheme 7).
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Wang et al. reported a palladium-catalyzed cross-coupling between electron-deficient
fluoro-aromatics and N-tosylhydrazones; the reaction can tolerate variety of functionalities
on the substrates [94]. Using a substrate with a strong electron-withdrawing CF3 group, the
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coupling reaction proceeded smoothly with up to 70% yield (TOF ca. 1.8 h−1). Mechanistic
study showed the reaction path includes activation of C–F bond and migration insertion
of palladium carbene as two key steps, which are useful in preparing 1,1-diaryl ethylene
derivatives (Scheme 8).
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Saeki et al. found that nickel and palladium complexes are complementary catalysts for
the cross-coupling of Grignard reagent and C–F bond in fluoro-aromatics, but with different
selectivity. The team used a DPPF-PdCl2 system in the cross-coupling of difluorobenzene
with aryl Grignard reagents [83]. The chelating effect of the adjacent F-atom may promote
the oxidative addition and facilitate the C–F bond activation. Thus, the Pd (1 mol%)
catalyzed reaction of ortho-difluorobenzene with aryl Grignard reagent can obtain a single
substituted product with up to 91% yield (TOF ca. 1.9 h−1), while the yield of cross-
coupling products of meta-and para-difluorobenzene substrates is low. Subsequently, the
study showed the reaction of 1,2,3-trifluorobenzene with Grignard reagent, using DPPP-
NiCl2 (5 mol%) to obtain mainly the double coupling product with low conversion, while
the DPPF-PdCl2 (1 mol%)-catalyzed reaction selectively received the single substitution
product in high yields (Scheme 10).
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Cao et al. showed a palladium-catalyzed cross-coupling of fluoro-aromatics with 
B2pin2 in the presence of LiHMDS, and proposed an efficient method for the synthesis of 
aryl borate pinacol ester [96]. In general, fluoro-aromatics containing electron-neutral 
groups, weak electron-donating groups, or strong electron-donating groups have a higher 
yield than substrates containing electron-withdrawing groups. Under optimal conditions, 
the expected boronates are obtained in moderate to good yields (R = Ph, TOF ca. 3.9 h−1). 
In addition, the reaction tolerates wide range of functional groups, and no external ligand 
is needed. The plausible reaction pathway may be illustrated as such; at first, a boron atom 
of B2pin2 coordinates with a strong base LiN (SiMe3)2 to form a Lewis adduct of sp2-sp3 
diborane species I. The B-B bond of the diborane species can be activated and then un-
dergo heterolytic cleavage. The oxidative addition of the C-F bond in the fluoro-aromatics 
to the Pd(0) complex produces LArPd (II) F adduct Ⅲ. Subsequently, the trans-metalliza-
tion of intermediates I and III formed LArPd(II)Bpin IV and intermediate II. Finally, the 
reductive elimination from IV provides the required aryl borate esters, accompanied by 
the regeneration of the active catalytic Pd(0) species (Scheme 12). The LiHMDS played the 
role of binding and breaking up the B2pin2 unit to facilitate the activation and transfor-
mation of the C–F bond of fluoro-aromatics. 

Scheme 10. Cross–coupling of fluoro–aromatic with Grignard reagents.

Manabe et al. reported a process of ortho-selective cross-coupling of fluorobenzene
with Grignard reagents, and PdCl2 (PCy3)2 was found to be an excellent catalyst for the
reaction. Whereas, electron-donating groups such as hydroxyl, hydroxymethyl, and amino
groups on the ortho-position of the fluoro-aromatics played a key role in accelerating the
palladium-catalyzed cross-coupling [95] (TOF ca. 1.0–1.8 h−1, Scheme 11).

Catalysts 2022, 12, 1665 6 of 22 
 

 

 

 
Scheme 10. Cross–coupling of fluoro–aromatic with Grignard reagents. 

Manabe et al. reported a process of ortho-selective cross-coupling of fluorobenzene 
with Grignard reagents, and PdCl2 (PCy3)2 was found to be an excellent catalyst for the 
reaction. Whereas, electron-donating groups such as hydroxyl, hydroxymethyl, and 
amino groups on the ortho-position of the fluoro-aromatics played a key role in accelerat-
ing the palladium-catalyzed cross-coupling [95] (TOF ca. 1.0–1.8 h−1, Scheme 11). 

Y
F PdCl2(PCy3)2 (2mol%)

X

RMgBr

Y
R

X
X = H, F, Cl;  Y =OH, CH2OH, NH2; R=Aryl, Alkyl

THF/24h

49-85%

 

 
Scheme 11. Cross–coupling of fluoro–aromatics with Grignard reagent catalyzed by PdCl2(PCy3)2. 

Cao et al. showed a palladium-catalyzed cross-coupling of fluoro-aromatics with 
B2pin2 in the presence of LiHMDS, and proposed an efficient method for the synthesis of 
aryl borate pinacol ester [96]. In general, fluoro-aromatics containing electron-neutral 
groups, weak electron-donating groups, or strong electron-donating groups have a higher 
yield than substrates containing electron-withdrawing groups. Under optimal conditions, 
the expected boronates are obtained in moderate to good yields (R = Ph, TOF ca. 3.9 h−1). 
In addition, the reaction tolerates wide range of functional groups, and no external ligand 
is needed. The plausible reaction pathway may be illustrated as such; at first, a boron atom 
of B2pin2 coordinates with a strong base LiN (SiMe3)2 to form a Lewis adduct of sp2-sp3 
diborane species I. The B-B bond of the diborane species can be activated and then un-
dergo heterolytic cleavage. The oxidative addition of the C-F bond in the fluoro-aromatics 
to the Pd(0) complex produces LArPd (II) F adduct Ⅲ. Subsequently, the trans-metalliza-
tion of intermediates I and III formed LArPd(II)Bpin IV and intermediate II. Finally, the 
reductive elimination from IV provides the required aryl borate esters, accompanied by 
the regeneration of the active catalytic Pd(0) species (Scheme 12). The LiHMDS played the 
role of binding and breaking up the B2pin2 unit to facilitate the activation and transfor-
mation of the C–F bond of fluoro-aromatics. 
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Cao et al. showed a palladium-catalyzed cross-coupling of fluoro-aromatics with
B2pin2 in the presence of LiHMDS, and proposed an efficient method for the synthesis
of aryl borate pinacol ester [96]. In general, fluoro-aromatics containing electron-neutral
groups, weak electron-donating groups, or strong electron-donating groups have a higher
yield than substrates containing electron-withdrawing groups. Under optimal conditions,
the expected boronates are obtained in moderate to good yields (R = Ph, TOF ca. 3.9 h−1).
In addition, the reaction tolerates wide range of functional groups, and no external ligand
is needed. The plausible reaction pathway may be illustrated as such; at first, a boron atom
of B2pin2 coordinates with a strong base LiN (SiMe3)2 to form a Lewis adduct of sp2-sp3

diborane species I. The B-B bond of the diborane species can be activated and then undergo
heterolytic cleavage. The oxidative addition of the C-F bond in the fluoro-aromatics to
the Pd(0) complex produces LArPd (II) F adduct III. Subsequently, the trans-metallization
of intermediates I and III formed LArPd(II)Bpin IV and intermediate II. Finally, the
reductive elimination from IV provides the required aryl borate esters, accompanied by the
regeneration of the active catalytic Pd(0) species (Scheme 12). The LiHMDS played the role
of binding and breaking up the B2pin2 unit to facilitate the activation and transformation
of the C–F bond of fluoro-aromatics.
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reaction pathways.

Cao et al. created a catalytic system for the Sonogashira coupling of fluoro-aromatics
with terminal alkynes, utilizing a Pd-catalyst. Thus, in the presence of LiHMDS, various
electron-rich and/or electron-deficient fluoro-aromatics can be converted to aryl substituted
alkynes (TOF ca. 2.2 h−1) [97]. The scope of this transformation can also be extended to
aryl chlorides and bromides, and a plausible reaction mechanism may be illustrated as
such. The first step involves the oxidative addition of C-F bonds of fluoro-aromatics to
the Pd(0)L2 species to generate the intermediate L2ArPd(II)F complex I; subsequently,
coordination of complex I with alkynes resulted in the formation of palladium alkynes
transition state complex II; the coordinated alkynes II are deprotonated by LiHMDS to
produce complex III; and finally, the product and the active catalyst Pd(0)L2 species are
generated by reductive elimination of intermediate III to complete the catalytic cycle
(Scheme 13).
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In general, methods for the selective activation of C–F bonds in multifluoro-aromatics
to obtain partially fluoro-substituted aromatics are highly desirable. Zhang et al. developed
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a practical method for activating the C–F bonds of multifluoro-aromatics [98]. Thus, utiliz-
ing a palladium catalytic system, multifluorophenyl-pyridine substrates and triethylsilane
undergo ortho-selective hydro-defluorination (HDF) with yields up to 98%. This method
has the characteristics of low cost, wide substrate range, mild operation conditions, high
efficiency, good regio-selectivity, etc. (Scheme 14).
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Scheme 15. Pd(OAc)2/BrettPhos–catalyzed C–F bond activation of multifluoro–aromatics and plau–
sible reaction pathway. 

Differing from the Zhang’s process [98], Grey and others studied Pd-catalyzed hy-
dro-defluorination (HDF) of heterocyclic fluoro-aromatics (TOF ca. 1.3 h−1) [100] and ex-
tended the scope of this reaction to a range of hetero-aromatic scaffolds commonly en-
countered in pharmaceutical chemistry (Scheme 16). 

Scheme 14. Pd–catalyzed HDF of fluorophenyl–pyridine substrates with triethylsilane.

Recently, Zhang et al. developed a method for the palladium-catalyzed arylation of
multifluoro-aromatics [99]. The catalytic system, Pd(OAc)2/BrettPhos, is considered to be
highly effective (TOF ca. 3.1 h−1), and has the advantages of high efficiency, wide substrate
range, high regio-selectivity, and toleration of nitrogen-containing heterocyclic groups.
In order to further improve the scope of the process, selective activation of multifluoro-
aromatic substrates was carried out, and cross-coupling of trifluoro-aromatic with aryl-
boronic acid in a gram scale reaction demonstrated fairly good results, which confirms
the generality of this Pd-catalytic system. Preliminary mechanism studies have shown
that the high regio-selectivity of the current reaction may be attributed to the electron-rich
palladium complex Pd(0)BrettPhos, which may facilitate the oxidative addition of the C–F
bonds. The catalytic system opens up a new scheme for the activation of C–F bonds in
multifluoro-aromatics for the organic synthesis and related chemistry (Scheme 15).
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Differing from the Zhang’s process [98], Grey and others studied Pd-catalyzed hydro-
defluorination (HDF) of heterocyclic fluoro-aromatics (TOF ca. 1.3 h−1) [100] and extended
the scope of this reaction to a range of hetero-aromatic scaffolds commonly encountered in
pharmaceutical chemistry (Scheme 16).
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Ding et al. also studied Rh-catalyzed HDF of heterocyclic multifluoro-aromatics via 
activation of C–F bonds in the ortho position of fluoro-aromatics [104]. Through the use of 
Rh-complexes and ethanol as hydride sources, the system can facilitate ortho-selective 
mono-HDF (TOF ca. 0.7 h−1) or double-HDF (TOF ca. 0.8 h−1) of multifluoro-aromatics. 
Mechanistic studies have shown that the phosphine ligands are crucial to catalytic perfor-
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2.3. Other Transition Metal Complexes Catalyzed C–F Activation of Fluoro-Aromatics

In comparison with nickel and palladium-catalyzed C–F bond activation, the same
class of reaction, catalyzed with other transition metals, are less popular to date. In recent
years, naturally abundant metals such as copper, cobalt, and iron have found increased
application in the activation and functionalization of fluoro-aromatic C–F bonds.

Transition metal-mediated hydro-defluorination (HDF) of multifluoroaromatics is
a fairly economic route for preparing partially fluorinated aromatics, and the methods’
development has received increased attention. The selective conversion of C–F bonds
in multifluoro-aromatics is considered a valuable practice [101]. Zhang et al. created a
Cu-catalyzed HDF of muitifluoro-aromatics (TOF ca. 2.7 h−1) [102]. Under optimal reaction
conditions, pentafluoro-arenes with electron-withdrawing substituents (such as NO2, CN,
and CF3) have fairly high reactivity, and the selective formation of tetrafluoroarene is also
rapid (Scheme 17).
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Scheme 17. Cu–catalyzed HDF of pentafluoroaromatics.

Crimmin et al. utilized a relatively rare example of Rh-mediated HDF of multifluoro-
aromatics [103]; the catalytic system is highly selective, and the reaction directly activates
C–F bonds adjacent to a C–H bond, with regio-selectivity up to 98.5–99% (Scheme 18).
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Scheme 18. Rh–catalyzed HDF of multifluoro–aromatics (BDIAlH2, hydrocarbon-soluble alu-
minum dihydride).

Ding et al. also studied Rh-catalyzed HDF of heterocyclic multifluoro-aromatics via
activation of C–F bonds in the ortho position of fluoro-aromatics [104]. Through the use
of Rh-complexes and ethanol as hydride sources, the system can facilitate ortho-selective
mono-HDF (TOF ca. 0.7 h−1) or double-HDF (TOF ca. 0.8 h−1) of multifluoro-aromatics.
Mechanistic studies have shown that the phosphine ligands are crucial to catalytic perfor-
mance, in which bidentate phosphine ligands are out-performing monodentate phosphine
ligands in terms of product yields. In addition, phosphine ligands with higher steric
hindrance are more favorable for producing mono-HDF products (Scheme 19).
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Scheme 19. Rh–catalyzed HDF of heterocyclic substituted multifluoro–aromatics and selectivity
pathways for phosphine ligand control.

Differing from the HDF reaction of multifluoro-aromatics, Iwasaki et al. showed
the activation of aliphatic C–F bond catalyzed by cobalt, and realized the catalytic cross-
coupling reaction of alkyl fluoride with Grignard reagent obtained the corresponding
coupling products in fairly high yields [105]. Duan et al. also studied a co-catalyzed cou-
pling reaction of fluoro-aromatics with Grignard reagents, but in the absence of phosphine
or NHC ligands [65]. The co-mediated ‘easy-to-catalyze’ biaryl cross-coupling reaction
through the cleavage of C–F bond is unexpected, in sharp contrast to the Ni or Pd catalyzed
reactions, in which the existence of activated group(s) on fluoro-aromatics are necessary.
However, the current C–F activation reaction is only catalyzed by CoCl2/DMPU; it is also
noteworthy that in the coexisting of C–F, C–Cl and C–Br functionalities, highly selective
C–F activation can be realized. Mechanistically, the assumption of the synergistic effect of
Co–Ti bi-nuclear intermediate may play a key role in promoting the cleavage of the C–F
bond. These findings will inspire further development of high-efficiency cobalt catalyst
systems for C–F bond activation (Scheme 20).

Catalysts 2022, 12, 1665 11 of 23 
 

 

 

 

 

Scheme 20. Cobalt–catalyzed C–F bond activation and Co–Ti co–oxidative addition reaction transi-

tion state. 

Lee et al. carried out a co-catalyzed boration of C–F bonds in fluoro-aromatics [106]. 

This was the first time that co-catalyzed defluoro-boration of fluoro-aromatics was carried 

out in mild and practical conditions; it exhibited high selectivity for C–F bonds, even ex-

ceeding the boration on C–H bonds in the same substrates. This method makes it possible 

to direct the functionalization of a series of fluoro-aromatics. In addition, the catalytic sys-

tem can tolerate unprotected functional groups (e.g., alcohols and amines), and can also 

activate C–F bonds under aerobic conditions, while somewhat sacrificing productivity 

(Scheme 21). 

 

Scheme 21. Co–catalyzed boration of fluoro–aromatics. 

Based on the palladium-catalyzed activation of C–F bond of fluoro-aromatics pro-

moted by LiHMDS, Cao et al. extended the catalytic system to iron [96] complexes. At 

present, though the activity (R = Ph, TOF ca. 0.3 h−1) of the catalyst is lower than that of Pd 

system, the Fe-catalyst has the advantages of low cost, low toxicity, environmentally 

friendliness and high availability (Scheme 22). 

 

Scheme 22. LiHMDS–promoted Fe–catalyzed defluoroboration of fluoro–aromatics. 

Recently, Nakamura et al. developed a new Fe-catalyzed ortho-C–F activation of dia-

rylamine to synthesize DADHPs in one pot (TOF ca. 65–109 h−1) [107]. The Fe-catalytic 

system has good regio-selectivity, and can selectively synthesize DADHPs with different 

halogen substituents (fluorine, chlorine, and bromine). Increasing the structural diversity 

and availability of DADHPs, will help further development of functional molecules in the 

fields of materials science and synthetic chemistry (Scheme 23). 

 

Scheme 23. Ligand–free Fe–catalyzed C–F amination of diarylamine. 

Scheme 20. Cobalt–catalyzed C–F bond activation and Co–Ti co–oxidative addition reaction transi-
tion state.



Catalysts 2022, 12, 1665 11 of 22

Lee et al. carried out a co-catalyzed boration of C–F bonds in fluoro-aromatics [106].
This was the first time that co-catalyzed defluoro-boration of fluoro-aromatics was carried
out in mild and practical conditions; it exhibited high selectivity for C–F bonds, even
exceeding the boration on C–H bonds in the same substrates. This method makes it
possible to direct the functionalization of a series of fluoro-aromatics. In addition, the
catalytic system can tolerate unprotected functional groups (e.g., alcohols and amines),
and can also activate C–F bonds under aerobic conditions, while somewhat sacrificing
productivity (Scheme 21).

Catalysts 2022, 12, 1665 11 of 22 
 

 

 
Scheme 20. Cobalt–catalyzed C–F bond activation and Co–Ti co–oxidative addition reaction transi-
tion state. 

Lee et al. carried out a co-catalyzed boration of C–F bonds in fluoro-aromatics [106]. 
This was the first time that co-catalyzed defluoro-boration of fluoro-aromatics was carried 
out in mild and practical conditions; it exhibited high selectivity for C–F bonds, even ex-
ceeding the boration on C–H bonds in the same substrates. This method makes it possible 
to direct the functionalization of a series of fluoro-aromatics. In addition, the catalytic sys-
tem can tolerate unprotected functional groups (e.g., alcohols and amines), and can also 
activate C–F bonds under aerobic conditions, while somewhat sacrificing productivity 
(Scheme 21). 

 
Scheme 21. Co–catalyzed boration of fluoro–aromatics. 

Based on the palladium-catalyzed activation of C–F bond of fluoro-aromatics pro-
moted by LiHMDS, Cao et al. extended the catalytic system to iron [96] complexes. At 
present, though the activity (R = Ph, TOF ca. 0.3 h−1) of the catalyst is lower than that of Pd 
system, the Fe-catalyst has the advantages of low cost, low toxicity, environmentally 
friendliness and high availability (Scheme 22). 

 
Scheme 22. LiHMDS–promoted Fe–catalyzed defluoroboration of fluoro–aromatics. 

Recently, Nakamura et al. developed a new Fe-catalyzed ortho-C–F activation of dia-
rylamine to synthesize DADHPs in one pot (TOF ca. 65–109 h−1) [107]. The Fe-catalytic 
system has good regio-selectivity, and can selectively synthesize DADHPs with different 
halogen substituents (fluorine, chlorine, and bromine). Increasing the structural diversity 
and availability of DADHPs, will help further development of functional molecules in the 
fields of materials science and synthetic chemistry (Scheme 23). 

 
Scheme 23. Ligand–free Fe–catalyzed C–F amination of diarylamine. 

3. Activation of C–F Bond in Fluoro-Aromatics Promoted by Transition Metal-Free 
Processes 

Most of the C–F bond activation in fluoro-aromatics is accomplished by transition 
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affect the outcoming products to somewhat unpredictable degrees. The activation of the 
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Scheme 21. Co–catalyzed boration of fluoro–aromatics.

Based on the palladium-catalyzed activation of C–F bond of fluoro-aromatics promoted
by LiHMDS, Cao et al. extended the catalytic system to iron [96] complexes. At present,
though the activity (R = Ph, TOF ca. 0.3 h−1) of the catalyst is lower than that of Pd system,
the Fe-catalyst has the advantages of low cost, low toxicity, environmentally friendliness
and high availability (Scheme 22).
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Recently, Nakamura et al. developed a new Fe-catalyzed ortho-C–F activation of
diarylamine to synthesize DADHPs in one pot (TOF ca. 65–109 h−1) [107]. The Fe-catalytic
system has good regio-selectivity, and can selectively synthesize DADHPs with different
halogen substituents (fluorine, chlorine, and bromine). Increasing the structural diversity
and availability of DADHPs, will help further development of functional molecules in the
fields of materials science and synthetic chemistry (Scheme 23).

Catalysts 2022, 12, 1665 11 of 22 
 

 

 
Scheme 20. Cobalt–catalyzed C–F bond activation and Co–Ti co–oxidative addition reaction transi-
tion state. 

Lee et al. carried out a co-catalyzed boration of C–F bonds in fluoro-aromatics [106]. 
This was the first time that co-catalyzed defluoro-boration of fluoro-aromatics was carried 
out in mild and practical conditions; it exhibited high selectivity for C–F bonds, even ex-
ceeding the boration on C–H bonds in the same substrates. This method makes it possible 
to direct the functionalization of a series of fluoro-aromatics. In addition, the catalytic sys-
tem can tolerate unprotected functional groups (e.g., alcohols and amines), and can also 
activate C–F bonds under aerobic conditions, while somewhat sacrificing productivity 
(Scheme 21). 

 
Scheme 21. Co–catalyzed boration of fluoro–aromatics. 

Based on the palladium-catalyzed activation of C–F bond of fluoro-aromatics pro-
moted by LiHMDS, Cao et al. extended the catalytic system to iron [96] complexes. At 
present, though the activity (R = Ph, TOF ca. 0.3 h−1) of the catalyst is lower than that of Pd 
system, the Fe-catalyst has the advantages of low cost, low toxicity, environmentally 
friendliness and high availability (Scheme 22). 

 
Scheme 22. LiHMDS–promoted Fe–catalyzed defluoroboration of fluoro–aromatics. 

Recently, Nakamura et al. developed a new Fe-catalyzed ortho-C–F activation of dia-
rylamine to synthesize DADHPs in one pot (TOF ca. 65–109 h−1) [107]. The Fe-catalytic 
system has good regio-selectivity, and can selectively synthesize DADHPs with different 
halogen substituents (fluorine, chlorine, and bromine). Increasing the structural diversity 
and availability of DADHPs, will help further development of functional molecules in the 
fields of materials science and synthetic chemistry (Scheme 23). 

 
Scheme 23. Ligand–free Fe–catalyzed C–F amination of diarylamine. 

3. Activation of C–F Bond in Fluoro-Aromatics Promoted by Transition Metal-Free 
Processes 

Most of the C–F bond activation in fluoro-aromatics is accomplished by transition 
metals [108–111]. However, the choice of different metal and/or ligands in the system will 
affect the outcoming products to somewhat unpredictable degrees. The activation of the 
C–F bond catalyzed by transition metal frequently requires harsh reaction conditions, and 
the transition metals may bring adverse effects to the working environment. Therefore, it 
is highly desirable to develop new, efficient and environmentally benign systems for 
chemical bond transformation reactions, and C–F bond activation/functionalization is one 

Scheme 23. Ligand–free Fe–catalyzed C–F amination of diarylamine.

3. Activation of C–F Bond in Fluoro-Aromatics Promoted by Transition
Metal-Free Processes

Most of the C–F bond activation in fluoro-aromatics is accomplished by transition
metals [108–111]. However, the choice of different metal and/or ligands in the system will
affect the outcoming products to somewhat unpredictable degrees. The activation of the
C–F bond catalyzed by transition metal frequently requires harsh reaction conditions, and
the transition metals may bring adverse effects to the working environment. Therefore, it is
highly desirable to develop new, efficient and environmentally benign systems for chemical
bond transformation reactions, and C–F bond activation/functionalization is one of the
frontiers of inert chemical bonds activation [112]. In recent years, some efforts have also
been made to explore the transition metal-free activation of C–F bonds in fluoro-aromatics.

Li et al. reported a simple method for activation of C–F bonds [113] without transi-
tion metal mediation. Thus, perfluoropyridine and Grignard reagent can undergo cross-
coupling under ambient temperature, and results showed that perfluorinated aromatics
can react with aryl Grignards in general; alkyl Grignards are also suitable for the cross
coupling (Scheme 24).
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Scheme 24. Cross–coupling of perfluoropyridine and Grignard reagents.

Li et al. also showed the coupling reaction between multifluoro-aromatic imines and
Grignard reagent without the participation of transition metal [114]. It was found that the
electron-withdrawing effect of amino-functionality on the multifluoro-aromatic ring can
weaken the bond energy of the ortho-C–F bond, which is beneficial to the activation of C–F
bond in multifluoro-aromatic imines. This method is applicable to the coupling reaction
between various fluoroarylimines and Grignard reagent, and can obtain ortho-substituted
benzaldehyde derivatives with high yield (Scheme 25).
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Cao et al. studied the metal-free cross-coupling of fluorinated phenyl pyridine with a
variety of Grignard reagents [115]. The speculating mechanism indicates, at first, that the
nitrogen atom on the pyridine ring coordinates with the magnesium ion of the Grignard
reagent to form a magnesium complex. A; synergistic formation of a six-membered ring
transition state, B; electrons’ rearrangement in the aromatic ring to form a complex C; and
finally, C–F bond cleavage which forms the coupling products (Scheme 26).
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In 2018, Cao et al. showed that the 3-arylation of indene can be directly and conve-
niently prepared via HMPA-promoted cleavage of the C–F bond of fluoro-arene in the
presence of LDA [116], and that the reaction can be completed in 30 min at ambient temper-
ature. A plausible mechanism is proposed. First, indene deprotonates in the presence of
LDA to generate indenyl lithium I. In the presence of LDA, the cleavage of the C–F bond
provides a key intermediate aryne II (Scheme 27); subsequently, I is added to intermediate
II to obtain lithiated 1- or 3-arylalkenes (III or IV), intermediate III is isomerized under al-
kaline conditions to form more stable intermediate IV, and finally, the desired compound is
obtained by neutralizing IV with water. In addition, the coordination of HMPA/THF with
lithium ions has a significant effect on the reaction. It is expected that further expanding
the scope of the reaction is highly possible.
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In 2017, Ding et al. reported an economical and environmentally friendly cross-
coupling reaction between fluoro-aromatics and amines, which involved N-heterocyclic-
assisted selective C–F bond cleavage without the need for transition metal catalysts [112].
The reaction selectively cleaves the ortho-C–F bond of the difluorophenyl pyridine, while
the para-C–F bond remains intact. The mechanistic studies showed that the cross-coupling
reaction is promoted by intra-molecular Li/F interaction (Scheme 28).
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Extending the scope of the heterocyclic-assisted C–F cleavage, Ding et al. created an
efficient process for the activation of C–F bonds in polycyclic hetero-aromatics [117]. The
reaction may proceed through the following route: lithium ions preferentially coordinate
with a lone pair of polycyclic fluoro-aromatic nitrogen atoms, and through binding up
the adjacent F atoms, the C–F bond energy is weakened. The incoming amine substrate
nucleophilic attacks the carbon where the C–F is activated, and thereby forms the new C–N
bond while simultaneously releasing LiF salt (Scheme 29).
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It was found that multifluoro-benzenes can undergo a metathesis reaction with nucle-
ophilic amines, and primary amines are easily reacted with multifluoro-aromatics to obtain
aromatic amines [118] (Scheme 30).
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For activation of C-F bond in multifluoro-aromatics, Tokárová et al. demonstrated
consecutive nucleophilic substitutions of hexafluorobenzene and 1-pentafluorophenyl-1H-
pyrrole (1a) with pyrrole/NaH and 2,5-dimethylpyrrole/NaH [119]. Results showed that
the substitution mode of stepwise defluorinating specific fluorine atoms depends on the
nature and quantity of nucleophiles used (pyrrole/NaH and 2,5-dimethylpyrrole/NaH).
The reaction of hexafluorobenzene with pyrrolidinyl sodium salt (generated in situ from
equimolar amounts of pyrrole and sodium hydride) proceeded smoothly to fully substi-
tuted compound 2 in 82% yield (Scheme 31).
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Crimmin et al. reported a transition metal-free hydro-defluorination (HDF) pro-
cess [120], and it was believed that the boron hydrides may represent a new tool for the
activation of C-F bonds in transition metal-free HDF systems (Scheme 32).
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Due mainly to its environmentally friendly and economical characteristics, as well as
the possibility of utilization in some sophisticate synthetic practices, photo-catalysis also
appears to be a useful tool in C–F bond activation/transformations [121]. Compared with
the previous studies on the activation of C–F bond by cross-coupling of fluoro-aromatics
with Grignard reagents, Zhang et al. demonstrated a selective mono-HDF of hexafluoroben-
zene, under transition metal-free photocatalysis conditions, to yield pentafluorobenzene
in fairly high yields [122]. The photo-catalytic method can be applied to HDF of multi-
fluorobenzenes. Research has shown that the steric hindrance of the photocatalyst and
the multifluoro-aromatics largely determine the HDF rate, pointing to an internal sphere
electron transfer pathway. The study emphasized the importance of the size and shape
of photocatalyst and substrates in controlling the electron transfer mechanism and rate
law. To further prove the potential of the transition metal-free photocatalysis, hexafluo-
robenzene was reacted with cyclohexene, where Py3 is used as a metal-free photocatalyst
to generate hexafluorophenyl radicals, which are intercepted by 6.0 equivalents of cyclo-
hexene, thus obtaining C–C coupling products with good yield. The study demonstrated
the potential of obtaining partially fluorinated aromatics through photocatalytic HDF and
the cross-coupling of multiflorophenyl with olefinic substrates (Scheme 33).
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with olefinc substrate.

Wu et al. demonstrated a visible light-catalyzed defluoro-boration of multifluoro-
aromatics with high selectivity [121]. Subsequently, Yang et al. also showed the photocat-
alytic boration of multifluoro-aromatics with NHC borane [123]. This transition metal-free
photocatalytic process can directly generate B–H bonds in the aromatic products. With good
functional group tolerance and high regioselectivity characteristics, the method provided
nonparallel advantages for the preparation of a large number of valuable multifluoroaryl
borane compounds, which further enriches the photocatalytic defluoroboration (DFB) of
multifluoro-aromatics (Scheme 34).
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Scheme 34. Photocatalytic defluoro–boration of multifluoro–aromatics with NHC borane.

Studer et al. showed that fluoro-aromatics undergo cross-metathesis defluoro-silylation,
through synergistic nucleophilic aromatic substitution similar to the nickel-catalyzed cross-
coupling of C–Si bond, and provided a synthetic method for obtaining aryl-substituted
silanes through C–F bond activation [124]. Studies have shown that silicon-based lithium
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reagents such as PhMe2SiLi or Ph2t-BuSiLi, which are easily generated in situ from their
hydrosilane analogs, react with various fluoro-aromatics to obtain corresponding highly
substituted aromatic silanes. Compared with the classic nucleophilic aromatic substitu-
tions, this transition metal-free, synergistic and nucleophilic aromatic substitution defluoro-
silylation reaction ais lso suitable for substrates bearing relatively electron-rich substituents
(Scheme 35).
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Hua et al. demonstrated a nucleophilic substitution of fluoro-aromatics with var-
ious nucleophiles (such as alcohols, phenols, amines, amides, and N-heterocyclic com-
pounds) [125]. The nucleophilic substitution uses KOH/DMSO as a medium, under mild,
transition metal-free conditions, and provides an alternative alkali-promoted C–F bond acti-
vation process. Studies have shown that fluoro-aromatics with either electron-withdrawing
or electron-donating groups can undergo smooth nucleophilic substitution, and have made
the activation of the fluoro-aromatics’ C–F bond with electron donating functionalities,
such as amide, bromine, cyano, aldehyde, acetyl, etc., possible. (Scheme 36).
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Scheme 36. Transition metal–free nucleophilic substitution of fluoro–aromatics with various
nucle–ophiles.

In 2019, Deck et al. reported the nucleophilic activation of the C–F bond in ortho-
fluoroaniline [126]. Fluorinated aniline reacts with stoichiometric Ti(NMe2)4 in 1,3,5-
trimethylbenzene to obtain the ortho-defluoroamination products with good selectivity and
yields (Scheme 37).
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Shi et al. prepared a series of PNN-type tridentate coordination organic molecules through
the metathesis of 2-diphenylphosphinyl arylamino-lithium salt with fluoro-aromatics [127]. This
provided a transition metal-free protocol for the synthesis of PN-type tridentate ligands
via activation of C–F bond in ortho-fluoroaniline. The method certainly enriched the PNN
tridentate-ligated transition metal complexes toolbox, and the PNN tridentate-ligated
transition metal catalytic chemistry (Scheme 38).
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4. Conclusions and Outlook

Method development for the activation and conversion of inert C–F bonds in fluoro-
aromatics is highly desirable for both routine organic synthesis and industrial and en-
vironmental applications. In recent years, effective and selective processes and systems
developed for the activation and transformation of C–F bonds have seen remarkable signs
of progress. However, in comparison with the activation of C–H and C–C bonds, the C–F
bond activation fields still lack systematic concepts and theories.

As mentioned in this text, a good sign is that the activation and transformation of
C–F bonds in fluoro-aromatics have seen increasing attention, and the advances made not
only demonstrate new processes for the synthesis of novel fluorinated organic compounds,
but also provide insight into theoretical perspectives, inspiring new concepts and method-
ologies in the search for more efficient C–F bond activation and transformation processes
and systems.

The activation and functionalization of C–F bonds catalyzed by transition metal
complexes are still the main focus of the subject. However, owing to the abnormal strength
of the C-F bond energy and the shielding effects of the fluorine atom, currently, the transition
metal-catalyzed sp2 C–F bonds activated in fluorinated aromatics are generally suffering
from low catalytic efficiency, the high loading of catalyst (1–10 mol%) and the forced reaction
conditions (e.g., the prolonged reaction time or high reaction temperature needed to ensure
sufficient substrate conversion) as well the disappointing TOF numbers. Moreover, the
precious metals (Pd, Pt, Rh, etc.)-catalyzed reactions showed no advantageous catalytic
performances from an economic point of view, and the metal-catalyzed C–F activation
may draw attention to the first-row transition metals for future developments toward
practical applications.

On the other hand, economic and environmentally friendly chemical bond activation
processes/methods are attracting increased attention. The development of low-cost, envi-
ronmentally benign, highly efficient C–F activation and conversion, especially the transition
metal-free processes, has recently opened up a window for the stochiometric reaction of
fluorinated aromatics with a variety of reactive substrates; this should generate sustainable
and sufficient interest to warrant further research works. Metal-free C–F bond activation
processes have the advantage of easy scale-up and fewer environmental concerns; therefore,
they will be one of the focal spots of C–F bond activation research.

In addition, ever since it was first demonstrated in 2006 that Frustrate Lewis Pairs (FLP)
can split H–H bonds, FLP-catalyzed reactions are exhibiting outstanding performances in
the activation of a wide variety of high-bonding-energy species [128–130], including organic
molecules possessing sp3 and sp2 C–F bonds [68]. FLP-catalyzed C–F bond activation paves
a new avenue for efficient and selective functionalization of multifluoro organic species to
yield desirable new products. It is believed that FLP-catalyzed C–F bond activation will
provide new chemical processes for practical applications.
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It is expected that this paper will be of some help to researchers working in the C–F
activation fields. The literature in this text is up to date at the end of 2022, and the fast
development in the field will certainly bring some outcomes which you may find valuable.
We will stay alert to the field to announce the most exciting research news periodically.

Together with the rapid development of organic chemistry, C–F bonds activation/
functionalization will be one of the frontiers of research, and it is expected that the activa-
tion/functionalization of the C–F bond in fluoro-aromatics will keep its fast-developing
pace. Thus, more fundamental and general processes/methods will be available for routine
synthetic chemistry and application in industry.
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