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Abstract: The nanocomposites of reduced graphene oxide (rGO) supported zinc tungstate nanoparti-
cles (ZnWO4-NPs) receive considerable attention in electro-catalytic hydrogen evolution reactions
(HER) and reveal significantly higher electro-catalytic performances than pure ZnWO4-NPs in alka-
line media (i.e., 0.5 M KOH electrolyte). The polarization studies show that the ZnWO4-NPs@rGO
nanocomposites exhibit low energy loss and good electrode stability during electrochemical reac-
tions for HER. Furthermore, the Tafel slope of ZnWO4-NPs@rGO nanocomposites is found to be
approximately 149 mV/dec, which closely agrees with the reported Tafel values of the noble metal
electrocatalyst. In contrast, the performance of the ZnWO4-NPs@rGO nanocomposite is found to
be approximately 1.5 times higher than that of ZnWO4-NPs in hydrogen production efficiency. Our
results emphasize the significance of the nanocomposites with enhanced electro-catalytic activities by
lowering the energy loss during electro-catalysis in an alkaline medium.

Keywords: nanocomposites; hydrogen evolution; energy storage and conversion

1. Introduction

Renewable energy is of current research interest among scientists in the energy con-
version process. Transition metal oxides have recently been shown to possess potential in
electrocatalytic hydrogen evolution reactions (HER). Hydrogen energy has fascinated the
world as the most promising clean and renewable energy technology. Hydrogen evolution
reaction (HER) via water electrolysis is a profitable strategy in the clean energy conversion
process for fuel cell devices [1]. The transformation of solar energy to chemical energy
is one of the ways to produce clean energy, but in this paper, we have focused on the
electro-catalysis of water to HER [2–4]. Electrochemically active and low-cost electrode
materials follow the given reaction process at the cathode for HER in alkaline media
(2H2O + 2e− → H2 + 2OH−) [5]. The most common electro-catalysts for gas evolution
reactions are noble metal-based electrocatalysts. Noble metals such as Pt, Ru, and Ir-based
electro-catalysts are also reported as well-organized electro-catalysts in HER [6–9]. How-
ever, the disadvantages of these catalysts are their scarce nature and very high cost. There-
fore, it is very important to design low-cost, stable, and well-performed HER electrodes.
However, scientists have been working worldwide to develop cost-effective and highly
efficient electrode materials of clean energy technologies for commercialization. Recently,
carbon-based nanocomposites are advanced materials used as electrocatalyst, photocatalyst,
and electrode materials for energy storage devices [10–12]. Pt/rGO nanocomposites were re-
ported as superior electro-catalysts over Pt nanoparticles for high HER activity in the acidic
medium due to their excellent conductivity and surface area of rGO [13]. The Tafel slopes
of Pt/GCE, Pt/rGO/GCE, and Pd/rGO electrodes for HER were reported to be of ~90, ~33,
and ~154 mV/dec, respectively [13,14]. Graphene anchored Ag/cobalt ferrite nanoparticles
were also reported as efficient electrode materials for electrochemical applications [15]. On
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the other hand, tungstate [16–19], molybdate [20–23], ferrites [24,25], and delafossites [26]
materials were also reported as proficient HER/OER/ORR electro-catalysts in clean energy
applications. Heteroatoms doped carbon-based materials were recently reported as efficient
electrocatalysts in water-splitting reactions [25,27]. Carbon-coated iron nanoparticles were
reported as sustainable and non-precious trifunctional electro-catalysts, including HER
catalysts in alkaline and acidic media [28]. Sulfide/carbides/nitrides based nanostructured
materials as HER electrocatalysts were efficiently used in water electrolysis under acidic
or basic media [22,29–31]. The hetero-structured materials were also reported as efficient
electro-catalysts in water-splitting reactions [32–34]. It is noteworthy that nanocomposite
materials with rGO show better electrical properties due to the high surface area and
good thermal and chemical stability of rGO. Hence, the nanocomposite electrode materials
perform well for HER. Hydrothermally synthesized tungstate nanorods have been recently
reported as sensors with comprehensive performance [35]. The photo-catalysts have also
produced hydrogen via solar water splitting reactions [36–38]. Subsequently, one of the
key tasks could be an environmentally friendly approach to developing low-cost electrode
materials for sustainable and clean energy with desirable performances. This study mainly
delivers the conceivable electro-catalytic performance of ZnWO4-NPs@rGO nanocompos-
ites to HER via electro-chemical water-splitting reaction as a clean energy resource for fuel
cell applications.

2. Results and Discussion

The electron microscopic studies (FESEM and TEM) were used to recognize the mor-
phology and size of the prepared nanocomposites. The FESEM micrograph reveals that
the prepared nanocomposites show well-defined ZnWO4-NPs supported by rGO sheets
(Figure 1a). The inset of Figure 1a shows high magnification FESEM micrographs for mor-
phological analysis. The TEM study confirmed that ZnWO4-NPs with an average diameter
of ~50 nm are supported by rGO sheets (Figure 1b). The inset of Figure 1b shows the high
resolution TEM (HRTEM) micrographs. The HRTEM study shows the <111> plane of the
lattice fringes of monoclinic ZnWO4-NPs. Figure 1c shows the XRD patterns of the ZnWO4-
NPs and the ZnWO4-NPs@rGO nanocomposites. The XRD patterns demonstrated that the
ZnWO4 nanoparticles are recognized in the monoclinic structure, with a crystalline phase
of reduced graphene oxide (rGO) appearing at two theta of 26.40◦. The XRD patterns were
indexed with JCPDS # 15-774 of ZnWO4. Figure 1d shows the N2 adsorption-desorption
isotherm of ZnWO4-NPs@rGO nanocomposites. The ZnWO4-NPs@rGO nanocomposites
exhibit a type IV adsorption–desorption isotherm [39,40]. The BET surface area of ZnWO4-
NPs@rGO was recorded (~118 m2/g) to be approximately nine times higher than pure
ZnWO4-NPs, as also reported elsewhere [41]. A high surface area is an important tool
in electrochemical hydrogen evolution reactions via water-splitting reactions. Figure 2
shows the selected area FESEM-elemental mapping analysis of the ZnWO4-NPs@rGO
nanocomposites. This elemental mapping analysis confirmed the presence of Zn, W, O,
and C elements in the nanocomposites, as shown in different colors. XPS was carried
out to investigate the chemical states of the elements, i.e., Zn, W, O, and C, in ZnWO4-
NPs@rGO nanocomposites. The XPS spectrum of Zn (2p) shows two peaks at 1024.75 eV
and 1048.73 eV of Zn2p3/2 and Zn2p1/2, respectively, which confirmed that Zn is present in
the Zn2+ chemical state (Figure 3a). The XPS spectrum of W (4f) displays two doublet peaks
at 35.09 eV and 37.30 eV that will be represented to W4f7/2 and W4f5/2, respectively, of the
W6+ chemical state (Figure 3b). The XPS spectrum of O (1s) is shown in Figure 3c. The
deconvoluted peaks confirmed the appearance of two types of oxygen atoms, i.e., one is due
to the metal oxide at ~532.8 eV, and other one belongs to the functional group present in the
graphene oxide matrix at ~533.7 eV. The XPS spectrum of C (1s) shows a peak at ~286.70 eV,
which is deconvoluted into three peaks, i.e., peaks of C=C at ~285 eV, C-C at ~286 eV,
and C-O at ~289 eV. The discussed characterization methods are enough to characterize
the final products for further studies. We have used the prepared nanocomposites as the
electro-catalysts for hydrogen evolution reactions (HERs) in alkaline media.
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Figure 3. High resolution XPS spectra of (a) Zn 2p, (b) W 4f, (c) O 1s, and (d) C 1s.

The electro-catalytic HER performances of the prepared ZnWO4-NPs@rGO nanocom-
posites have been investigated and also compared with the electro-catalytic performances
of pure ZnWO4-NPs. The electro-catalytic HER performances of the ZnWO4-NPs@rGO
nanocomposites and pure ZnWO4-NPs were tested in 0.5 M KOH with a three-electrode
electrochemical system at room temperature. CV and LSV polarization experiments were
conducted at 25 mV/s from 0.0 V to −2.0 V versus Ag/AgCl for HER. Figure 4a shows the
CV plots of ZnWO4-NPs@rGO nanocomposites and pure ZnWO4-NPs. The CV studies
reveal that both ZnWO4-NPs@rGO nanocomposites and pure ZnWO4-NPs show HER
activities in an alkaline medium, but, we have noted that the ZnWO4-NPs@rGO nanocom-
posites show better HER activity than the pure ZnWO4-NPs, as expected. Figure 4b shows
the LSV polarization plots of ZnWO4-NPs@rGO nanocomposites and ZnWO4-NPs. The
LSV studies confirm the HER activities of the ZnWO4-NPs@rGO nanocomposites and pure
ZnWO4-NPs in the cathodic region and strongly support the CV results. From the CV and
LSV results, the current densities were ~19 and ~12 mA/cm2 of the ZnWO4-NPs@rGO
nanocomposites and pure ZnWO4-NPs, respectively, at 25 mV/s. It is remarkable that
the ZnWO4-NPs@rGO nanocomposites show better electro-catalytic HER efficiency than
the ZnWO4-NPs. The onset over-potential of the ZnWO4-NPs@rGO nanocomposites was
found to be approximately 205 mV, which is better than that of the pure ZnWO4-NPs (i.e.,
~315 mV). The Tafel plots of the ZnWO4-NPs@rGO nanocomposites and pure ZnWO4-NPs
are shown in Figure 4c. The Tafel slopes are found to be ~149 mV/dec and ~235 mV/dec
of the ZnWO4-NPs@rGO nanocomposites and pure ZnWO4-NPs, respectively, at 25 mV/s.
The Tafel slope of the Pt/GCE electrode for HER was reported to be ~90 mV/dec [13].
The Tafel slope of the Pd/rGO electrode was reported to of ~154 mV/dec for HER [14].
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The Tafel slopes of the NiMoO4 and ZnMoO4 nanostructured materials were reported to
be ~133 mV/dec and ~230 mV/dec for HER in 0.5 M KOH [20,42]. It should be noted
that the low onset potentials and low Tafel slope values with good stability indicate that
ZnWO4-NPs@rGO nanocomposite is a better HER electro-catalyst than pure ZnWO4-NPs.
It is also noteworthy that the Tafel value of the prepared ZnWO4-NPs@rGO nanocom-
posites is consistent with the reported Tafel value of the expensive Pt-electrocatalyst [13].
The CA experiments also determined the electro-catalytic HER activity and stability of the
electrodes containing ZnWO4-NPs@rGO nanocomposites and pure ZnWO4-NPs. The CA
studies were investigated at a fixed cathodic potential of –1.65 V for 4 h (Figure 4d). The
CA curves of the ZnWO4-NPs@rGO nanocomposites show a higher current density with
stability than the pure ZnWO4-NPs for HER in 0.5 M KOH. These electro-catalytic results
reveal the stable nature of the electrodes with efficient electro-catalytic HER performance.
Therefore, we claim that the ZnWO4-NPs@rGO nanocomposite has the potential to be one
of the worthwhile HER electro-catalysts for energy conversion technologies.
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Figure 4. (a) CV, (b) LSV, (c) Tafel, and (d) CA curves of ZnWO4-NPs@rGO nanocomposites and pure
ZnWO4-NPs for HER in 0.5 M KOH.

The gas generated during the electrolysis was also analyzed with an Agilent 7820A
gas chromatograph equipped with a Molesieve GC column (30 m × 0.53 mm × 25 µm)
and a thermal conductivity detector thermostatted at 40 ◦C for the detection of hydrogen
(H2). Argon was used as the carrier gas. The potentiostatic cathodic electrolysis was
operated by maintaining a catalyst-loaded glassy carbon electrode at−1.65 V for 240 min in
0.5 M KOH solutions. Then, 100 µL aliquots of gas were collected from the headspace of the
electrochemical cell over 20 min intervals with a gas-tight Hamilton syringe. The Faradic
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efficiency of the HER catalysts is defined as the ratio of the amount of experimentally deter-
mined H2 to that of the theoretically expected H2 from the reaction. The catalytic activity of
ZnWO4-NPs and ZnWO4-NPs@rGO nanocomposite for H2 production was determined at
a fixed cathodic potential of −1.65 V for 180 min. As shown in Figure 5a, the H2 production
efficiency of both the ZnWO4-NPs and ZnWO4-NPs@rGO nanocomposites is almost liner
and increasing with time in the 0.5 M KOH solution and was found to be 95.68 mL/cm2

after 180 min, which is higher than that of ZnWO4-NPs (64.27 mL/cm2). Figure 5b shows
the hydrogen production per hour, and the ZnWO4-NPs@rGO nanocomposite shows
31.36 mL/cm2.h, which is about 1.5 times higher than that of pristine ZnWO4-NPs. Fur-
thermore, a 92–93% Faradic efficiency was obtained under alkaline conditions, suggesting
the current density is directly related to hydrogen generation.
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Figure 5. (a,b) Electro-catalytic H2 production efficiency of ZnWO4-NPs@rGO nanocomposites and
ZnWO4-NPs.

3. Experimental

ZnWO4-NPs and ZnWO4-NPs@rGO nanocomposites were prepared by following
the previous reports [43]. The ZnWO4-NPs have been synthesized using the molten salts
method. Zn(NO3)2·6H2O, Na2WO4.2H2O, NaNO3, and KNO3 reagents were taken in mo-
tor pastel with a molar ratio of 1:1:40:40, respectively, and homogeneously hand grounded
for 30 min. Thereafter, the homogenous mixture was transferred into a crucible and then
placed in a muffle furnace at 500 ◦C for 5 h. The resulting material was washed several times
using de-ionized water for the removal of inorganic moieties. The collected white colored
powder was dried at 60 ± 5 ◦C. ZnWO4-NPs@rGO nanocomposites were synthesized by
taking commercially available rGO and synthesized ZnWO4-NPs materials in 1:10 weight
fractions along with 2.5 mL of ethylene glycol and 17.5 mL of de-ionized water followed
by ultra-sonication for 15 min. This suspension was further treated hydrothermally at
120 ◦C/48 h to obtain the dark grey colored ZnWO4-NPs@rGO nanocomposites. Powder
X-ray diffraction (PXRD, Bruker D-8 Advanced Diffractometer), a transmission electron
microscope (TEM, JEOL, JSM-2100F, Japan), a field emission scanning electron microscope
(FESEM, JEOL, JSM-7600F), and elemental mapping techniques were used to characterize
the synthesized nanocomposites. Brunauere–Emmett–Teller (BET) measurements (V-Sorb
2800 Porosimetry Analyser) were conducted to estimate the surface area of the materials.
X-ray photoelectron spectroscopy (XPS) data were collected on a PHI5300 spectrometer.
Electro-catalytic studies of freshly prepared ZnWO4-NPs@rGO nanocomposites and pure
ZnWO4-NPs were investigated with three electrodes configured with a CHI-660E electro-
chemical workstation using alkaline electrolyte at room temperature. The glassy carbon
(0.07 cm2) was used as the working electrode, and an Ag/AgCl electrode was used as a
reference electrode. KOH (0.5 M) was used as an electrolyte solution in the electrochemical
studies of ZnWO4-NPs@rGO nanocomposites. Thus, we have measured the potential
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against Ag/AgCl, but the electrode potential can be converted to RHE using the given
equation, i.e., E(RHE) = E(Ag/AgCl) + 0.197V + 0.059 × pH. Polarization studies were
carried out using cyclic voltammetry (CV) and linear sweep voltammetry (LSV) at a scan
rate of 25 mV s−1. The chronoamperometry (CA) method was performed at a constant
potential of −1.60 V to study the current stability.

4. Conclusions

ZnWO4-NPs@rGO nanocomposites show better electro-catalytic HER performances
than pure ZnWO4-NPs in an alkaline medium (0.5M KOH). The polarization studies
confirmed that ZnWO4-NPs@rGO nanocomposites exhibit a lower onset over-potential
(~205 mV) and Tafel slope (~149 mV/dec) than pure ZnWO4-NPs in electrochemical
water splitting to HER. ZnWO4-NPs@rGO nanocomposite shows approximately 1.5 times
higher hydrogen production efficiency than ZnWO4-NPs. Hence, we can conclude that
ZnWO4-NPs@rGO nanocomposites could be considered one of the highly effective HER
electro-catalysts for clean energy applications.
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