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Abstract: In this study, Pd-graphene quantum dot (Pd-GQD) catalysts were prepared by depositing
Pd nanoparticles onto functionalized GQD surfaces, and their morphology and elemental composition
were characterized using transmission electron microscopy, X-ray photoelectron spectroscopy, and
Raman spectroscopy. The as-prepared Pd-GQD was subsequently employed as a catalyst for the
Heck and decarboxylative cross-coupling reactions and was found to exhibit higher catalytic activity
than other reference systems. The expanded substrate scope of various substituted aryl iodides
further proved that the GQD is an effective support for preparing new heterogeneous catalysts with
improved catalytic performances.

Keywords: Pd nanoparticle; graphene quantum dot; heterogeneous organocatalysis; Heck cross-coupling
reaction; decarboxylative cross-coupling reaction

1. Introduction

Pd is a versatile catalyst for the introduction of new carbon–carbon and carbon–
heteroatom bonds in molecules [1–4]. Several Pd-catalyzed chemical transformations, such
as the Heck, Suzuki, Stille, and Sonogashira cross-coupling reactions, have been successfully
developed to synthesize compounds that are used as building blocks in basic organic chem-
istry research and industrial applications [5–8]. Homogeneous Pd catalysts have usually
been used in these coupling reactions due to their high activity and selectivity. However,
their practical applications are restricted by several issues, such as the difficult separation
of the soluble catalyst from the reaction mixture, the contamination of the final product
with toxic residues, and the recycling of the catalyst for consecutive runs [9–11]. In this
regard, the development of heterogeneous catalysts, in which the catalyst is immobilized on
insoluble solid supports, is gaining extensive attention [12–14]; commonly used supports
in this regard include mesoporous silicas [15,16], polymers [17,18], zeolites [19,20], and
ionic liquids [21,22]. However, most of the supported catalysts suffer from lower catalytic
activity than homogeneous catalysts because of their poor dispersion and leaching from
the support. Therefore, the development of new supported Pd catalysts with improved
activity and stability remains challenging.

Since the first report in 2008 [23], graphene quantum dots (GQDs) have attracted
considerable attention because of their unique and size-dependent properties. They can
be produced by cutting nanometric sp2 clusters into graphene sheets, whose lateral size is
smaller than 100 nm and whose thickness is less than 10 graphene layers [24–26]. Due to
their quantum confinement and surface/edge functional groups, GQDs have the advan-
tages of a size-tunable band gap, stable photoluminescence, and good solubility, which
makes them promising candidates for applications in bioimaging, drug delivery, optical
display, photovoltaics, and sensors. During the past decade, most research on GQDs has
been focused on their synthesis and applications for optical sensing and imaging. Recent
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studies have demonstrated that GQDs have great potential for application as catalysts in
photocatalytic water splitting, CO2 reduction, and H2 production, which have been well-
summarized in several reviews [27–29]. However, the application of catalysts supported
on GQDs for organocatalysis has rarely been reported. We have previously reported a
novel process for preparing highly dispersed metal or metal oxide nanoparticles supported
on sp2 carbon nanostructures, especially carbon nanotubes (CNT) and graphene oxides
(GO) [30–33]. The observed results demonstrated that the catalytic performance of Pd
catalysts supported on CNT and GO can be significantly improved compared to that of
commercial Pd/activated carbon (Pd/C) catalysts in both heterogeneous catalysis and
electrocatalysis [34,35].

Our ongoing interest in the development of new effective catalysts, combined with the
scarcity of knowledge on the catalytic properties of GQDs in organic reactions, motivated
us to investigate the possible use of GQDs as supports in organocatalysis. Herein, we
report a new Pd-GQD catalyst, which is prepared by depositing Pd nanoparticles onto the
surface of GQDs using N,N’-dicyclohexylcarbodiimide (DCC) as a coupling agent. The
morphology and structure of Pd-GQDs were studied using different techniques such as
transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and
Raman spectroscopy. The activity of the Pd-GQD catalysts in Heck and decarboxylative
cross-coupling reactions was evaluated, and the results were compared with those obtained
using Pd catalysts supported on CNTs and GOs.

2. Results
2.1. Characterization of the Catalyst

The shape, size distribution, and average size of the GQDs prepared using hydrother-
mal treatment were determined from the TEM images. Figure 1a shows a low-resolution
TEM image of the GQDs, which are indicated by yellow circles. These GQDs exhibit a
semi-spherical shape and are dispersed with a narrow size distribution. The corresponding
energy-dispersed X-ray (EDX) spectrum shows that the main constituent elements of GQDs
are C and O (inset of Figure 1a); no other elements are detected. A histogram of their size
distribution (Figure 1b) shows that most of the GQDs are in the range of 3–5 nm, with an
average size of ~4.2 nm. The high-resolution TEM image of a single GQD is shown as in
the inset of Figure 1b. An interlayer spacing of ~0.29 nm is observed, corresponding to
the (100) lattice fringes of a hexagonal graphene structure [36,37]. The lattice spacing of
the GQDs is slightly larger than that of pure graphite (d(100) = 0.22 nm), indicating that the
presence of functional groups on the surface and edges of graphene sheets can enlarge the
basal plane spacing of the GQDs slightly, consistent with previously reported observations
on functionalized GQDs [38,39]. The abovementioned results indicate that the GQDs were
successfully exfoliated from the parent graphene compound by hydrothermal treatment.

Figure 2 shows TEM images of Pd-GQD, Pd-GO, and Pd-CNT. Figure 2a shows that the
GQDs in Pd-GQD were in close contact with the (111) planes of the cubic Pd phase [40,41].
The corresponding EDX spectrum confirms that the Pd nanoparticles were successfully
loaded onto the GQD surface (inset of Figure 2a). The observed N signal originates from
the amide group on the GQD surface during the DCC-activated process [42]. The adhered
Pd nanoparticles could not be separated from the GQDs, even after thorough washing
and prolonged sonication. Such strong adhesion between the GQDs and Pd nanoparticles
possibly results from the relatively high binding energy between Pd and the surface
functional groups on the GQDs or the formation of a multijunction induced by coupling
to each other. As shown in Figure 2b, the paper-like structure of the GO supported the
nanoparticles, which were clearly visible as dark spots in the TEM image. For the Pd-CNTs,
the nanoparticles are highly dispersed along the entire CNT walls (Figure 2c). Most of the
nanoparticles in both samples were 1–3 nm in size. The corresponding EDX spectra of the
Pd-GOs and Pd-CNTs reveal that the nanoparticles on both carbon supports consist of Pd
(insets of Figure 2b,c). The observed Cu signal originates from the TEM grid, and no other
peaks characteristic of impurities were observed. The Pd contents of Pd-GQD, Pd-GO,



Catalysts 2022, 12, 619 3 of 10

and Pd-CNT were evaluated using the XPS spectrum (Figure 2d). The relative surface
atomic ratios were estimated from the corresponding peak areas and were corrected using
atomic sensitivity factors. The calculated Pd contents of Pd-GQD, Pd-GO, and Pd-CNT
were approximately 2.8%, 8.3%, and 4.3%, respectively. To check the bulk concentration, the
Pd content in the samples was determined by inductively coupled plasma atomic emission
spectroscopy (ICP-AES). The determined Pd contents of Pd-GQD, Pd-GO, and Pd-CNT
were 3.1%, 8.7% and 4.9%, respectively, which was consistent with that of the XPS results.

Catalysts 2022, 12, x FOR PEER REVIEW 3 of 10 
 

 

EDX spectra of the Pd-GOs and Pd-CNTs reveal that the nanoparticles on both carbon 

supports consist of Pd (insets of Figure 2b,c). The observed Cu signal originates from the 

TEM grid, and no other peaks characteristic of impurities were observed. The Pd contents 

of Pd-GQD, Pd-GO, and Pd-CNT were evaluated using the XPS spectrum (Figure 2d). The 

relative surface atomic ratios were estimated from the corresponding peak areas and were 

corrected using atomic sensitivity factors. The calculated Pd contents of Pd-GQD, Pd-GO, 

and Pd-CNT were approximately 2.8%, 8.3%, and 4.3%, respectively. To check the bulk 

concentration, the Pd content in the samples was determined by inductively coupled 

plasma atomic emission spectroscopy (ICP-AES). The determined Pd contents of Pd-

GQD, Pd-GO, and Pd-CNT were 3.1%, 8.7% and 4.9%, respectively, which was consistent 

with that of the XPS results. 

 

Figure 1. (a) TEM image of GQDs at low magnification. The inset shows the corresponding EDX 

spectrum. (b) The size-distribution histogram of GQDs. The solid line in the histogram represents a 

Gaussian fitting curve. 

 

Figure 2. (a) TEM image of Pd-GQDs at low magnification. The inset (top) shows the enlarged TEM 

image of the marked area in Figure 2a. The inset (bottom) provides the corresponding EDX spec-

trum. (b) TEM image of Pd-GO with its corresponding EDX spectrum (inset). (c) TEM image of Pd-

Figure 1. (a) TEM image of GQDs at low magnification. The inset shows the corresponding EDX
spectrum. (b) The size-distribution histogram of GQDs. The solid line in the histogram represents a
Gaussian fitting curve.
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Figure 2. (a) TEM image of Pd-GQDs at low magnification. The inset (top) shows the enlarged
TEM image of the marked area in (a). The inset (bottom) provides the corresponding EDX spectrum.
(b) TEM image of Pd-GO with its corresponding EDX spectrum (inset). (c) TEM image of Pd-CNT
with its corresponding EDX spectrum (inset). (d) X-ray photoelectron spectroscopy (XPS) survey
results of Pd-GQD, Pd-GO, and Pd-CNT.
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Raman spectroscopy was used to investigate the degree of deformation in the graphite
structure of nanostructured carbon supports during the preparation process. The Raman
spectra of all samples, viz., pristine GQD, Pd-GQD, Pd-GO, and Pd-CNT (Figure 3), showed
two characteristic D and G bands centered at ~1340 and ~1580 cm−1, respectively. The
D band is related to the breathing mode of sp3 carbons in defective areas of the carbon
network, whereas the G band is assigned to the stretching mode of sp2 carbons in the
graphite plane [43,44]. The relative intensity ratio of the D and G bands (ID/IG) is used to
estimate the degree of crystallinity in carbon nanostructures. A small ID/IG value indicates
that the carbon nanostructures contain more crystalline sp2 than disordered sp3 domains
induced by the defects. The calculated ID/IG values for pristine GQD, Pd-GQD, Pd-GO,
and Pd-CNT were approximately 1.05, 1.15, 1.57, and 1.52, respectively, indicating that
the GQDs maintained the intrinsic properties of the graphite structure compared to the
GOs and CNTs during the preparation process. The observed ID/IG value of Pd-GQD is
comparable to those for previously reported GQDs [36,45,46].
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Figure 3. Raman spectra of pristine GQD, Pd-GQD, Pd-GO, and Pd-CNT.

2.2. Organic Catalysis Study

The catalytic activities of the different Pd catalysts were first evaluated in the Heck
cross-coupling reaction. 4-Iodotolune (1a) and n-butyl acrylate (2) were chosen as standard
substrates and were reacted in the presence of Pd catalysts and K3PO4 at 85 ◦C for 3 h.
Among the catalysts tested, Pd-GQD showed the highest yield in the Heck cross-coupling
reaction. As shown in Table 1, using Pd-GQD afforded the desired Heck cross-coupled
product 3a in 84% yield (entry 1), while the use of Pd-GO afforded 3a in 72% yield (entry 2).
When Pd-CNT was used, 3a was formed in 49% yield (entry 3). However, the use of
commercially available Pd/C, which is widely employed in organic reactions, resulted
in the formation of 3a in only 15% yield (entry 4). The reactions with only the QGD,
GO, and CNT supports (without Pd) did not afford the desired product (entries 5–7). As
expected, no product was formed in the absence of the Pd catalyst (entry 8). To expand
the substrate scope of the reaction, several attempts were made using various substituted
aryl iodides with n-butyl acrylate in the presence of Pd-GQD, and the obtained results
are summarized in Scheme 1. The aryl iodides bearing electron-donating groups such as
ethyl and methoxy on the aryl group gave 3b and 3c in 80% and 75% yields, respectively.
On the other hand, aryl iodides bearing halogen groups reacted with n-butyl acrylate to
afford the corresponding products 3d, 3e, and 3f in 88%, 87%, and 85% yields, respectively.
4-Iodoacetophenone, which is an aryl iodide with a ketone group, afforded the desired
product 3g in 92% yield.
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Table 1. Catalytic activities in the Pd-catalyzed Heck cross-coupling reactions.
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Scheme 1. Cross-coupling reactions of substituted aryl iodides with n-butyl acrylate.

Next, we focused on the decarboxylative coupling reaction of alkynoic acids and aryl
iodides. Decarboxylative coupling reactions using alkynoic acids derivatives have been
widely used as an alternative to Sonogashira cross-coupling reactions [47]. Different Pd
catalysts were tested in the reaction between 4-iodotoluene and phenylpropiolic acid in
the presence of TBAF in DMSO at 80 ◦C for 24 h, and the results are listed in Table 2. The
employment of Pd-GQD as a catalyst afforded the decarboxylative coupled product 5a in
82% yield (entry 1). On the other hand, the use of Pd-GO, Pd-CNT, and Pd/C afforded 5a
in 41%, 35%, and 34% yields, respectively (entries 2–4). No product was formed when only
GQD was employed as the catalyst or in the absence of a Pd catalyst (entries 5 and 6). These
results suggested that Pd-GQD was the most effective catalyst for the decarboxylative
coupling reaction. To broaden the substrate scope, various aryl iodides were reacted with
phenylpropiolic acid, the results of which are summarized in Scheme 2. 4-Iodoanisole gave
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5b in a 71% yield. 4-Biphenyliodide and 2-iodonaphthalene produced the corresponding
products 5c and 5d in 78% and 71% yields, respectively. Aryl iodides bearing halide groups
such as bromide, chloride, and fluoride afforded the desired products 5e, 5f, and 5g in
good yields.

Table 2. Catalytic activities in the Pd-catalyzed decarboxylative cross-coupling reactions.
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Entry Pd Catalyst Yield (%)
1 Pd-GQD 82

2 Pd-GO 41

3 Pd-CNT 35

4 Commercial Pd/C 34

5 GQD Not detected

6 - Not detected

Reaction conditions: 1a (0.3 mmol), 4 (0.15 mmol), Pd catalyst (3.5 mol% based on Pd) and TBAF (0.45 mmol)
were reacted in DMSO (1.2 mL) at 80 ◦C for 24 h. Yields are determined by gas chromatography with internal
standard.
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These results clearly indicated the beneficial effects of GQDs on heterogeneous cat-
alytic reactions compared to other carbon supports. The excellent activity of Pd-GQDs
is attributed to the functionalized GQD support. The presence of GQDs enables spatial
confinement of Pd nanoparticles without aggregation and consequently provides the high
surface area of the Pd catalyst. In addition, the reactant–product mass transportation is
enhanced by π–π interactions between the functional groups on the GQD surface and
the aromatic rings of the reactants. Further XPS studies are in progress to determine the
surface properties of the Pd-GQDs and other supports to better understand the role of these
supports in catalytic performance.

3. Materials and Methods
3.1. Materials

Palladium(II) sodium chloride (Na2PdCl4), sodium hydrosulfide hydrate (NaSH·xH2O),
DCC, ethylenediamine, natural graphite powder, and commercial Pd/C (10 wt.% Pd) were
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purchased from Sigma-Aldrich. The CNTs were obtained from Carbon Nano Tech. Co., Ltd.
(South Korea). The GOs were prepared from natural graphite powder using the modified
Hummers method [48]. The experimental details can be found in our previous report [31].
All other reagents and solvents were purchased from Sigma-Aldrich and were used without
additional purification. All aqueous solutions were prepared using deionized (DI) water
from a Direct Q3 Millipore system.

3.2. Preparation of GQDs

The GQDs were prepared from natural graphite powder using a previously reported
one-step hydrothermal method [49,50]. The graphite powder (1.0 g) was added to concen-
trated H2SO4 (100 mL) to prepare a suspension, to which NaNO3 (43.0 g) was added with
vigorous stirring. The resulting mixture was cooled to 0 ◦C in an ice bath. Then, KMnO4
(3.0 g) was gradually added with stirring and cooling to ensure that the temperature of the
mixture did not exceed 20 ◦C. The mixture was stirred at 40 ◦C for 1 h and heated to 120 ◦C
for 12 h. After being cooled to room temperature, 500 mL of DI water was added to the
mixture. The mixture was then transferred to an autoclave and heated to 180 ◦C for 12 h.
The resulting precipitate was collected by repeated filtering and washing with pure ethanol
and DI water. Finally, the GQD powders were obtained by drying at 60 ◦C under vacuum
overnight.

3.3. Preparation of Pd-GQDs

Pd catalysts supported on GQDs, GOs, or CNTs were prepared following a previously
reported DCC-activated method [30]. Briefly, 0.4 g GQD was loaded in a 250 mL round
bottom flask, and 25 mL THF was added under sonication for 20 min. Then, 50 mL of
a 1:1 DCC/THF mixture was poured into the flask under sonication for 30 min. The
resulting suspension was filtered and washed with THF and CH3OH. The isolated solid
(~3 mg/mL) was re-dispersed in THF, and an ethylenediamine/THF (~2 mL/mL) solution
was added with continuous stirring for 1 h. Finally, 0.2 mg of Na2PdCl4 was dissolved in
10 mL DI water and stirred. An ice-cooled 0.1 M NaBH4 solution was added in one step to
the solution with continuous stirring. After the reduction, 20 mg of DCC-activated GQD
powder was added to the solution in one step. The precipitate was collected by repeated
filtering and washing with pure ethanol and DI water. Finally, the Pd-GQD catalyst was
obtained by drying at 60 ◦C under vacuum overnight. The loading of Pd onto the GQDs,
GOs, or CNTs was calculated from the XPS spectra without further analysis.

3.4. Characterization

TEM and EDX analyses were performed on an FEI Tecnai-F20 microscope (Philips,
Netherlands) operated at an acceleration voltage of 200 kV. Samples for TEM imaging
were prepared by depositing a colloidal suspension of Pd-GQD on a Cu grid. Raman
spectra were recorded at room temperature on a Renishaw 1000 micro-Raman spectrometer
(Renishaw, UK) using an argon ion laser (λ = 514.5 nm). XPS analysis was performed using
a VG Multilab 2000 spectrometer (ThermoVG Scientific, UK) equipped with an MgKα

source (1253.6 eV) and a charge neutralizer. For analyzing the XPS peaks, the C 1s peak
position was set as 284.5 eV and was used as the internal reference to locate the other peaks.
The content of Pd in the sample was determined by ICP-AES with an OPTIMA 4300 DV
(Perkin Elmer). Prior to the measurement, the sample was treated with a mixture of HBO3,
HF, and HNO3 in order to dissolve it completely.

3.5. Catalytic Activity Test

The catalytic activities of the different Pd catalysts were tested for Heck and decar-
boxylative cross-coupling reactions. Since the different samples have different Pd contents,
the catalytic evaluations were conducted in a reaction vial using 3.5 mol% of the Pd catalyst
based on the Pd content of the sample. For the Heck reaction, the vial was charged with
certain amounts of aryl iodide, n-butyl acrylate, Pd catalyst, and K3PO4 in DMF, and
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the reaction was conducted at 85 ◦C for 3 h. 4-Iodotoluene was selected as the model
compound to establish optimal reaction conditions. For the Pd-catalyzed decarboxylative
reaction, 4-iodotoluene, phenylpropiolic acid, Pd catalyst, and TBAF in DMSO were placed
in a reaction vial and were reacted at 80 ◦C for 24 h. To broaden the substrate scope of
the reaction system, we studied several additional reactions between various substituted
aryl iodides and phenylpropiolic acid in the presence of a Pd catalyst. The progress of the
reaction was monitored by thin layer chromatography, and conversion of the product was
determined by GC analysis using naphthalene as the internal standard.

4. Conclusions

The enhancement of catalytic activity is one of the most consistently pursued research
topics in the field of heterogeneous catalysis. In this study, we have successfully prepared a
heterogenous Pd-GQD catalyst and used it to catalyze the Heck and decarboxylative cross-
coupling reactions. This is the first reported example in literature that illustrates the use of
GQD as a support in organic catalysis. Pd-GQD shows higher catalytic activity for these
coupling reactions than reference systems, such as Pd-GO, Pd-CNT, and commercial Pd/C
catalyst. The enhanced activity of Pd-GQD can be attributed to the increased dispersion
of Pd nanoparticles or favorable reactant–product mass transportation induced by the
functionalized GQDs. Therefore, GQD is confirmed to be an effective support for preparing
new heterogeneous metal/metal oxide catalysts with improved performances. Further
investigations of the surface properties and long-term stability of this material is in progress.
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