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Abstract: The mechanism in palladium-catalyzed carboxylation of thiophene and CO2 is investigated
using the density functional theory (DFT) calculations, including three consecutive steps of the
formation of carbanion through breaking the C–H bond(s) via the palladium acetate, the elimination
of acetic acid and the nucleophile attacking the weak electrophile CO2 to form C–C bond. Results show
that the C–C bond is formed through taking the three-membered cyclic conformation arrangement
involving the interaction of the transition metal and the CO2, and the CO2 insertion step is the rate-
determining step for this entire reaction process. Aiming to precisely disclose what factor determine
the origin of the activation energy barrier in this carboxylation reaction, the distortion/interaction
analysis is performed along with the entire reaction coordinate.

Keywords: transition metal; DFT; cyclic conformation; acyclic arrangement

1. Introduction

Direct carboxylation of aromatic compounds with CO2 to produce the aromatic car-
boxylic acids is one of the most potent methods to realize the conversion of CO2 into
high-value chemicals [1–22]. This approach not only makes efficient use of arene and
CO2 resources but also overcomes the problems of multiple reaction steps, waste disposal
and environmental pollution in the traditional synthesis pathways, while there are some
challenges in realizing the C–H carboxylation under the moderate conditions due to the
kinetically and thermodynamically stable CO2 and less reactive aromatic compounds.

Among these aromatic substrates, achieving the direct carboxylation of thiophene
is also an urgent problem since there is a large amount (12,500 t/y) of coking thiophene
in the traditional refining process in China, while it has not been reasonably used. The
vast majority of thiophene in the production process is simply removed or destroyed as
the sulfur impurities through the pickling or hydrogenation strategies, resulting in the
inefficient use of this resource and the significant environmental pollution. Additionally,
thiophene is similar in nature to benzene and can be substituted for benzene in many
applications. For example, thiophene-2-carboxylic acid and thiophene-2,5-dicarboxylic acid
can be used to synthesize high-value polymers as a substitute for petrochemical derivatives
benzoic acid and terephthalic acid. Taking the generation of 2-thiophenecarboxylic acid
as an elucidating example, there are three mainly conventional synthesis paths, including
the formylation [23], acetylation [24] and Grignard reagent [25] methods. These traditional
synthesis pathways have some disadvantages, such as multiple reaction steps leading to
the lower atomic efficiency, the application of toxic reagents and a large amount of waste
discharges resulting in environmental pollution. As a result, a new feasible approach,
direct carboxylation of thiophene with CO2, should be necessarily designed from the dual
perspectives of green synthesis and atomic efficiency, taking careful consideration of the
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progress of the carbon fixation in recent years and the successful application of some
aromatic arenes [5], such as toluene and phenol, carboxylation reactions.

The exploration of transition metal or transition-metal-complex-catalyzed carboxy-
lation of aromatic compounds with CO2 has received little attention [26–32]. Mizuno
et al. [28] found that the direct carboxylation of pyridine derivatives (2-phenylpyridine)
with CO2 (1 atm) was achieved with the product yield of 73% under the joint action of tran-
sition metal rhodium complex and organoaluminium AlMe2(OMe) reagents. Lv et al. [29]
investigated the corresponding mechanism of this Rh-catalyzed carboxylation process
by taking the density functional theory (DFT) calculations. It mainly included the C–H
bond oxidative addition, CO2 insertion into Rh–C bond and metal transfer steps, wherein
the CO2 insertion step was the rate-controlling step in this reaction process. Meanwhile,
the organoaluminium reagent acted as Lewis acid to facilitate the CO2 insertion process.
MSuga et al. [30] realized the direct carboxylation of benzene with CO2 under transition
metal rhodium complexes and organoaluminium reagents. Additionally, MSuga et al. [30]
determined that the C–H bond cleavage is the rate-determining step for this carboxylation
reaction via the intermolecular competitive kinetic isotope experiments. Lee et al. [31]
reported that tert-butyl thiophene-2-carboxylate realized the direct carboxylation reaction
with CO2 under the joint action of silver salt, ligand and LiOt-Bu, with the product yield
of 79%. Additionally, the CO2 insertion step was the rate-determining step via the DFT
calculations and kinetic isotope effect experiment. Fujiwara et al. [32] firstly realized the
direct carboxylation of furan, thiophene, benzene and anisole aromatic compounds with
CO2 simply using the transition metal palladium (II) complex (palladium acetate) as a
catalyst, as shown in Scheme 1, but its mechanism has not been investigated. As observed
from the above analysis, the corresponding rate-determining step varies with the transition
metal complexes in this carboxylation process. Nevertheless, there is something in common
here, that is, the activation of C–H bond of aromatic compounds and the CO2 inserting into
the metal-nucleophile bond. Therefore, understanding the characteristics of the various
steps in this reaction process is very necessary for the further development of this process.
That is the purpose of this paper.
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Scheme 1. Pd-catalyzed carboxylation of thiophene with CO2.

Palladium-catalyzed carboxylation reaction can be anticipated to occur through the
cleavage C–H bond of aromatic compound and CO2 insertion into the Pd–C bond steps,
as shown in Scheme 2 [32]. Nevertheless, there are still some crucial issues that have not
been addressed in this proposed mechanism as follows: (a) What is the mode of proton
abstraction? (b) What is the origin of the difference in energy barrier for the alternative
C–H breaking modes? (c) Should the elimination of acetic acid be considered in the reaction
mechanism? (d) What is the interaction mode between the transition metal and CO2,
and is there consistency? (e) Which step in this reaction process is the rate-determining
step? (f) What are the variations in the interatomic interactions as the reaction proceeds?
Therefore, the detailed mechanism of this palladium-catalyzed carboxylation reaction is
studied via the DFT calculations, and the corresponding distortion/interaction–activation
strain model analysis is employed to elucidate the factor controlling the origins of the
height of the activation energy barrier for the different activation modes.
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2. Results and Discussions

In this reaction model, the full molecular system is considered in the calculations
without the truncations or any symmetry constraints. Palladium(II)-catalyzed carboxylation
reaction of thiophene with CO2 mainly consists of two consecutive steps, including that the
formation of carbanion represented as the σ-palladium complex (metal-nucleophile bond)
is the result of palladium(II) acetate induced deprotonation and the nucleophile attacks
the weak electrophile CO2 to form the C–C bond in the form of metal carboxylate. In the
following two sections, these two steps are studied in detail.

2.1. C–H Activation Step

There are many modes for transition metal complexes to activate the C–H bond(s)
of aromatic compounds owing to the influence of the valance state and the types of the
metal, ligand structure(s) and auxiliary additives [33–35]. There have been two prevailing
one-step C–H activation mechanisms, including the concerted metalation-deprotonation
(CMD) and σ-metathesis. To determine the specific C–H bond activation mechanism in this
reaction process, we have carried out DFT calculations on these two different C–H bond
activation modes.

There are various coordination forms between the palladium Pd and the acetate anion
ligand, and as it is well known, the lowest energy form of the transition metal complex, Pd
being bound to the acetate through four oxygen atoms, is inactive. Therefore, this transition
metal complex needs to be activated by dissociation of one or more coordination bonds in
the complex to achieve the catalytic process. In this pre-activation step, a thermodynam-
ically stable intermediate Reactant Complex_1 is formed with 0.66 kcal/mol endergonic
when the palladium acetate combines with the thiophene, as shown by the blue curve
in Figure 1. The metal palladium Pd binds to the ligand acetate through three oxygen
atoms, and there is a weak interaction between the other dissociated oxygen atom and the
proton to be broken on the thiophene ring; meanwhile, there is also a weak interaction
between metal palladium and the carbon atom at the active site on the thiophene ring,
which makes the proton on the thiophene ring easy to transfer to the acetate ligand. The
correspondingly important geometry structure parameters are presented in Figure S1 of
Supporting Information. The cleavage of the C–H bond is achieved by the transfer of proton
to the acetate ligand through the highly ordered six-membered ring transition state TS_1,
in which the cleavage of the C–H bond is carried out simultaneously with the formation of
the Pd–C bond. In the structure TS_1, the C–H bond length in thiophene is elongated from
1.08 Å to 1.31 Å, and the distance between the metal palladium Pd and the carbanion is
gradually reduced from 2.27 Å to 2.08 Å (shown in Figure S1). The activation free energy
barrier of this deprotonation step is 10.59 kcal/mol when taking the free structure Reac-
tant_1 of thiophene and palladium acetate as the benchmark. As the activated C–H bond
distance gradually increases, the interactions between the proton acceptor and the proton
donor gradually change from the weak interaction to the O–H chemical bond, and then
the intermediate Int_1 of σ-Palladium complex containing acetic acid is formed. There is
2.16 kcal/mol endergonic for the reaction Reactant_1→ Int_1 . By studying the structure
of the intermediate Int_1, it is found that there has weak interaction between the hydrogen
atom on the carboxyl group in the acetic acid structure and the thiophene ring, and the
distance between the hydrogen atom and the carbon atom is 2.05 Å. Additionally, the metal
palladium Pd is coordinated to the oxygen atom on the C=O in the acetic acid structure
with a distance of 2.11 Å. Therefore, the removal of acetic acid requires 14.84 kcal/mol
endergonic in the case of these two interactions. Furthermore, the necessity of the acetic
acid removal in this reaction mechanism is explored in detail in the CO2 insertion step.
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The activation free energy barrier of theσ-metathesis deprotonation step is 28.71 kcal/mol
when taking the free structure Reactant_1 of thiophene and palladium acetate as the bench-
mark, which is significantly higher than that of CMD mode (10.59 kcal/mol), where the
corresponding origin for the difference in energy barrier under these two C–H bond break-
ing modes is shown in Section 2.4. As the activated C–H bond distance gradually increases,
the intermediate Int_1′ of the σ-Palladium complex containing acetic acid is formed. There
is 11.23 kcal/mol endergonic for the reaction Reactant_ 1→ Int_ 1′ , which is also greater
than that of the CMD mechanism (2.16 kcal/mol). By studying the structure of the interme-
diate Int_1′, it is found that there is a weak interaction between the hydrogen atom on the
carboxyl group in the acetic acid structure and the thiophene ring, and the distance between
the hydrogen atom on the carboxyl group and the thiophene ring carbanion is 2.59 Å, which
is larger than the corresponding interatomic distance (2.05 Å) in the CMD mechanism.
In addition, the metal palladium Pd is coordinated to the oxygen atom on the OH in the
acetic acid structure with a distance of 2.17 Å, which is also larger than the corresponding
interatomic distance (2.11 Å) in the CMD mechanism. Thus, the interaction between the
acetic acid structure and the complex is weaker in this mechanism in comparison with the
CMD mode, so the energy required for the elimination of acetic acid in the σ-metathesis
mode (5.77 kcal/mol) is less than that in the CMD mechanism (14.84 kcal/mol). Therefore,
in this reaction process, the C–H activation takes the CMD mechanism.

2.2. CO2 Insertion Step

The other key step for achieving this carboxylation reaction is the activation and
polarization of the chemical inertness of CO2 molecules. In this section, the influence of
whether the acetic acid removal step is included in this palladium-catalyzed carboxylation
of thiophene and CO2 on the specific mechanism of subsequent nucleophile carbanion
attacking weak electrophile CO2 is discussed.

Figures 2 and S2 give the detailed mechanism of the nucleophile carbanion attacking
the weak electrophile CO2 and the correspondingly important geometric parameters in
each complex structure in these two cases, respectively. The red curve in Figure 2 shows
the detailed mechanism of carbanion attacking electrophile CO2 when the acetic acid
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removal step is not considered in the system. When the CO2 molecule is close to the
intermediate Int_1, the acetic acid structure is forced to twist due to the steric effect so
that the intermediate can expose the carbanion center as much as possible. Note that
the central atom of metal palladium Pd reaches coordination saturation with carboxylic
acid anion, carbanion and acetic acid structure ligands so that there is no interaction
between the metal palladium Pd and CO2 molecule. The interaction of the nucleophile
carbanion and the acetic acid structure with the CO2 molecule leads to the formation of the
stable intermediate Reactant Complex_2′ with 6.84 kcal/mol endergonic, and the detailed
interatomic interaction isosurface maps are shown in Section 2.3. Under this interaction,
the distance between the nucleophile carbanion and the CO2 molecule is continuously
shortened, forcing the bond angle of the CO2 molecule to gradually become smaller and
the molecule containing the Pd–C bond gradually moved away from its coplanar structure,
resulting in the corresponding transition state structure TS_2′. The formed transition
state structure TS_2′ mostly displays an acyclic conformation arrangement between the
carbanion and the central carbon atom of CO2; that is, there is no interaction between the
metal palladium Pd and CO2 molecule, but what really works is the carbanion. In the
transition state TS_2′ structure, the distance between the central carbon atom of the CO2
molecule and the carbanion of the thiophene ring is shortened from 3.23 Å to 1.82 Å, and
the bond angle of the CO2 molecule is bent from 178.30◦ to 140.78◦. Additionally, the bond
angle ∠C–Pd–C between the carbanion connected to the metal palladium Pd and the central
carbon atom of CO2 increases from 88.05◦ to 100.55◦. The activation free energy barrier
of this CO2 insertion step is 43.09 kcal/mol when taking the free structure Reactant_1 of
thiophene and palladium acetate as the benchmark, which is significantly higher than that
of the deprotonation step. It also shows that it is very difficult to overcome such a high
activation free energy barrier under the current reaction conditions. As the C–C distance
between the carbanion and the central carbon atom of the CO2 molecule continues to
decrease, product complex Product Complex’ is formed. There is 38.04 kcal/mol endergonic
for the conversion of CO2 and intermediate Int_1 to the product complex Product Complex’.
Additionally, the free energy barrier of the forward CO2 insertion step is significantly
larger than that of the dissociation process of the Product Complex’, which indicates that
the product complex formed by this process is very thermodynamically and kinetically
unstable. Therefore, it is necessary to consider the acetic acid elimination step in this
reaction mechanism.

Catalysts 2022, 12, x FOR PEER REVIEW 6 of 13 
 

 

 
Figure 2. Reaction energy profiles of CO2 insertion step: red curve for the case with the acetic acid; 
blue curve for the case with acetic acid removing. 

Figure 2 (blue curve) gives the detailed mechanism of nucleophile carbanion attack-
ing on electrophile CO2 considering the acetic acid removal step in the system. The im-
portant geometry parameters of each complex structure are shown in Figure S2. The reac-
tant intermediate Reactant_2 is obtained after eliminating acetic acid structure from the 
intermediate Int_1 (Int_1′) generated by the above proton abstraction step with 14.84 
kcal/mol (5.77 kcal/mol) endergonic. The interaction of the carbanion and metal palladium 
with the CO2 leads to the formation of the stable intermediate Reactant Complex_2 with 
0.20 kcal/mol exoergic, and the detailed interatomic interaction isosurface maps are shown 
in Section 2.3. Under the joint action of metal palladium Pd, carbanion and CO2 molecule, 
the distance between the nucleophile carbanion and CO2 molecule is continuously short-
ened, forcing the bond angle of CO2 molecule to gradually become smaller (from linear 
molecule to nonlinear molecule) and the molecule containing Pd–C bond gradually 
moved away from its coplanar structure, and the corresponding transition state structure 
TS_2 is obtained in this process. The formed TS_2 structure for C–C bond formation 
mostly displays the three-membered cyclic conformation arrangement, in which the oxy-
gen and carbon atoms in the CO2 molecule interact with the metal palladium and carban-
ion, respectively. In the TS_2 structure, the distance between the carbon atom of the CO2 
molecule and the carbanion of the thiophene ring is shortened from 3.10 Å to 2.01 Å, and 
the bond angle of the CO2 molecule is bent from 177.08° to 145.39°. In addition, the bond 
angle ∠C–Pd–C of the carbanion connected to the metal palladium Pd and the central 
carbon atom of CO2 is reduced from 71.73° to 48.55°, and the dihedral angle between the 
metal palladium Pd and the thiophene ring is changed from −178.73° to 156.11°. In other 
words, the metal palladium Pd is involved in both the activation of the CO2 and the nu-
cleophile, resulting in a strong interaction between the carbanion and the central carbon 
atom of CO2. The activation free energy barrier of this CO2 insertion step is 27.60 kcal/mol 
when taking the free structure Reactant_1 of substrate thiophene and palladium acetate 
as the benchmark, which is significantly smaller than that (43.09 kcal/mol) of the above 
process without considering the acetic acid removal step. As the C–C distance between 
the carbanion and the CO2 molecule continues to decrease, a kinetically and thermody-
namically stable product thiophene-2-carboxylate complex, Product Complex, is formed 
with 1.55 kcal/mol exergonic. 

Figure 2. Reaction energy profiles of CO2 insertion step: red curve for the case with the acetic acid;
blue curve for the case with acetic acid removing.



Catalysts 2022, 12, 654 6 of 13

Figure 2 (blue curve) gives the detailed mechanism of nucleophile carbanion attacking
on electrophile CO2 considering the acetic acid removal step in the system. The important
geometry parameters of each complex structure are shown in Figure S2. The reactant
intermediate Reactant_2 is obtained after eliminating acetic acid structure from the inter-
mediate Int_1 (Int_1′) generated by the above proton abstraction step with 14.84 kcal/mol
(5.77 kcal/mol) endergonic. The interaction of the carbanion and metal palladium with
the CO2 leads to the formation of the stable intermediate Reactant Complex_2 with
0.20 kcal/mol exoergic, and the detailed interatomic interaction isosurface maps are shown
in Section 2.3. Under the joint action of metal palladium Pd, carbanion and CO2 molecule,
the distance between the nucleophile carbanion and CO2 molecule is continuously short-
ened, forcing the bond angle of CO2 molecule to gradually become smaller (from linear
molecule to nonlinear molecule) and the molecule containing Pd–C bond gradually moved
away from its coplanar structure, and the corresponding transition state structure TS_2 is
obtained in this process. The formed TS_2 structure for C–C bond formation mostly displays
the three-membered cyclic conformation arrangement, in which the oxygen and carbon
atoms in the CO2 molecule interact with the metal palladium and carbanion, respectively.
In the TS_2 structure, the distance between the carbon atom of the CO2 molecule and the
carbanion of the thiophene ring is shortened from 3.10 Å to 2.01 Å, and the bond angle of
the CO2 molecule is bent from 177.08◦ to 145.39◦. In addition, the bond angle ∠C–Pd–C of
the carbanion connected to the metal palladium Pd and the central carbon atom of CO2 is
reduced from 71.73◦ to 48.55◦, and the dihedral angle between the metal palladium Pd and
the thiophene ring is changed from −178.73◦ to 156.11◦. In other words, the metal palladium
Pd is involved in both the activation of the CO2 and the nucleophile, resulting in a strong
interaction between the carbanion and the central carbon atom of CO2. The activation free
energy barrier of this CO2 insertion step is 27.60 kcal/mol when taking the free structure Reac-
tant_1 of substrate thiophene and palladium acetate as the benchmark, which is significantly
smaller than that (43.09 kcal/mol) of the above process without considering the acetic acid
removal step. As the C–C distance between the carbanion and the CO2 molecule continues
to decrease, a kinetically and thermodynamically stable product thiophene-2-carboxylate
complex, Product Complex, is formed with 1.55 kcal/mol exergonic.

To summarize, it can be concluded that whether the reaction mechanism includes
the acetic acid elimination step has a significant impact on the complex structure and
interatomic interaction in the C–C bond formation process. First, there is a difference in
the interaction mechanism between the transition metal M and CO2 for these two cases. If
considering the acetic acid removal step, the corresponding transition state structure mostly
displays the three-membered cyclic conformation arrangement or inner-sphere complex, in
which the oxygen and carbon atoms in the CO2 molecule interact with the metal palladium
and carbanion, respectively; otherwise, it is the acyclic conformation arrangement or outer-
sphere complex, that is, there is no interaction between the transition metal M and the
CO2 molecule. Second, there are differences in activation free energy barriers for the CO2
insertion step. The associated energy barrier of Pd–C bond insertion into CO2 to form C–C
bond is 43.09 kcal/mol if the acetic acid removal step is not taken into consideration, which
is much higher than the energy barrier of 27.60 kcal/mol for another alternative. Third,
there is a difference in the stability of the C–C bond formed by the CO2 insertion step when
considering the presence of acetic acid or not. Therefore, in this reaction process, the C–C
bond is formed by taking the three-membered cyclic conformation arrangement involving
the interaction of the transition metal palladium Pd and the CO2 molecule. Additionally,
the CO2 insertion step is the rate-determining step for this entire reaction process.

2.3. CO2 Interaction Modes

As observed from the above calculation results, the CO2 insertion step is the rate-
determining step in this palladium-catalyzed carboxylation reaction process. Furthermore,
the interaction mechanism between the transition metal M and CO2 molecules varies with
whether the acetic acid elimination step is included in this reaction mechanism, that is,
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three-membered cyclic conformation and acyclic arrangement. In order to determine the
consistency of the interaction mechanism between transition metal M and CO2 molecule
during the carboxylation reaction, the effects of metal complexes generated by other tran-
sition metals, such as Cu(II), Ni(II), Rh(II) and Cu(I), and acetate ligand on the transition
state structure and interatomic interaction formed by the nucleophile carbanion attacking
the electrophile CO2 molecule are also investigated.

Figure S6 shows the transition state structures of various metal complexes without
the acetic acid removal step and their corresponding interatomic interaction isosurfaces.
The key geometric parameters in the transition state structure, as shown in Table 1, and
the IRI analysis results demonstrate that there is no interaction between transition metal M
and CO2 molecule in these four metal complexes, whereas CO2 is activated through the
joint interaction between the nucleophile carbanion and acetic acid in the system, which
is consistent with the above findings in the investigation of metal palladium complex.
Figure S7 shows the associated transition state structures of various metal complexes for
the process involving the acetic acid removal step and their corresponding interatomic
interaction isosurface. Table 1 and Figure S7 indicate that there is an obvious interaction
between the transition metal M and the oxygen atom in the CO2 molecule in these four
metal complexes. There is also an electrostatic attraction between the transition metal M
and the bent CO2 molecule, demonstrating that the interaction of the transition metal M
with the carbon and oxygen atoms in the CO2 molecule activates the CO2 molecule without
coordination saturation or modest steric effect for the transition metal atom M, which is
also consistent with the above findings in the investigation of metal palladium complex.

Table 1. The geometry parameters of each transition state structure for different transition metals.

M M-Complex C–OA (Å) C–OB (Å) ∠O–C–O◦ Cthio–CO2 (Å) M–Cthio (Å) M–CCO2 (Å) M–OCO2 (Å)

Pd(II) Complex with AA 1.22 1.22 140.78 1.82 2.11 3.02 3.32
Complex without AA 1.24 1.18 145.39 2.01 2.01 2.65 2.10

Cu(II) Complex with AA 1.22 1.20 144.89 1.95 2.05 2.66 2.60
Complex without AA 1.23 1.18 149.50 2.11 2.00 2.58 2.07

Ni(II) Complex with AA 1.21 1.22 141.85 1.86 2.01 2.88 3.14
Complex without AA 1.23 1.18 151.03 2.14 1.92 2.50 1.92

Rh(II) Complex with AA 1.22 1.22 140.01 1.81 2.13 2.92 3.08
Complex without AA 1.24 1.18 145.70 2.05 2.03 2.67 2.09

Cu(I) Complex with AA 1.22 1.21 142.99 1.95 1.96 2.45 2.80
Complex without AA 1.23 1.19 145.10 2.02 2.00 2.50 2.19

As a result, the transition state structure formed by the nucleophile carbanion attack-
ing the CO2 molecule is arranged in the form of a three-membered cyclic conformation or
inner-sphere complex when the σ-metal complex formed in the deprotonation process does
not reach coordination saturation or the steric hindrance effect around the central transition
metal atom is small. The specific arrangement of the transition state structure is shown in
Figure 3. The transition state structure formed in the CO2 insertion step takes the form of
an acyclic conformation or outer-sphere complex when the σ-metal complex formed in the
deprotonation process reaches coordination saturation or the steric hindrance effect around the
central transition metal atom is large. Figure 3 also depicts this unique CO2 interaction mode.

2.4. Clarification of the Origin of Difference in Energy Barriers for Different Modes

Aiming to precisely disclose what factor caused the difference in activation energy
barrier for these two proton abstraction pathways and two CO2 interaction modes in this
C–H carboxylation reaction proceed, the distortion/interaction-activation strain analysis
model is employed [36–38]. The essence of this model is to decompose the relative energy
∆E(ζ) of the potential energy surface into two contributions, including the activation strain
energy ∆Estrain(ζ), which is the energy required to twist the structures of the referenced two
fragments, and the interaction energy ∆Eint(ζ) between the two warped fragments along
the reaction coordinate ζ. Figure 4 gives the results of activation strain analyses for the
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proton abstraction step of different C–H bond cleavage modes in the thiophene, along with
the reaction coordinates. Depicted in Figure 4a illustrates that these two possibilities have
the similar strain energy term along the reaction coordinate, while the higher activation
energy barrier in the proton abstraction taking the σ-metathesis mechanism is stemmed
from the least stabilizing interaction energy term between the substrate and the catalyst in
the system when compared to the CMD mechanism, which will make the reaction more
endothermic, which is consistent with the results of the above-mentioned analysis of the
interaction within the complex structure using the IRI graphic method. Figure 4b shows the
variation trend of the strain energy of each fragment in the system along the entire reaction
process under the different C–H bond breaking modes. The deformation energy term for
the substrate thiophene in the reaction process in the CMD or σ-metathesis mechanism
is similar, but it is higher for palladium acetate, which is the largest contributor to the
overall strain energy, as discovered. Therefore, the less activation energy barrier in CMD
activation mode originates from the more stable interaction energy term in comparison
with the σ-metathesis alternative, which leads to the transition state of the σ-metathesis
pathway shifting to the later stage.
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Furthermore, we also take the distortion/interaction-activation strain analysis model
to analyze and determine the root for such a clear difference in the activation energy barrier
in the system, allowing us to examine the influence of acetic acid more intuitively on the
CO2 insertion process. Figure 5 presents the corresponding analysis results for both cases.
The difference in energy barrier is mostly due to the deformation energy term created
by the structural distortion of metal palladium complex ∆Estrain-Pd (25.17 kcal/mol vs.
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6.20 kcal/mol), although the deformation energy of CO2 molecule is not much different
(Figure 5). At the same time, there is a difference in the interaction between the twisted
structures under the two pathways, with the inner-sphere complex pathway’s interaction
between CO2 and the σ-palladium complex being stronger than the outer-sphere complex
pathway’s, which is consistent with the results of the above-mentioned analysis of the
interaction within the complex structure using the IRI graphic method.
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3. Computational Details

All the density functional theory (DFT) calculations were performed via the quantum
chemistry package of Gaussian 16 (Rev.A03) suites [39]. Geometry optimizations for all
referred structures of reactants or reactant complexes, intermediates and transition states,
and products or product complexes were carried out at the B3LYP-D3(BJ) theory level
with the mixed basis set including the Stuttgart effective core potential Lanl2dz [40] for
all the transition metal atoms and 6–31G** for all other atoms in the implicit IEFPCM [41]
solvent model. The combination of this theoretical method and the mixed basis set was
named BS1. Frequency calculations were made to verify the nature of each structure,
taking the same theory level and basis set as the geometry structure optimization. The
characteristic of each transition state structure was evaluated by the intrinsic reaction
coordinate (IRC) calculations, which can ensure that the transition state was connected to
the correct reactants and intermediates. The electronic single-point energies were computed
by the BS2 of the B2PLYP-D3(BJ) theory level with the def2-TZVP basis set for the structures
obtained by the BS1. The corresponding solvation free energies were computed by the
M05-2X theory level with the Stuttgart effective core potential SDD [42,43] for transition
metal atom(s) and 6–31G* for all other atoms in the implicit SMD [44] solvent model. The
combination of this theoretical method and the mixed basis set was named BS3. The final
Gibbs free energies are computed as [45]

G = Gcorr
BS1 + EBS2 + ESolvent

BS3 − EGas
BS3 + 1.89

4. Conclusions

In this paper, DFT calculations were performed to investigate the mechanism of the
palladium acetate-catalyzed carboxylation of thiophene with CO2. The reaction proceeded
via the cleavage of the C–H bond, acetic acid removal and CO2 insertion into the metal-
nucleophile bond to give the aromatic thiophene carboxylate, wherein the CO2 insertion
step was the rate-determining step in the entire reaction process. The distortion/interaction-
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activation strain analysis model revealed the origin of the difference in energy barrier for
different interaction modes in the proton abstraction and CO2 insertion steps, and results
showed that the lower activation energy barrier in the CMD activation mode originated from
the more stable interaction energy term in comparison with the σ-metathesis alternative,
while the combined effect of strain energy and interaction energy terms determined the
energy barrier in CO2 insertion step. Note that whether the reaction mechanism included
the acetic acid elimination step had a significant impact on the complex structure and
interatomic interaction in the C–C bond formation process, especially for the CO2 interaction
modes, and their associated consistencies for CO2 interaction modes were evaluated by
the other transition metal complexes. Results showed that CO2 was activated taking cyclic
conformation under both the metal and nucleophile interactions when the σ-metal complex
formed in the deprotonation process did not reach coordination saturation. Otherwise, it was
taken by the acyclic arrangement. Additionally, for the purpose of deeply understanding the
characteristics of this palladium-catalyzed C–H carboxylation reaction process, we visually
analyzed the variations in the interatomic interactions as the reaction proceeded, taking the
interaction region indicator analysis method, which simultaneously disclosed the changes
in the noncovalent and covalent interactions along with the reaction coordinate.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/catal12060654/s1, Figure S1: Structures and important geometry
parameters of complexes in C-H bond cleavage step for CMD and σ-metathesis modes.; Figure S2:
Structures and important geometry parameters of complexes in CO2 insertion step. Figure S3: The
standard IRI color-bar and the chemical explanations of sign(λ2)ρ on IRI isosurface. Figure S4: The
interaction analysis for each intermediate in C-H activation step for the CMD (a) and σ-metathesis
(b) mechanisms. Figure S5: The interaction analysis for each intermediate in CO2 insertion step.
Figure S6: The TS geometry structure and the relevant interaction analyses including acetic acid
for CO2 insertion step: (a) Cu(OAc)2; (b) Cu(OAc); (c) Ni(OAc)2; (d) Rh(OAc)2. Figure S7: The TS
geometry structure and the relevant interaction analyses excluding acetic acid for CO2 insertion
step: (a) Cu(OAc)2; (b) Cu(OAc); (c) Ni(OAc)2; (d) Rh(OAc)2. Figure S8: The interaction analysis
for thiophene deprotonation step (CMD). Figure S9: The interaction analysis for the CO2 insertion
step [46,47].
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